

SANDIA REPORT
SAND2021-7191
Printed June 2021

Multicontinuum Flow Models for
Assessing Two-Phase Flow in
Containment Science

Kristopher L. Kuhlman and Jason E. Heath

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

SAND2021-7191

 2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@osti.gov
 Online ordering: http://www.osti.gov/scitech

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5301 Shawnee Rd
 Alexandria, VA 22312

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.gov
 Online order: https://classic.ntis.gov/help/order-methods/

 3

ABSTRACT
We present a new pre-processor tool written in Python that creates multicontinuum meshes
for PFLOTRAN to simulate two-phase flow and transport in both the fracture and matrix
continua. We discuss the multicontinuum modeling approach to simulate potentially mobile
water and gas in the fractured volcanic tuffs at Aqueduct Mesa, at the Nevada National
Security Site.

 4

ACKNOWLEDGEMENTS
This research was funded by the National Nuclear Security Administration, Defense Nuclear
Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge
important interdisciplinary collaboration with scientists and engineers from LANL, LLNL, MSTS,
PNNL, and SNL. The authors thank Rick Jayne for technically reviewing the report.

 5

CONTENTS
1. Introduction .. 8

1.1. Fractured Tuff Conceptual Models .. 8
1.1.1. Undisturbed Tuff Conceptual Models ... 9
1.1.2. Damaged Tuff Conceptual Models ... 10

1.2. Review of Processes in Multiple Continua .. 11
2. Mesh Development ... 13

2.1. Background ... 13
2.2. Meshing to Represent Multiple Continua .. 15
2.3. PFLOTRAN Multicontinuum Mesh Generation .. 16

2.3.1. Unstructured Mesh Generation ... 16
2.3.2. Unstructured Mesh Region Generation ... 18
2.3.3. Layer Elevation Specification ... 19
2.3.4. Multicontinuum Specification .. 19

3. Multicontinuum model Benchmark .. 24
4. Aqueduct Mesa Conceptual model ... 27

4.1. Model Initialization ... 28
5. Summary and Next Steps ... 31
Appendix A. Source Listing ... 35

 6

LIST OF FIGURES
Figure 1. Hierarchy of conceptual models for multi-phase flow in fractured tuff at Yucca

Mountain (Altman et al., 1996). Models range in complexity from simplest and easiest to
parameterize (top) to most physically realistic and most demanding to parameterize (bottom). ... 9

Figure 2. Delaunay triangulation and Voronoi polygons for 10 random points in 2D. 13
Figure 3. Examples of PFLOTRAN structured mesh grid specifications and region specifications. . 14
Figure 4. Example of mesh construction for multiple continuum approaches, M=matrix,

F=major fractures, f=minor fractures (Wu et al., 2004). (a) is a single-porosity domain, (b) is a
connected fracture domain with diffusion-limited dead-end transport into the matrix, (c)
represents spatial connections in both the fracture and matrix, and (d) includes a third
domain of minor fractures, which are not connected in space. ... 15

Figure 5. Example 3-element 1D domain; structured (top L) and unstructured (top R), domain
visualized via ParaView in bottom image. .. 17

Figure 6. Three example multicontinuum specifications .. 20
Figure 7. PINC (left) and SECONDARY_CONTINUUM (right) inputs for test case. 24
Figure 8. Comparison at 3 observation locations between fracture no matrix,

SECONDARY_CONTINUUM fracture/matrix (SC), and multiporosity (i.e.,
multicontinuum) fracture/matrix (MP). Log-linear (top) and log-log (bottom) scales. Only
matrix elements 1, 10, 20, 30, 40 & 50 are plotted. .. 25

Figure 9. ParaView illustration of model domains in test problem. 1D fracture domain (Right),
PINC domain (Left) shows both 1D fracture domain (transparent blue) and array of 1D
matrix domains (red). .. 26

Figure 10. (Left) Saturation data from UE12P#4 (points), showing GFM layers (colored boxes)
and one interpretation of uniform saturation (dashed line). (Right) Plot of van Genuchten
moisture retention curves used in PFLOTRAN model corresponding to these units
(horizontal pink stripe shows observed capillary pressure range inferred from waxed
samples). .. 27

Figure 11. Conceptual flow model for Rainier Mesa (Ebel & Nimmo, 2009). 28
Figure 12. PFLOTRAN-predicted initial saturation (left) across matrix domains (layers shown on

right). Fracture continuum is dry and not plotted. Vertical coss-section is 366 m tall, with the
land surface at the top. .. 29

Figure 13. Illustrations of water and gas transport in fractured rock (NRC, 2001). 30

 7

ACRONYMS AND DEFINITIONS

Abbreviation Definition
CASH Campbell-Shashkov hydrocode

CTRW continuous time random walk

FEHM Finite Element Heat and Mass Transfer (fehm.lanl.gov)

GDKM generalized dual permeability model

GFM Geologic Framework Model

HDF5 Hierarchical data format, version 5

LANL Los Alamos National Laboratory

MINC Multiple Interacting Continua

NNSS Nevada National Security Site

PFLOTRAN Parallel Flow and Transport (www.pflotran.org)

STOMP Subsurface Transport of Multiple Phases (www.pnnl.gov/projects/stomp)

TOUGH2 Transport of Unsaturated Groundwater and Heat (tough.lbl.gov)

UNE underground nuclear explosion

UNPWT Upper non- to partially welded tuff (GFM unit)

UWT Upper welded tuff (GFM unit)

UZNT Upper zeolitic nonwelded tuff (GFM unit)

VWT Vitric nonwelded tuff (GFM unit)

 8

1. INTRODUCTION
This report introduces a newly developed tool for creating generalized multicontinuum (e.g., double-
porosity, triple porosity, or double-permeability) PFLOTRAN meshes to simulate two-phase
miscible flow of water and gas with energy (i.e., heat conduction and convection, including phase
changes). The multicontinuum approach allows for multiphase flow through domains whose
properties can be assigned to represent the heterogeneous matrix of host rock lithologies, pre-
existing natural fractures, induced fractures from some dynamic process, and potentially other
features such as zones with loss of porosity. At Aqueduct Mesa, on the Nevada National Security
Site (NNSS), it is well-known that a range of gases and liquids permeate the rocks and flow occurs
through both the fractured and intact (i.e., matrix) components of the rock (Heath et al., 2021).
Numerical modeling of gas and radionuclide signatures in the complex geology of Aqueduct Mesa
requires a flexible multicontinuum approach to account for possibly simultaneous flow of water and
gas within natural and induced fractures that connect to the heterogeneous host rock lithologies.

The multicontinuum meshing tool is a Python script designed to work with PFLOTRAN
(Hammond et al., 2014), but it has been constructed to be fairly general and could be modified in a
future version to generate unstructured meshes compatible with FEHM, TOUGH, or other
Voronoi-based simulators.

See our previous work for a detailed summary of relevant hydrogeology of fractured volcanic rocks
(i.e., mostly volcanic tuff) at Aqueduct Mesa, including a literature review of fractured rock
properties (Kuhlman et al., 2020; Heath et al., 2021). In this report we emphasize the
multicontinuum conceptual model and discuss the model implementation details as opposed to
focusing on the geology and hydrogeology of Aqueduct Mesa.

1.1. Fractured Tuff Conceptual Models
For two-phase fluid flow in fractured rocks, there are several viable conceptual models (NRC, 2001).
Altman et al. (1996) presents a clear graphical summary of characterization approaches for multi-
phase fluid flow in volcanic tuffs at Yucca Mountain (Figure 1), which is approximately 50 km
south-southeast from Aqueduct Mesa. Yucca Mountain rocks are similar to those at Aqueduct Mesa.
Significant effort was expended to measure, simulate, and understand two-phase flow in volcanic
tuffs at Yucca Mountain (e.g., Doughty, 1999; Rechard et al. 2014) and analogue studies were
performed in other volcanic tuff sites as part of the Yucca Mountain Project, including the Bishop
Tuff in California (Evans & Bradbury, 2004) and the Apache Leap Site in Arizona (Neuman et al.,
2001).

 9

Figure 1. Hierarchy of conceptual models for multi-phase flow in fractured tuff at Yucca Mountain
(Altman et al., 1996). Models range in complexity from simplest and easiest to parameterize (top)

to most physically realistic and most demanding to parameterize (bottom).

1.1.1. Undisturbed Tuff Conceptual Models
This subsection on “undisturbed” conceptual models focuses on the matrix and natural fractures of
tuff lithologies and not on induced fractures from dynamic processes such as underground nuclear
explosions (UNEs). A single-porosity equivalent porous medium conceptual model is the simplest
approach (top of Figure 1). A single-porosity model requires the fewest parameters and is the
grossest approximation to fracture/matrix flow (i.e., only valid in the limit as flow in one of the
continua can be ignored). At the bottom, the porous discrete fracture network, with each fracture
represented within a permeable matrix, is considered the most physically realistic. The most complex
approach is considered the most difficult to parameterize and simulate. Approaches of intermediate
complexity include multi-continuum approaches like dual porosity or dual permeability (e.g., Warren
and Root, 1963; Kazemi, 1969; Kuhlman et al., 2015; the terms dual porosity and dual permeability
are further explained in Section 1.2), featured in the middle of the figure.

Despite Figure 1 being 25 years old, it still essentially summarizes the range conceptual models for
two-phase flow in fractured rocks, with one possible modern extension/addition for discrete fault
networks in an equivalent porous medium. Recent work has pursued a hybrid approach, where a
small number of discrete fractures or faults are embedded into an equivalent porous medium, using

 10

either single or multiple porosity (White et al., 2020). This embedded approach is not conceptually
different from the options already in Figure 1, but represents the logical progression in the search
for an optimal balance of computational efficiency (i.e., fewer unknowns to solve for in a flow
domain), fewer parameters to estimate or specify (i.e., not including every fracture in the system),
and physical realism (i.e., representing mapped faults or fractures that may be fast pathways). Reeves
et al. (2014) used a similar “fracture continuum” method for simulating multiphase fluid flow at
Rainier Mesa, which is adjacent to Aqueduct Mesa and which contains more significant faulting.
Reeves et al.’s fracture continuum approach includes discontinuous, discrete fault networks that are
incorporated into a dual-permeability formulation. Discrete mapped features could also be added to
the current multicontinuum framework presented here.

The Aqueduct Mesa conceptual model presented in Heath et al. (2021) essentially falls in the middle
of this range of conceptual models. In this approach, multiple continua are considered, and both
natural and induced fractures are treated, with possibly multiple types of matrix (damaged and
intact), considering two-phase flow properties for each continuum. Thus, it is an expansion of the
dual permeability conceptual model in the middle of Figure 1 to multiple porosity types that each
can have mobile water and gas. Similar to our approach, Wu et al. (2004) and Liu et al. (2003)
present triple-porosity continuum approaches for two-phase flow in fractured volcanic tuff. These
two similar approaches consider fractures, matrix and either “small fractures” (Wu et al., 2004) or
vugs/macropores (Liu et al., 2003) as the third continuum. Damage to the matrix could change the
properties of the matrix and produce new fractures, which may be expected to have a very different
distribution and properties than natural fractures (although few data are available to parameterize the
induced fractures). The multi-porosity approach could be extended to include any other porosities
deemed important (e.g., “small fractures” or vugs), but is presented here in its simplest form, we
plan to start with simple approaches and increase complexity of the model as justified by laboratory
or field observations.

1.1.2. Damaged Tuff Conceptual Models
Representation of rock deformation from UNEs in numerical models in terms of multiphase fluid
flow properties is needed for predicting gas and radionuclide migration to earth’s surface. Such
damage may create new fractures and hence increase permeability, or it may crush the rock matrix
and decrease porosity and permeability. Dynamic rock deformation is not included in work from
Yucca Mountain but is obviously important to numerical modeling of Rainier and Aqueduct Mesas.
Jordan et al. (2015) presents a workflow that relates a rock damage model to hydrologic parameters
that are then incorporated into a gas transport model to predict gas arrival times to earth’s surface
under barometric pumping. The rock deformation model is a hydrocode named CASH (CAmpbell-
SHashkov), which can model dynamic events including shocks, and, in the case of modeling for tuff
and granite, includes compressive damage around an explosive charge and tensile cracking. For more
details on the rock damage modeling, please see the methods and supplemental material of Jordan et
al. (2015). They used FEHM for gas transport, which includes a Generalized Dual permeability (K)
Model (GDKM) for flow and transport between matrix-fracture, fracture-fracture, and matrix-
matrix materials in the simulation domain.

Of key interest here is mapping between rock damage and fluid flow properties to be used by the
flow and transport simulator. Jordon et al. (2015) uses a nearest-neighbor (non-averaging) approach
with overlapping Voronoi regions on a separate grid used to track mechanical damage and the
FEHM computational mesh, with the greatest overlapping area being where the damage is assigned

 11

to the FEHM mesh. A fracture aperture parameter is mapped to the damage—cutoffs are assigned
to determine if a value of damage maps to a fracture permeability using the cubic law or an
equivalent continuum model permeability that represents matrix and/or fracture permeability
combined with the matrix that is below the damage-grid scale. This approach does not simply
volume-average permeabilities as that process would lead to vastly underpredicted fluid flow.
Volumetrically, fractures may be a small part of the medium, but they can be orders of magnitude
more permeable and contribute to fast flow.

1.2. Review of Processes in Multiple Continua
The idea of a single rock being conceptualized as being constructed of multiple overlapping
continua started with a conceptual model of Barenblatt & Zheltov (1960), but the first widely used
analytical solution for the problem of flow to a pumping well in the petroleum engineering literature
is associated with Warren & Root (1963). It is common (though not universal) to refer to fracture
flow (high permeability with little storage capacity) and matrix diffusion (no permeability and high
storage capacity) as “double porosity” (although Figure 1 refers to this as “dual porosity”). A more
general flow system with variable permeability and connectivity in both the fractures and the matrix
is commonly called “double permeability” (Figure 1 refers to it as “dual permeability”).

Warren & Root’s (1963) solution was a “diffusion of excess fluid pressure” solution for flow in a
single-phase reservoir (i.e., slightly compressible fluids like oil or water). The authors developed their
solution to match observed recovery data from production wells with multiple slopes on log-time
scale – an early slope associated with fast fracture flow and a late-time slope associated with slower
matrix diffusion. The Warren & Root (1963) solution simplifies flow from the matrix to the fracture
to be proportional to a difference in pressure between two reservoirs, rather than considering
spatially variable pressure within the matrix. A large number of analytical and numerical solutions
extended the Warren & Root solution for different boundary conditions (Gringarten, 1982),
additional porosities (Clossman, 1975), fracture-matrix skin (Moench, 1984), transient flow in the
matrix with pressure gradients (Kazemi, 1969), and potentially infinite distributions of porosities
(Kuhlman et al., 2015). Zimmerman et al. (1993) presented a hybrid analytical/numerical method,
where flow in the fractures is treated numerically and diffusive flow in the matrix is predicted using
an analytical solution similar to Warren & Root. This historical hybrid solution is mentioned because
it is typical of the quest to find a balance between computational economy and geometric/physical
realism.

Diffusion of solute into a set of overlapping continua was also treated first in the petroleum
engineering literature by Coats & Smith (1964). The authors developed their model to explain
anomalous “long tail” tracer breakthrough observations in numerous single-phase flow problems.
The tracer slowly diffuses into the matrix at early times when the concentration within the fracture is
high, and later slowly diffuses out of the matrix when the concentration in the fracture has flushed
out and is low again. In this case, diffusion of solute into an impermeable matrix was considered a
“capacitance” term in the problem, drawing an analogy with electrical circuits. This process is often
referred to as “multirate mass transport” or “mobile-immobile transport,” since the matrix only has
diffusion (immobile) and the fracture is mainly advection (mobile). Analogous to the flow problem,
many extensions of the initial approach have been derived, including sorbing mass transfer with
multiple sites (van Genuchten & Wierenga, 1976) and an extension to solute transport between a
distribution of fractures and a potentially infinite distribution of porosities (Haggerty & Gorelick,
1995).

 12

Outside of hydrology and petroleum engineering, the use of multiple overlapping continua has seen
wide application to unrelated problems. In solid state physics, a similar theory of multiple trapping
states was developed to predict small-scale charge transport in disordered materials (Noolandi, 1977;
Scher et al., 1991). In mathematics, the diffusion in disordered, fractal, or comb-shaped media also
can be approximated using similar solutions (Havlin & Ben-Avarham, 1987).

These diffusion-only approaches (i.e., not double permeability) can be generalized to a system where
a diffusion-limited reservoir (i.e., the matrix) exists that can be simplified down to behaving like a
source or sink from the view of the adjacent fast-flowing fractures. The diffusion-limited behavior
results in a simplistic representation in terms of convolution of “shape factors,” which are simple
products in Laplace-transform space. Any of these diffusive systems can also be shown to be
equivalent with the continuous time-domain random walk (CTRW) statistical physics model
(Montroll & Weiss, 1965), which is a random walk (i.e., Brownian motion) with an additional
random wait for a random length of time. From the point of view of solute transport in a fracture,
the matrix can be thought of as a mechanism that slows down changes in time (reduces quick rises
in concentration and delays quick declines in concentration). All these approaches can also be
related to a generalized diffusion equation with fractional time derivatives (Oldham & Spanier, 1970;
Schumer et al. 2003), which represents deviations of fracture/matrix flow from the ideal fracture-
only behavior as fracture flow governed by non-integer-order derivatives.

This short historical review provides some context for the wide range of methods and applications
used to treat “multiple overlapping continua” systems and illustrates this is a problem of real-world
interest beyond the application of the current two-phase flow system on Aqueduct Mesa.
Multicontinuum solutions are widely used, sometimes in applications where they are not physically
motivated. Some researchers consider multi-rate mass transport and CTRW solutions in
heterogeneous (but otherwise single porosity) domains to be a type of proxy or “fitting” model
(Fiori et al., 2015). It is true that the methods may be applied in some areas where they are not
justified, but this also shows the methods are a widely used tool to solve flow in complex systems.
Rather than being limited to the simplistic diffusion-limited types of problems, the multicontinuum
approach we present here is physically motivated and can include non-linear two-phase flow and
multiple permeabilities as well as diffusive porosities. These applications cannot be treated using
simple diffusion-only type analytical solutions, and in our application are physically motivated by the
presence of heterogeneous fractured and unfractured rock.

We present here a system that allows for multiple-continuum advection and diffusion of fluid
pressure, two miscible and competing phases (with the capillary pressure relationships between
phases specified individually for each continuum), with advection and diffusion of gases and energy
through the fractured system. This system is a synthesis and natural extension of the many solutions
in the literature summarized in this section. After introducing the mechanics of how the meshes are
created, we present a small portion of the wide range of possible behaviors that could be expected
when two-phase advection and diffusive transport are included. Numerical models are being
developed to deepen our understanding of the system to better make predictions in a new situation,
not just to match observations made in the laboratory or field.

 13

2. MESH DEVELOPMENT

2.1. Background
Numerical simulations require construction of a solution mesh. Numerical models based on the
finite-element method (e.g., COMSOL, Sierra Mechanics) typically build meshes out of triangles
(2D) or tetrahedra (3D). Numerical models based on the finite-volume or integrated finite-
differences approaches (e.g., TOUGH2, FEHM, PFLOTRAN) usually use Voronoi meshes (in 2D
or 3D). A uniform mesh of boxes (i.e., rectangles in 2D, hexahedra in 3D) is the simplest form of
Voronoi mesh, but more complex Voronoi meshes can be constructed for arbitrary geometry
indirectly from more common tetrahedra meshes or directly using algorithms like VoroCrust
(Abdelkader et al., 2020).

For Voronoi elements, each element includes all the area or volume closest to the center of the
element than any other element center. The line connecting the centers of adjacent elements is then
by construction perpendicular to the element face. One way of constructing Voronoi elements is to
first construct a Delaunay tetrahedral mesh, and then the Voronoi mesh is the “dual” of the
tetrahedral mesh (i.e., corners of tetrahedra becomes centers of Voronoi elements, and the faces of
Voronoi elements are perpendicular to the edges of the tetrahedra, located halfway between each
node; Figure 2). Triangles and tetrahedra are commonly used because they always have the same
number of sides, and they naturally define a convex hull around any group of points. Voronoi
elements can have as few as 4 sides in 2D, but often have many more, and require additional
specification of the convex hull (since they are specified by their centers, rather than their corners).
PFLOTRAN uses Voronoi meshes, and the multicontinuum tool currently works with hexahedra
meshes, but future versions of the tool will be able to apply multicontinuum methods to arbitrary
Voronoi meshes.

Figure 2. Delaunay triangulation and Voronoi polygons for 10 random points in 2D.

PFLOTRAN documentation is available in website form from the main PFLOTRAN website
(http://pflotran.org). Currently the documentation for the development version is at https://doc-
dev.pflotran.org, in the user’s guide. Keywords in the following sections are specified in all caps, but
this is only a convention (not required) in PFLOTRAN input files.

PFLOTRAN is based on the finite-volume method (requiring Voronoi elements for mass balance),
and it has three major ways of specifying solution meshes. At the simplest end, “structured” meshes
are made of hexahedra specified using three vectors of Δ	𝑥, Δ	𝑦, and Δ	𝑧, for cartesian, cylindrical, or
spherical geometry. The cartesian product of these three vectors and the geometry type gives a

 14

simple grid of boxes. In the middle (complexity-wise), an “implicit unstructured” mesh is specified
by listing the corners of each element. From these corners, PFLOTRAN geometrically computes the
element volumes, connectivity between elements (i.e., determining which elements touch one
another), and interfacial areas. The most complex and most flexible way to specify a mesh in
PFLOTRAN is the “explicit unstructured” mesh. In this case, the user specifies the coordinates of
element centers, element volumes, and the connectivity between elements (including each
connection’s location and perpendicular area). Simple meshes can be represented equivalently using
any three of these methods, with the structured mesh approach resulting in the simplest
PFLOTRAN input files. More complex geometries, including multicontinuum meshes, can only be
represented using an explicit unstructured mesh, since multiple elements can be located at the same
physical location. Implicit unstructured meshes cannot be used for multicontinuum problems, since
proximity is the mechanism for specifying connectivity in these meshes, and the connectivity of
physically coincident elements cannot be inferred from geometry alone.

The simplest structured meshing approach also has the simplest methods for specifying regions
(points, areas, or volumes) that are used to assign material properties (element volumes), boundary
conditions (areas or element faces), sources and sinks (element volumes), or observation locations
(points at centers of elements). Figure 3 illustrates how boxes (specified via a list of 6
COORDINATES: 𝑥!"#, 𝑥!$%, 𝑦!"#, 𝑦!$%, 𝑧!"#, 𝑧!$% or a BLOCK of 6 indices 𝑖!"#, 𝑖!$%, 𝑗!"#,
𝑗!$%,	𝑘!"#, 𝑘!$%) can be used to indicate regions. Surfaces (i.e., faces) can be specified using simple
word/compass directions (i.e., north, south, east, west, top, bottom), like
CARTESIAN_BOUNDARY.

GRID
 TYPE STRUCTURED
 NXYZ 5 4 7
 BOUNDS
 0.0 2.0 0.0 # x,y,z min
 100. 50.0 25.0 # x,y,z max
 END
END

REGION pumping_well
 COORDINATES
 20.0 12.0 3.57 # x,y,z min
 40.0 24.0 7.14 # x,y,z max
 END
END

REGION downstream
 CARTESIAN_BOUNDARY EAST
END

REGION source
 BLOCK 6 6 1 1 1 1 # (min,max) i,j,k
END

Figure 3. Examples of PFLOTRAN structured mesh grid specifications and region specifications.

Fewer of these convenience keywords exist in PFLOTRAN when using the explicit unstructured
mesh input approach. Region volumes are specified using lists of integer element ID numbers, and
boundary conditions are specified using lists of connections (i.e., the connection between element
centers and element faces where boundary conditions are applied). The flexibility and generality of
the explicit unstructured approach means it is typically only used with a front-end or pre-processor
(e.g., dfnWorks: Hyman et al., 2015; https://dfnworks.lanl.gov), since manually constructing all but
the smallest explicit unstructured meshes is tedious and error prone.

PFLOTRAN has double-porosity capability, called SECONDARY_CONTINUUM, the theory of
which is documented at https://doc-dev.pflotran.org/theory_guide/multiple_continuum.html. This
existing secondary continuum approach can only simulate matrix diffusion of solute or temperature
(no advection of water or gas, the intrinsic permeability is effectively assumed zero)—this approach
is only for diffusion-limited matrix processes. These diffusion-only capabilities in the secondary

 15

continuum approach in PFLTORAN are implemented independently of the main flow and
transport modes in PFLOTRAN. Any new heat or solute transport features needed in the existing
double-porosity approach (e.g., sorption or radioactive decay in solute diffusion) must be
implemented anew and verified against the similar capability in the main part of PFLOTRAN. The
primary advantage of this limited (i.e., diffusion only) double-porosity approach is execution speed;
the approach takes advantage of the diffusion-limited assumption and makes significant
simplifications to speed up solution.

2.2. Meshing to Represent Multiple Continua
There are a range of different approaches for conceptualizing, and subsequently implementing,
multiphase flow through fractured rocks (Figure 1). Fractures and intact rock (i.e., porous matrix)
both play important roles in flow through volcanic rocks at Aqueduct Mesa. Some fractures are
natural and formed early (e.g., due to rapid cooling of the volcanic rocks immediately after
deposition), some fractures may be natural and in response to regional tectonic stresses (i.e., both
micro- and macro-fractures), and others are recent and due to human activities, including chemical
and nuclear explosions. Recent fractures include damage associated with excavations (e.g., drifts,
boreholes, and cavities) or explosions (e.g., shock damage or chimney collapse). Note that natural
fractures within the P-Tunnel Complex have little displacement (< 1.5 m) as opposed to Rainier
Mesa with faults/fractures with tens of meters of displacement (Drellack et al., 2011; Prothro, 2018).

We have developed a set of Python scripts to create explicit unstructured meshes for PFLOTRAN
that represent the 1D, 2D, or 3D domains consisting of an arbitrary number of overlapping
continua. Figure 4 illustrates a typical set of possibilities for a 1D physical domain with (a) a single
matrix continuum, (b) a spatially connected fracture continuum linked to an un-connected matrix
continuum (i.e., dual porosity), and two (c) or three (d) spatially connected continua (i.e., dual
permeability).

Figure 4. Example of mesh construction for multiple continuum approaches, M=matrix, F=major
fractures, f=minor fractures (Wu et al., 2004). (a) is a single-porosity domain, (b) is a connected
fracture domain with diffusion-limited dead-end transport into the matrix, (c) represents spatial
connections in both the fracture and matrix, and (d) includes a third domain of minor fractures,

which are not connected in space.

 16

2.3. PFLOTRAN Multicontinuum Mesh Generation
The approach described here, inspired by the MINC (Multiple Interacting Continua) mesh pre-
processor for TOUGH (Pruess & Narasimhan, 1982; Pruess, 1992), implements meshes for multi-
continuum problems via the “explicit unstructured” mesh input specification approach in
PFLOTRAN. The working version of this capability is tentatively called “PINC,” starting off as a
MINC implementation for PFLOTRAN. This approach can utilize any flow, reaction, transport or
geophysical process already implemented in the “regular” part of PFLOTRAN across secondary,
tertiary, or higher continua. Spatial connectivity can be implemented in the secondary continua (e.g.,
double permeability).

To implement this MINC-inspired mesh pre-processor for PFLOTRAN in a general way, we re-
implement the “structured” meshing algorithm in PFLOTRAN as a Python script, and then we
added in multicontinuum capabilities. This external approach was chosen, rather than modify the
PFLOTRAN source code directly, because the PFLOTRAN source is significantly more complex
because of its usage of MPI-based parallel mesh construction and PETSc for parallel solution
(https://www.mcs.anl.gov/petsc). Although we implemented the PINC preprocessor outside the
PFLOTRAN source code, we fixed several bugs or limitations in the spherical and explicit
unstructured mesh capabilities of PFLOTRAN during the development of the tool. These fixes
benefit all PFLOTRAN users, not just those using our multicontinuum approach.

The work to implement this proceeded in several steps.

1. The PINC script reads a PFLOTRAN input file and parses the GRID and REGION blocks
(e.g., Figure 3). The script parses and error-checks these inputs.

2. The PINC script then builds an unstructured mesh that is equivalent to the specified
structured mesh. The script also converts REGIONs specified on the explicit mesh to
equivalent REGIONs for the unstructured mesh (i.e., for boundary conditions, material
properties, and observation locations). As a check, the two models (initial structured mesh
and explicit unstructured mesh) should be run to ensure the meshes produce equivalent
results.

3. Next the script can read in variable elevations for layers in the mesh, if desired. The z-
elevations of the unstructured mesh are modified, and a new explicit unstructured mesh is
generated.

4. Lastly, the multicontinuum input file is read and the secondary continua are meshed and an
explicit unstructured mesh that cumulatively has the effects of adjusted elevations and
multiple continua (and the associated regions) is generated.

The variable steps for layer elevations (step 3) and multicontinuum (step 4) are optional.

2.3.1. Unstructured Mesh Generation
Unstructured mesh generation involved two requirements. First, we must generate the files needed
by PFLOTRAN to run the simulation. Second, we must generate the files needed by visualization
software to inspect/plot the output without significant user intervention. For structured and implicit
unstructured meshes, PFLOTRAN writes both of these, but for explicit unstructured meshes,
PFLOTRAN does not need or write the information required for plotting, so it must be handled
separately.

 17

Most of the information needed to build a solution mesh is read from the GRID block of the input
file. For a structured mesh, the primary options are CARTESIAN, CYLINDRICAL, and
SPHERICAL. For this application, we will only be using CARTESIAN (the default), but
applications using the other types of mesh are useful for certain problems with symmetric
geometries. During early stages of implementing the PINC tool, the authors fixed two errors in the
spherical mesh implementation in PFLOTRAN (bug 1, bug 2). The explicit unstructured mesh is
specified via a text file with a “uge” filename extension. This file contains two required sections
CELLS and CONNECTIONS. The relationship between them is illustrated for a trivial 3-element
1D domain with two connections.

GRID
 TYPE STRUCTURED
 NXYZ 3 1 1
 DXYZ
 3@1.0 # dx
 1.0 # dy
 1.0 # dz
 END
END

CELLS 3
1 5.000E-01 5.000E-01 5.000E-01 1.00000000000E+00
2 1.500E+00 5.000E-01 5.000E-01 1.00000000000E+00
3 2.500E+00 5.000E-01 5.000E-01 1.00000000000E+00
CONNECTIONS 2
2 1 1.000E+00 5.000E-01 5.000E-01 1.00000000000E+00
3 2 2.000E+00 5.000E-01 5.000E-01 1.00000000000E+00

Figure 5. Example 3-element 1D domain; structured (top L) and unstructured (top R), domain

visualized via ParaView in bottom image.

In the 3-element unstructured mesh example (Figure 5), each line of the CELLS section (after the
header indicating the number of rows) has the following space-delimited information:

1. element identification number (ID, starting at 1),

2. element center 𝑥, 𝑦, 𝑧 coordinate (m), and

3. element volume (m3).

The CONNECTIONS section (after the header indicating the number of rows) lists the following
information for each connection:

1. upstream element ID (referencing IDs listed in CELLS section),

2. downstream element ID,

3. connection midpoint 𝑥, 𝑦, 𝑧 coordinate (m), and

 18

4. connection area (m2).

Consistent with the Voronoi-based element structure needed by PFLOTRAN, only the element
center coordinates and the connections between elements are specified in the explicit unstructured
grid specification. Even though it is not used by PFLOTRAN to simulate the problem, the
coordinates of element corners and the mapping from corners to elements is needed to visualize the
mesh or model output using typical tools like ParaView (http://www.paraview.org) or VisIt
(https://wci.llnl.gov/simulation/computer-codes/visit).

The multicontinuum mesh generation script writes both the text PFLOTRAN input file (.uge)
needed to run the mesh, but it also writes a hierarchical data format version 5 (hdf5) domain file that
has the corners and mapping from corner nodes to elements, needed by visualization tools like
ParaView. Hdf5 is a parallel-capable binary file format for writing inputs and outputs for
PFLOTRAN (https://www.hdfgroup.org/solutions/hdf5/); we utilize a Python wrapper to the
hdf5 library. The domain file includes a Domain group, with the several datasets. The datasets
specify the mapping between vertices and cells (Cells), the coordinates of the element corners
(Vertices), and the coordinates of the centers of the cells (XC, YC and ZC), see Figure 3.

To make the PFLOTRAN output from explicit unstructured mesh load automatically in ParaView,
the following settings must be ensured in the PFLOTRAN input file:

1. In the GRID block, the DOMAIN_FILENAME option must point to the .h5 file generated
by the PINC script;

2. In the OUTPUT block, the SNAPSHOT_FILE output should be set to FORMAT HDF5;
and

3. In the OUTPUT block EXPLICIT_GRID_PRIMAL_GRID_TYPE CELL_CENTERED
should be specified.

Previously, saving cell-centered flow velocities as output in hdf5 SNAPSHOT_FILE output format
was not possible when using unstructured grids (only text VTK format for velocities was
implemented). In January 2021 the authors added this feature to PFLOTRAN, which now exists in
the mainline version of PFLOTRAN and benefits models created with the PINC tool and all users
of explicit unstructured meshes (e.g., including users of dfnWorks, which also is a Python-based
PFLOTRAN explicit unstructured mesh pre-processor). In February 2021 the authors also fixed a
bug in the handling of filenames for the DOMAIN_FILENAME step, mentioned in the first bullet
above, which now allows more typical filename lengths.

2.3.2. Unstructured Mesh Region Generation
Regions are used in PFLOTRAN to select a sub-part of the mesh for multiple purposes, including
assigning material properties to elements, specifying boundary conditions, or indicating locations in
the mesh where output observations should be saved. Specification of regions in PFLOTRAN
structured meshes is straightforward, and the multicontinuum mesh generator creates equivalent
explicit unstructured regions from structured ones.

Regions can be broadly divided into volume- or area-based. Volume regions are associated with one
or more elements (specified by their centers) and can be used with a coupler to assign:

• material properties (i.e., MATERIAL_PROPERTY, tied to a region through a STRATA
coupler);

• initial conditions (i.e., FLOW_CONDITION, tied to a region through an
INITIAL_CONDITION coupler);

 19

• volume-distributed sources and sinks of water, energy, or gas (i.e., FLOW_CONDITION,
tied to a region through a SOURCE_SINK coupler); or

• observation points (OBSERVATION_FILE in the OUTPUT block, tied to a region
through an OBSERVATION coupler) where output should be written through time.

Area regions are associated with faces of elements and are used through
BOUNDARY_CONDITION couplers between regions and FLOW_CONDITIONS on the
external faces of a model domain. The difference between area and volume regions is the presence
of an optional FACE argument [WEST, EAST, SOUTH, NORTH, BOTTOM, TOP] in a
COORDINATE or BLOCK REGION block. Leaving out the FACE makes these regions volumes.
The CARTESIAN_BOUNDARY region can only be associated with a FACE.

In explicit unstructured meshes, volume regions are specified in text files (with a .txt extension) as
lists of element IDs and area regions are specified in text files (with a .ex extension) with lists of
connections. Connections are similar to how specified in the .uge file (Figure 5), but boundary
connections don’t have both an upstream and downstream element, so they have one fewer index.

The regions in an explicit unstructured mesh are specified with a “FILE filename.txt” line in a
REGION block, which the PINC script will write for each region read in, to create an equivalent
mesh to the initial structured mesh.

The multicontinuum model generator script creates regions files in the expected text file format, and
additionally writes the same information into an .h5 file, specifying cell IDs and face IDs for each
region.

2.3.3. Layer Elevation Specification
Once the mesh is created with the PINC Python script, it is stored in memory as a Python dictionary
data structure. If desired, layer elevations in CARTESIAN meshes can be read in, which then
modify the 𝑧-coordinates of the elements to create a model domain with deformed layers. The slope
or curvature of any layers should be minimized (i.e., the deviation from flat layers should be small),
since the orthogonality and mass-conservation of the mesh is changed. This can be useful in some
situations, but often it is better to simply make a finer regular mesh to resolve changes in layers in
space.

After outputting an explicit unstructured mesh that corresponds exactly to the structured mesh, the
mesh is modified in place and exported again (with a different name). The output of the two meshes
could be run by the user and compared, to quantify the impact deformation of layers has on the
solution. The script generates the mesh for comparison, but the user best knows what quantities or
locations to compare.

2.3.4. Multicontinuum Specification
The (possibly modified) explicit unstructured mesh is now modified by adding extra continua to the
initial mesh. The specifications are given in a new PINC input block. This block is read from a
separate file, since it is not valid PFLOTRAN input.

Similar to the MINC approach, a multicontinuum mesh is built from an initially specified mesh that
is assumed to be the base “fracture” continuum (i.e., it is connected in space). Secondary (and

 20

tertiary and higher) domains are connected physically to each element of the initial continuum,
within the specified region.

PINC all
 TYPE DOUBLE_POROSITY
 VOLUME_FRACTIONS 0.05
 DOMAIN_LENGTHS 1.0 0.25
 NUMBER_ELEMENTS 1 10
 GEOMETRIES FRACTURE SLAB
 MESH
 FRACTURE
 DX 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 END
 DIRECTIONS F +Y
END

PINC all
 TYPE DOUBLE_PERMEABILITY
 VOLUME_FRACTIONS 0.05
 DOMAIN_LENGTHS 1.0 0.25
 NUMBER_ELEMENTS 1 3
 GEOMETRIES FRACTURE SLAB
 MESH
 FRACTURE
 DX 0.1 0.2 0.3
 END
 DIRECTIONS F -Y
END

PINC north_half
 TYPE N_POROSITY 4
 VOLUME_FRACTIONS 0.05 0.4 0.2
 DOMAIN_LENGTHS 1.0 0.25 0.35 0.1
 NUMBER_ELEMENTS 1 3 4 5
 GEOMETRIES FRACTURE NESTED_CUBES NESTED_SPHERES SLAB
 MESH
 FRACTURE
 UNIFORM
 UNIFORM
 DX 0.1 0.2 0.3 0.4 0.5
 END
 DIRECTIONS F -Y +Y +Z
 SPATIAL_CONNECTIVITY 1 1 0 0
END

Figure 6. Three example multicontinuum specifications

The keywords follow a PFLOTRAN-like input format (indentation and capitalization of keywords is
conventional but optional; unique names are case-sensitive). Each keyword is described below. The
specifications in angled brackets “<>” indicate whether and how many integers (e.g., “2”), floating
point numbers (e.g., “2.0”), or keywords (e.g., “DOUBLE_POROSITY”) are expected.

PINC <region name>
 This keyword opens a multicontinuum section. The case-sensitive region name indicates

region the multicontinuum is associated with. Region can correspond to the entire domain,
or a subset of the domain. Multiple PINC sections with overlapping regions may be used.
The first fracture continuum is common between all regions. The block continues to an
associated END keyword.

 21

TYPE <keyword>
 This defines the number of continua (N) and specifies connectivity. Valid keywords are:

• DOUBLE_POROSITY
• DOUBLE_PERMEABILITY
• TRIPLE_POROSITY
• TRIPLE_PERMEABILITY
• N_POROSITY <int>
• N_PERMEABILITY <int>
DOUBLE_{POROSITY,PERMEABILITY} implies N=2,
TRIPLE_{POROSITY,PERMEABILITY} implies N=3, and
N_{POROSITY,PERMEABILITY} allows specifying an arbitrary N.

 The distinction between POROSITY and PERMEABILTY is related to the spatial

connectivity of the continua. For example, DOUBLE_POROSITY is only connected
spatially in the first (fracture) continuum (e.g., Figure 4b); the second continuum is dead-
end diffusion into a matrix. DOUBLE_PERMEABILITY would have spatial connectivity
in each continuum (e.g., Figure 4c).

 Specifying the SPATIAL_CONNECTIVITY input over-rides any connectivity or lack of

connectivity implied by these keywords (the value of N from TYPE is still used).

VOLUME_FRACTIONS <N-1 floats>
 This defines the volume fraction for all but one of the continua. The constraint that the

volume fractions must sum to 1 automatically specifies the last one.

DOMAIN_LENGTHS <N floats>
 This defines the “length” of the mesh in the primary matrix direction. It is not used for the

primary domain (i.e., the fracture domain) or any spatially connected continuum, but a valid
float must be specified. For SLAB geometry, the length and cross-sectional areas are
specified independently. For NESTED_CUBE and NESTED_SPHERE, the
DOMAIN_LENGTH is equivalent to ½ the fracture spacing (i.e., length is the “radius” of
the sphere or cube).

NUMBER_ELEMENTS <N integers>
 This specifies the number of elements at each spatial location in each continuum (base

continuum is not used, but a valid integer must be specified).

GEOMETRIES <N keywords>
 This specifies the type of geometry used to compute the element volumes and

connectivities in the secondary continua mesh. Valid keywords are:
• FRACTURE
• SLAB
• NESTED_CUBES
• NESTED_SPHERES

 22

 FRACTURE is a placeholder for the primary domain. SLAB is a cartesian geometry, where
the cross-sectional area to flow is constant in each element in the matrix.
NESTED_{CUBE,SPHERE} include geometric assumptions for the cross-sectional area
to flow and the element volume variability. The beginning of the continuum is at the
outside of the cube or sphere, and flow travels to the center.

DIRECTIONS <N keywords> (optional)
 This optional parameter specifies the direction of the mesh (+𝑌 is default). Choices are 𝑋,

𝑌, 𝑍, +𝑋, −𝑋, +𝑌, −𝑌, +𝑍 and −𝑍. This mostly impacts visualization output (it is difficult
to visualize multidimensional meshes with multiple secondary continua, but sometimes this
can help), but it could have an impact on solutions that include the effects of gravity (e.g.,
two-phase flow or density-dependent flow), if +𝑍 or −𝑍 is chosen and gravity is active (if
gravity is associated with a different direction, this could likewise have an effect). Gravity
can be changed in the GRID block with the “GRAVITY 0.0 0.0 -9.8068” option (see
online PFLOTRAN documentation).

MESH block <N rows>
 This block has one row for each continuum. Each row (until an END row) starts with one

of the following keywords:

 FRACTURE
 This keyword by itself indicates the fracture connectivity will be used.

 UNIFORM

This keyword by itself indicates the elements will be uniformly subdivided (dx =
DOMAIN_LENGTHS / NUMBER_ELEMENTS).

 DX

This keyword is followed by NUMBER_ELEMENTS <floats> that specify the grid
spacing along this continuum. Using this approach, uniform spacing could be
specified, or spacing could grow geometrically (a common approach). This spacing
should be computed externally and the values pasted here.

Since this input file is parsed by a Python script, there is effectively no limit to the
length of the line. In PFLOTRAN files there is a maximum line length of 512
characters, and long lines must be broken into shorter lines.

SPATIAL_CONNECTIVITY <N 0/1 integers> (optional)
 This optional block can be used to over-ride the connectivity implied by the TYPE block

(TYPE block must still be used to specify N). Valid values are 1 (True) and 0 (False),
indicating spatial connectivity between matrix locations. Connectivity of the first continuum
is always 1.

 23

TYPE SPATIAL_CONNECTIVITY

DOUBLE_POROSITY 1 0

DOUBLE_PERMEABILITY 1 1

TRIPLE_POROSITY 1 0 0

TRIPLE_PERMEABILITY 1 1 1

SLAB_AREAS <N floats> (optional)

This optional block can be used to specify the cross-sectional area for the SLAB geometry.
Otherwise, the cross-sectional area is taken from the cross-sectional area of the parent cell.
Values specified for continua that are not SLAB are not used (but a valid float must be
specified).

 24

3. MULTICONTINUUM MODEL BENCHMARK
We compare the more general multicontinuum approach to the existing
SECONDARY_CONTINUUM approach in PFLOTRAN (Figure 7), for the special case of water
flow and solute transport. Water flow only occurs in the 1D fracture, while solute transport happens
in both the fracture and in the matrix. The fracture includes solute advection and diffusion, while
only solute diffusion occurs in the matrix. The 1D fracture and matrix is initially set to a uniform
tracer concentration of 0.01 M, then fresh water (1.0E-8 M tracer) is flushed into the system in the
fracture by specifying a liquid pressure gradient across the fracture (2.5 mbar). The domain is 10 m
long, discretized into 100 elements.

The concentration is plotted at the two ends and in the middle of the domain for three cases:

• A 1D fracture with no matrix;

• Fracture and matrix, computed via SECONDARY_CONTINUUM (“SC”); and

• Fracture and matrix, computed via the multicontinuum (“MC”) method presented here.

Figure 8 shows two plots illustrating these cases, showing the two fracture/matrix approaches
produce nearly identical results. The only observable differences are in first element of the matrix at
early time (see red ellipse), when gradients are the steepest. The SECONDARY_CONTINUUM
approach only converges for this test case (taken from the PFLOTRAN regression test suite) if the
solver tolerance is relaxed. For the SECONDARY_CONTINUUM approach the fracture and
matrix use different solution methods. For the multicontinuum approach described here, the entire
mesh is solved implicitly and simultaneously and default solver settings work well, and it is likely
these results are somewhat more accurate at early time near the matrix/fracture boundary where
concentration gradients are steepest.

PINC all
 TYPE DOUBLE_POROSITY
 VOLUME_FRACTIONS 0.4167D+0
 DOMAIN_LENGTHS 1.0 0.1
 NUMBER_ELEMENTS 1 50
 GEOMETRIES FRACTURE SLAB
 MESH
 FRACTURE
 UNIFORM
 END
 DIRECTIONS F -Y
 SLAB_AREAS 0.0 1.0D-6
END

SECONDARY_CONTINUUM
 TYPE SLAB
 LENGTH 0.1
 AREA 1.0E-6
 NUM_CELLS 50
 EPSILON 0.4167
 DIFFUSION_COEFFICIENT 1.0E-9
 POROSITY 0.4464
END

Figure 7. PINC (left) and SECONDARY_CONTINUUM (right) inputs for test case.

 25

Figure 8. Comparison at 3 observation locations between fracture no matrix,

SECONDARY_CONTINUUM fracture/matrix (SC), and multiporosity (i.e., multicontinuum)
fracture/matrix (MP). Log-linear (top) and log-log (bottom) scales. Only matrix elements 1, 10, 20,

30, 40 & 50 are plotted.

midpoint

 26

Figure 9. ParaView illustration of model domains in test problem. 1D fracture domain (Right), PINC
domain (Left) shows both 1D fracture domain (transparent blue) and array of 1D matrix domains

(red).

Figure 9 illustrates the domain used in the test case. The fracture-only domain is shown as the 1D
domain on the right, while the combination fracture/matrix domain is shown on the left. Output
from the SECONDARY_CONTINUUM approach does not include the matrix in the mesh, so the
spatial output is shaped similar to the fracture-only domain in Figure 9. In the PINC domain, the
fracture part of the grid is plotted semi-transparent, since the first two matrix elements are located
within the fracture volume. Each 1D matrix continuum at each spatial location is connected to the
center of the fracture element and not connected to the adjacent 1D matrix continua associated with
adjacent elements. The mesh plotted in Figure 9 is topologically like a “comb” and not like a plate.

As specified in the PINC input (Figure 7), the matrix domain extends in the −𝑌 direction away from
the fracture. Changing the DIRECTIONS input will change the direction the matrix mesh extends.
In a problem with two matrix continua, the two directions could be the same, but for visualization
purposes it would be better if they were different. Visualization of matrix continua in 2D or 3D
domains is difficult and likely no choice of direction will be optimal.

 27

4. AQUEDUCT MESA CONCEPTUAL MODEL
The porous volcanic tuff at Aqueduct Mesa contains natural fractures and is variably water saturated.
The fractures are mostly air-filled, and the matrix is mostly water saturated. Briefly, the layers from
the Geologic Framework Model (GFM) of Prothero (2018) are summarized stratigraphically from
the top of the mesa down as:

o Upper nonwelded to partially welded tuff (UNPWT)

o Upper welded tuff (UWT)

o Vitric nonwelded tuff (VNT)

o Upper zeolitic nonwelded tuff (UZNT)

The observed matrix saturation data from vertical borehole UE12p#4 (Lupo & Klauber, 1987;
Torres, 1988) are illustrated in the left part of Figure 10 (dots), with one of several possible
simplifications of the observations with possible unit-averaged values (dashed line). Fracture
properties are adopted from Eaton and Bixler (1987).

Figure 10. (Left) Saturation data from UE12P#4 (points), showing GFM layers (colored boxes) and

one interpretation of uniform saturation (dashed line). (Right) Plot of van Genuchten moisture
retention curves used in PFLOTRAN model corresponding to these units (horizontal pink stripe

shows observed capillary pressure range inferred from waxed samples).

Based on the interpreted capillary pressure across several very different samples of tuff, analyzed by
both MICP and effective diffusion coefficient, a relatively narrow range of capillary pressure of 0.2
to 0.55 MPa was inferred (Table S1 of Heath et al., 2021). The representativeness of these wax-
preserved samples from the 1980s is not known, as the samples may have dried out or been
otherwise altered during more than 30 years of storage.

 28

Figure 11. Conceptual flow model for Rainier Mesa (Ebel & Nimmo, 2009).

Figure 11 shows a conceptualization of water saturation among the volcanic tuff units at Rainier
Mesa. Although Rainier Mesa receives more rainfall than Aqueduct Mesa and is considered to have
more tectonic fractures, in general the distribution of wetter and dryer units prevails across them
both. The zeolitic units have higher water content (compare Figure 11 and the left half of Figure 10).

4.1. Model Initialization
The simplest approach to gas transport would be to assume the observed pre-testing moisture
contents in fractures and matrix at Aqueduct Mesa (Figure 10) is immobile and the system is at
steady state. Flow through the remaining gas-filled pores of the vadose zone is then essentially
single-phase gas transport. Fractures are mostly dry, the matrix is mostly wet, and the different
lithologic layers have different matrix saturations (but there is significant variability within layers).

 29

Figure 12. PFLOTRAN-predicted initial saturation (left) across matrix domains (layers shown on

right). Fracture continuum is dry and not plotted. Vertical coss-section is 366 m tall, with the land
surface at the top.

Initializing a two-phase flow model requires specifying several related parameters (liquid and gas
saturation, liquid or capillary pressure, and temperature) to values that are in physical equilibrium
with one another. The simplest modeling approach (immobile water) is to assign an observed matrix
liquid saturation and set the residual water content at the same level as the observed water content.
Essentially, this forces the system to be at steady state, preventing water from redistributing.

As part of this investigation, we wish to better understand the hydrologic system, by striving to re-
create the observed water content by changing the steady-state processes influencing the distribution
of water in the mesa. Determining what impacts the distribution of water in the vadose zone
provides information on what may perturb it. Models that assume all water is immobile from first
principles cannot be used to assess whether the water may move or not (Heath et al., 2021).

Figure 12 illustrates the results of simulating a one-dimensional column of a multicontinuum with
physically realistic saturations and approximately uniform initial capillary pressure (i.e., see capillary
pressure curves in the right half of Figure 10). Running the system to steady-state results in variation
of the saturation, especially at changes in material properties. Some of this variability may also be
observed in the profile of liquid saturation seen in borehole UE12p#4 (left half of Figure 10). Water
content in the lower-permeability matrix interacts with flow through the gas-permeable fractures.

UNPWT

UWT

VNT

UZNT

 30

Figure 13. Illustrations of water and gas transport in fractured rock (NRC, 2001).

Especially since we are interested in making predictions about the system after a large man-made
perturbation has occurred it makes sense to test our assumptions regarding the unconditional
stability of liquid water in the subsurface. Increases in temperature will reduce surface tension and
could liberate previously held water from the matrix. Sudden increases in gas pressure or stress, due
to an explosion, could liberate water from the matrix. Water released from the matrix could then
flow into fractures and even small amounts of water can block rapid gas transport through fractures
(Figure 13).

 31

5. SUMMARY AND NEXT STEPS
This work has primarily been focused on the development of a more general meshing tool for
creating multicontinuum meshes allowing simulation of two-phase flow in fractured rocks, and we
discuss applicability to the fractured tuff at Aqueduct Mesa.

As part of this work in the next fiscal year, we will continue to gather field and laboratory data
relevant to understanding two-phase flow, developing modeling tools to predict two-phase flow, and
strive to build physical intuition and understanding that can be used at new future sites where we
don’t have as much data.

We will continue to benchmark and test models using the multicontinuum modeling framework to
ensure it is working and validated against a number of published results. We will develop numerical
models of physically realistic flow through simplified geometries, initial conditions, and boundary
conditions, building complexity to understand the processes that impact two-phase flow at the
Aqueduct Mesa, Rainier Mesa, and eventually for application to other sites.

 32

REFERENCES
Abdelkader, A., C.L. Bajaj, M.S. Ebeida, A.H. Mahmoud, S.A. Mitchell, J.D. Owens & A.A. Rushdi.

VoroCrust: Voronoi meshing without clipping. ACM Transactions on Graphics 39(3): 1-16.

Barenblatt, G.I., I.P. Zheltov, & I.N. Kochina, 1960. Basic concepts in the theory of seepage of
homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics, 24(5),
1286-1303.

Clossman, P.J., 1975. An aquifer model for fissured reservoirs. Society of Petroleum Engineers
Journal, 15(05), 385-398.

Coats, K.H. & B.D. Smith, 1964. Dead-end pore volume and dispersion in porous media. Society of
Petroleum Engineers Journal, 4(1), 73-84.

Eaton, RR, Bixler, NE. 1986. Analysis of a Multiphase, Porous-Flow Imbibition Experiment in Fractured
Volcanic Tuff. SAND86-1679C, Sandia National Laboratories, Albuquerque, NM.

Evans, J.P. & K.K. Bradbury, 2004. Faulting and fracturing of nonwelded Bishop Tuff, eastern
California: deformation mechanisms in very porous materials in the vadose zone. Vadose Zone
Journal, 3:602-623.

Fiori, A., A. Zarlenga, H. Gotovac, I. Jancovic, E. Volpi, V. Cvetkovic & G. Dagan, 2015. Advective
transport in heterogeneous aquifers: are proxy models predictive? Water Resources Research,
51:9577-9594.

Gringarten, A.C., 1982. Flow-Test Evaluation of Fractured Reservoirs. Geological Society of America
Special Paper 189.

Haggerty, R., & S.M. Gorelick, 1995. Multiple-rate mass transfer for modeling diffusion and surface
reactions in media with pore-scale heterogeneity. Water Resources Research, 31(10), 2383-2400.

Hammond, G.E., P.C. Lichtner & R.T. Mills, 2014. Evaluating the performance of parallel
subsurface simulators: An illustrative example with PFLOTRAN. Water Resources Research, 50(1),
208-228.

Havlin, S. & D. Ben-Avraham, 1987. Diffusion in disordered media, Advances in Physics, 36(6):695-
798.

Heath, J.E., K.L. Kuhlman, S.T. Broome, J.E. Wilson & B. Malama, 2021. Heterogeneous
multiphase flow properties of volcanic rocks and implications for noble gas transport from
underground nuclear explosions, Vadose Zone Journal 2021;e20123.
https://doi.org/10.1002/vzj2.20123

Hyman, J.D., S. Karra, N. Makedonska, C.W. Gable, S.L. Painter & H.S. Viswanathan. dfnWorks: A
discrete fracture network framework for modeling subsurface flow and transport. Computers &
Geosciences, 84(2015):10-19.

Jordan, A.B., P.H. Stauffer, E.E. Knight, E. Rougier & D.N. Anderson, 2015. Radionuclide gas
transport through nuclear explosion-generated fracture networks, Scientific Reports, 5:18383.

Kazemi, H., 1969. Pressure transient analysis of naturally fractured reservoirs with uniform fracture
distribution. Society of Petroleum Engineers Journal, 9(04), 451-462.

 33

Kuhlman, K.L., B. Malama & J.E. Heath, 2015. Multiporosity flow in fractured low-permeability
rocks. Water Resources Research, 51(2), 848-860.

Lupo, J, Klauber, W. 1987. Physical and Mechanical Characterization of Tuff from UE12P#4. TR 87-94,
Terra Tek Research, Salt Lake City, Utah, 134 p.

Moench, A.F., 1984. Double-porosity models for a fissured groundwater reservoir with fracture
skin. Water Resources Research, 20(7), 831-846.

Montroll, E.W. & G.H. Weiss, 1965. Random walks on lattices II. Journal of Mathematical Physics,
6(2):167-181.

Neuman, S.P., W.A. Illman, V.V. Vessilinov, D.L. Thompson, G. Chen & A. Guzman, 2001.
“Lessons from the field studies at the Apache Leap Research Site in Arizona”, p 295-334, in
National Research Council, Conceptual Models of Flow and Transport in the Fractured Vadose Zone,
Washington DC: The National Academies Press.

NRC (National Research Council), 2001. Conceptual Models of Flow and Transport in the Fractured Vadose
Zone. Washington DC: National Academies Press.

Noolandi, J., 1977. Equivalence of multiple-trapping model and time-dependent random walk.
Physical Review B, 16(10):4474-4479.

Oldham, K.B. & J. Spanier, 1970. The replacement of Fick’s law by a formulation involving
semidifferentiation. Electroanalytical Chemistry and Interfacial Electrochemistry, 26:331-341.

Prothro, L. 2018. Geologic Framework Model for the Underground Nuclear Explosions Signatures Experiment
P-Tunnel Testbed, Aqueduct Mesa, Nevada National Security Site. DOE/NV/03624-0312, 60 p.

Pruess, K., 1992. Brief Guide to the MINC-Method for Modeling Flow and Transport in Fractured Media.
LBL-32195, Berkeley, CA: Lawrence Berkeley National Laboratory.

Pruess, K. & T.N. Narasimhan, 1982. A practical method for modeling fluid and heat flow in
fractured porous media, Society of Petroleum Engineers Journal, 25(1):14-26.

Reeves, D.M., R. Parashar, K. Pohlmann, C. Russell, & J. Chapman. Development of calibration of
dual-permeability flow models with discontinuous fault networks. Vadose Zone Journal, 13(8).

Scher, H., M.F. Shlesinger & J.T. Bendler, 1991. Time-scale invariance in transport and relaxation,
Physics Today, 44:26-34.

Schumer, R., D.A. Benson, M.M. Meerschaert & B. Baeumer, 2003. Fractal mobile/immobile solute
transport. Water Resources Research, 39(10):1296.

Torres, G. 1988. Characterization of Tuff from Vertical Drill Hole UE12p.#4 with Emphasis on Material from
813.6-1777.8 ft. TR 89-36, Terra Tek Research, Salt Lake City, Utah, 105 p.

Van Genuchten, M.Th. & P.J. Wierenga, 1976. Mass transfer studies in sorbing porous media I.
Analytical solutions. Soil Science Society of America Journal, 40(4):473-480.

Warren, J.E., & P.J. Root, 1963. The behavior of naturally fractured reservoirs. Society of Petroleum
Engineers Journal, 3(03), 245-255.

White, M.D., P. Fu & EGS Collab Team, 2020. Application of an Embedded Fracture and Borehole
Modeling Approach to the Understanding of EGS Collab Experiment 1, Proceedings of the 45th
Workshop on Geothermal Reservoir Engineering, February 10-12, 2020, SGP-TR-216.

 34

Zimmerman, R.W., G. Chen, T. Hadgu & G.S. Bodvarsson, 1993. A numerical dual-porosity model
with semianalytical treatment of fracture/matrix flow. Water Resources Research, 29(7):2127-2137.

 35

APPENDIX A. SOURCE LISTING

1 import numpy as np
2 from itertools import product
3 import sys
4 from h5py import File
5

6 VERBOSE = 4 # higher number -> more screen output. 0= quiet
7 MULTIPOROSITY = True
8 READ_IN_ELEVATIONS = True
9

10 # only used for variable Z elevations
11 VARIABLE_Z_CONNECTION_AREA = "average" # "average" or "minimum"
12 VARIABLE_Z_VERTICES = "piecewise" # "piecewise" or "continuous"
13

14 eps = 1.0e-8 # things within this distance (m) are at same point
15 most = 0.95
16

17 df = 8 # decimal places to print in distances
18 af = 16 # decimal places to print in areas
19 vf = af # decimal places to print in volumes
20

21 dv = ("x", "y", "z")
22

23 if len(sys.argv) < 2:
24 print(
25 f""" Specify PFLOTRAN input on the command line (" prefix.in").
26 This script reads the GRID & REGION cards from input and writes:
27 1) an equivalent explicit unstructured mesh (" prefix.uge"),
28 2) equivalent regions for unstructured mesh (as "prefix -region -POINT -name.txt",
29 "prefix -region -SURFACE -name.ex", "prefix -region -VOLUME -name.txt" also the
30 equivalent data in hdf5 format "prefix -regions.h5"), and
31 3) a new PFLOTRAN input file referencing explicit GRID/REGION blocks ("prefix -explicit.in").
32

33 GRID card is required , REGION cards are optional
34 NB: "skip" ... "noskip" comments and EXTERNAL_FILE (in REGION or GRID blocks) are not handled yet.
35 Run like this: "python {sys.argv [0]} input.in"
36

37 file types
38 ---
39 *.in : ASCII free -form PFLOTRAN input file
40 *.uge : ASCII explicit unstructured mesh (CELL , CONNECTIONS , ELEMENTS & VERTICES blocks)
41 *.h5 : binary hdf5 file (domain file for paraview , BC/region info in h5 format)
42 *.ex : ASCII file listing CONNECTIONs for BOUNDARY_CONDITION associated with faces
43 *.txt : ASCII file listing node ids for MATERIAL_PROPERTYs , INITIAL_CONDITIONs , and SOURCE_SINKs
44 """
45)
46 sys.exit (1)
47 else:
48 fn = sys.argv [1]
49

50

51 def ffloat(s):
52 # gracefully read a fortran floating point , possibly with "D" exponential
53 # or a _ placeholder
54

55 try:
56 v = float(s)
57 except ValueError:
58 if s == "_":
59 s = "NAN"
60 v = float(s.upper().replace("D", "E"))
61 return v
62

63

64 def find_point_idx_up(point , cumdx , name):
65 # point = tuple of x, y, z coordinates for point
66 # cdx = tuple of numpy arrays of cumulative dx , dy, dz (with origin added as 0th term)
67 # name = string name of region
68 # find what element the point is in (or on the boundary of)
69 # convention is to assign a point to the upper -index cell in each direction
70

71 idx = [-999, -999, -999]
72 for i, (coord , d, cd) in enumerate(zip(point , dv, cumdx)):
73 N = cd.shape [0] - 2
74 if coord < cd[0]:
75 idx[i] = 0
76 if VERBOSE > 1:
77 print(

36

78 f"IDX -UP: {d}-coord of region ’{name}’ below origin "
79 f"({coord} < {cd [0]}), outside mesh -> idx=0"
80)
81 elif coord > cd[-1]:
82 idx[i] = N
83 if VERBOSE > 1:
84 print(
85 f"IDX -UP: {d}-coord of region ’{name}’ beyond mesh extent "
86 f"({coord} > {cd[-1]}), outside mesh -> idx={N}"
87)
88 elif abs(coord - cd[-1]) < eps:
89 idx[i] = N - 1
90 if VERBOSE > 1:
91 print(
92 f"IDX -UP: {d}-coord of region ’{name}’ on upper edge of domain "
93 f"({coord} == {cd[-1]}), in idx={N-1}"
94)
95 else:
96 for j, cv in enumerate(cd [1:]):
97 if coord < cv:
98 idx[i] = j
99 if VERBOSE > 1:

100 print(
101 f"IDX -UP: {d}-coord of region ’{name}’ in cell {j} "
102 f"({cd[j]} <= {coord} <= {cd[j+1]})"
103)
104 break
105 return tuple(idx)
106

107

108 def find_point_idx_down(point , cumdx , name):
109 idx = [-999, -999, -999]
110 for i, (coord , d, cd) in enumerate(zip(point , dv, cumdx)):
111 N = cd.shape [0] - 2
112 if coord < cd[0] - eps:
113 idx[i] = 0
114 if VERBOSE > 1:
115 print(
116 f"IDX -DOWN: {d}-coord of region ’{name}’ below origin "
117 f"({coord} < {cd [0]}), outside mesh -> idx=0"
118)
119 elif coord > cd[-1] + eps:
120 idx[i] = N
121 if VERBOSE > 1:
122 print(
123 f"IDX -DOWN: {d}-coord of region ’{name}’ beyond mesh extent "
124 f"({coord} > {cd[-1]}), outside mesh -> idx={N}"
125)
126 else:
127 for j, cv in enumerate(cd [1:]):
128 if coord <= cv + eps:
129 idx[i] = j
130 if VERBOSE > 1:
131 print(
132 f"IDX -DOWN: {d}-coord of region ’{name}’ in cell {j} "
133 f"({cd[j]} <= {coord} <= {cd[j+1]})"
134)
135 break
136 return tuple(idx)
137

138

139 def face_str_to_idx(s, name):
140 if s == "WEST":
141 idx = 1
142 elif s == "EAST":
143 idx = 2
144 elif s == "SOUTH":
145 idx = 3
146 elif s == "NORTH":
147 idx = 4
148 elif s == "BOTTOM":
149 idx = 5
150 elif s == "TOP":
151 idx = 6
152 else:
153 print(f"ERROR: invalid region ’{name}’ FACE: ’{s}’")
154 sys.exit("input inconsistency")

37

155 return idx
156

157

158 # open filename specified on command -line
159 fh = open(fn , "r")
160 base_fn = fn.replace(".in", "")
161

162 if VERBOSE > 0:
163 print(f"\n--------- begin processing GRID/REGION blocks from {fn} ----------")
164

165

166 def clean_lines(lines):
167 # read lines , eliminate comments
168

169 for j in range(len(lines)):
170 # strip off leading/trailing whitespace
171 lines[j] = lines[j].strip()
172

173 # remove single -line comments
174 comment_char = -1
175 for i in range(len(lines[j])):
176 ch = lines[j][i]
177 if ch in ["!", "#", ":"]:
178 comment_char = i
179 break
180

181 if comment_char >= 0:
182 lines[j] = lines[j][: comment_char]
183 return lines
184

185

186 def parse_lines(lines):
187 # parse input into lists of tokens
188

189 rows = []
190 for line in lines:
191 line = line.strip()
192 fields = line.split()
193 if VERBOSE > 5:
194 print(fields)
195 row = []
196 for f in fields:
197 if f == "/":
198 row.append("END")
199 else:
200 row.append(f)
201 if len(row) > 0:
202 row [0]. upper () # don’t change case of name
203 # TODO handle skip ... noskip here?
204 # need to handle the pair of skip/noskip
205 # being on same or different lines
206

207 # TODO handle "EXTERNAL_FILE" construct here?
208 # this just means parsing that file and inserting
209 # it into the list in place of this row
210 if len(row) > 0:
211 # don’t add empty rows
212 rows.append(row)
213 return rows
214

215

216 # %%%%%%%%%%%%%%%%%%%%
217

218 if VERBOSE > 1:
219 print("\ninitial input")
220

221 rows = parse_lines(clean_lines(fh.readlines ()))
222 fh.close ()
223

224 # %%%%%%%%%%%%%%%%%%%%
225 # split into "GRID" and "REGION" chunks
226 level_0_blocks = []
227 GRID_IDX = -1
228 REGION_IDX = -1
229

230 # these are other places where "REGION name" will be called
231 OTHER_BLOCKS = [

38

232 "BOUNDARY_CONDITION",
233 "INITIAL_CONDITION",
234 "STRATA",
235 "OBSERVATION",
236]
237 OBI = -1 * np.ones((len(OTHER_BLOCKS) ,), dtype=np.int32)
238 num_regions = 0
239

240 for j, row in enumerate(rows):
241 if row[0] in OTHER_BLOCKS:
242 for i, OB in enumerate(OTHER_BLOCKS):
243 if row[0] == OB and OBI[i] == -1:
244 # REGION may appear in this block
245 OBI[i] = 0
246

247 elif row [0] == "END" and np.any(OBI < 0):
248 # assume there are no nested BC/STRATA/OBS blocks
249 for i, OB in enumerate(OTHER_BLOCKS):
250 if OBI[i] == 0:
251 # this is the end block
252 OBI[i] = -1
253

254 if row[0] == "GRID" and GRID_IDX == -1:
255 level_0_blocks.append (["GRID", j])
256 GRID_IDX = 0
257 elif row [0] == "END" and GRID_IDX == 0:
258 GRID_IDX = 1
259 # this is the closing of the required level -1 BOUNDS or DXYZ block
260 elif row [0] == "END" and GRID_IDX == 1:
261 level_0_blocks [-1]. append(j + 1)
262 GRID_IDX = -1
263 elif row [0] == "REGION" and REGION_IDX == -1 and np.all(OBI < 0):
264 # check this region token isn’t inside a coupler block
265 level_0_blocks.append (["REGION", row[1], j])
266 REGION_IDX = 0
267 elif row [0] == "COORDINATES" and REGION_IDX == 0:
268 REGION_IDX = 1
269 elif row [0] == "END" and REGION_IDX == 1:
270 # end of possible COORDINATES block
271 REGION_IDX = 0
272 elif row [0] == "END" and REGION_IDX == 0:
273 level_0_blocks [-1]. append(j + 1)
274 REGION_IDX = -1
275 num_regions += 1
276

277 # rows that should be echoed in final output file
278 context = np.ones((len(rows),), dtype=np.int32)
279

280 # only allowed a single GRID block
281 for j, block in enumerate(level_0_blocks):
282 if block [0] == "GRID":
283 grid_row_idx = block [1:3]
284 context[block [1] : block [2]] = -1 # mark where GRID block was
285 else:
286 context[block [2] : block [3]] = 0
287

288 if VERBOSE > 0:
289 print("\nLevel -0 blocks in input file")
290 print(f"GRID block found at rows {grid_row_idx [0]}-{ grid_row_idx [1]}")
291 print(f"found {num_regions} REGION blocks")
292 for block in level_0_blocks:
293 if block [0] == "REGION":
294 print(block)
295

296 # %%%%%%%%%%%%%%%%%%%%
297 # handle line continuation characters
298 # make a copy so possibly deleting a row doesn ’t mess other things up
299 grid_rows = rows[grid_row_idx [0] : grid_row_idx [1]]
300

301 nl = len(grid_rows)
302 for j in range(nl):
303 # check starting second from end , moving forward
304 idx = nl - 1 - j
305 if grid_rows[idx][-1] == "\\":
306 del grid_rows[idx][-1] # delete continuation char
307 grid_rows[idx]. extend(grid_rows[idx + 1]) # merge lines in place
308 del grid_rows[idx + 1] # delete repeated line

39

309

310 # %%%%%%%%%%%%%%%%%%%%
311 # handle multiple values using "@" nomenclature in DXYZ block
312 for j in range(len(grid_rows)):
313 new_row = []
314 for i in range(len(grid_rows[j])):
315 if "@" in grid_rows[j][i]:
316 mult , dx = grid_rows[j][i]. split("@")
317 new_row.extend ([dx] * int(mult))
318 else:
319 new_row.append(grid_rows[j][i])
320

321 grid_rows[j] = new_row # replace old row with new
322

323 if VERBOSE > 1:
324 # dump for debugging
325 print("\nprocessed grid input")
326 for row in grid_rows:
327 print(row)
328

329 # ((
330 # primary grid options
331 #))
332

333 p = {} # dict to store options read
334

335 # TYPE: STRUCTURED {[CARTESIAN],CYLINDRICAL ,SPHERICAL},
336 # UNSTRUCTURED <filename >,
337 # UNSTRUCTURED_EXPLICIT <filename >
338 # only handle structured for now
339

340 # NXYZ <int int int >
341

342 # ORIGIN <float float float >
343 # coordinates of grid origin , taken as lower corner of "bounds" if specified
344

345 # optional GRID sub -cards to echo unmodified
346 # does not include "2 ND_ORDER_BOUNDARY_CONDITION", "DOMAIN_FILENAME", "INVERT_Z"
347

348 # INVERT_Z doesn’t actually do anything (despite it being in the official documentation ,
349 # and not throwing an error when used , it just reads the keyword and silently does nothing)
350 echo = [
351 "GRAVITY",
352 "PERM_TENSOR_TO_SCALAR_MODEL",
353 "MAX_CELLS_SHARING_A_VERTEX",
354 "STENCIL_WIDTH",
355 "STENCIL_TYPE",
356 "UPWIND_FRACTION_METHOD",
357]
358

359 # arguments with following values on one line
360 for row in grid_rows:
361 if "TYPE" in row:
362 p["TYPE"] = [f.upper () for f in row [1:]]
363 if p["TYPE"][0] in ["UNSTRUCTURED", "UNSTRUCTURED_EXPLICIT"]:
364 # eventually start from implicit unstructured mesh. not yet.
365 print("python conversion script only works with STRUCTURED mesh for now")
366 sys.exit("script fail")
367 elif "NXYZ" in row:
368 p["NXYZ"] = tuple(int(x) for x in row [1:])
369 elif "ORIGIN" in row:
370 p["ORIGIN"] = [ffloat(x) for x in row [1:]]
371

372 if len(p["TYPE"]) == 1:
373 p["TYPE"]. append("CARTESIAN") # default structured
374 else:
375 if not p["TYPE"][1] in ["CYLINDRICAL", "SPHERICAL", "CARTESIAN"]:
376 print(f"ERROR: unknown structured mesh type: {p[’TYPE ’][1]}")
377 sys.exit("input inconsistency")
378

379 p["TYPE"] = tuple(p["TYPE"])
380

381 # arguments specified in a multi -line block with an END
382 for j in range(len(grid_rows)):
383 if "BOUNDS" in grid_rows[j]:
384 p["BOUNDS"] = [[ffloat(x) for x in r] for r in grid_rows[j + 1 : j + 3]]
385 elif "DXYZ" in grid_rows[j]:

40

386 p["DXYZ"] = [[ffloat(x) for x in r] for r in grid_rows[j + 1 : j + 4]]
387

388 # things to be echoed in modified output
389 p["ECHO"] = []
390 for row in grid_rows:
391 if row[0] in echo:
392 p["ECHO"]. append(row)
393

394 # %%%%%%%%%%%%%%%%%%%%
395 # allow a single number to be "spread" across a dimension
396 if "DXYZ" in p:
397 for j in range (3):
398 lx = len(p["DXYZ"][j])
399 nx = p["NXYZ"][j]
400 if lx == nx:
401 if VERBOSE > 0:
402 print(f"dimension {j+1} is correct (NXYZ vs. DXYZ)")
403 elif lx < nx and lx == 1:
404 p["DXYZ"][j] = [p["DXYZ"][j][0]] * nx
405 if VERBOSE > 0:
406 print(f"extending single DXYZ value {nx} times")
407 else:
408 print(f"ERROR in dimension {j+1}: NXYZ={nx}, len(DXYZ)={lx}")
409 sys.exit("input inconsistency")
410

411 # %%%%%%%%%%%%%%%%%%%%
412 if "BOUNDS" in p and "DXYZ" in p:
413 print("ERROR: cannot specify both BOUNDS and DXYZ")
414 sys.exit("input inconsistency")
415

416 # convert BOUNDS to DXYZ and ORIGIN to reduce later options
417 if "BOUNDS" in p:
418 Lx = p["BOUNDS"][1][0] - p["BOUNDS"][0][0]
419 Ly = p["BOUNDS"][1][1] - p["BOUNDS"][0][1]
420 Lz = p["BOUNDS"][1][2] - p["BOUNDS"][0][2]
421

422 if "ORIGIN" in p:
423 x0, y0 , z0 = p["ORIGIN"]
424 xb0 , yb0 , zb0 = p["BOUNDS"][0]
425 if ((x0 - xb0) ** 2 + (y0 - yb0) ** 2 + (z0 - zb0) ** 2) > eps:
426 print("ERROR: cannot specify differing BOUNDS and ORIGIN")
427 sys.exit("input inconsistency")
428 p["ORIGIN"] = tuple(p["BOUNDS"][0])
429

430 dx = Lx / float(p["NXYZ"][0])
431 dy = Ly / float(p["NXYZ"][1])
432 dz = Lz / float(p["NXYZ"][2])
433

434 p["DXYZ"] = [[dx] * p["NXYZ"][0], [dy] * p["NXYZ"][1], [dz] * p["NXYZ"][2]]
435

436 # %%%%%%%%%%%%%%%%%%%%
437 # check cylindrical and spherical grid conventions/limitations
438 if "CYLINDRICAL" in p["TYPE"]:
439 if not (p["NXYZ"][1] == 1):
440 print(f"ERROR: in cylindrical mesh , NXYZ={p[’NXYZ ’]}, NY must be 1")
441 sys.exit("input inconsistency")
442 else:
443 if VERBOSE > 1:
444 print("cylindrical mesh has correct Y dimension")
445

446 if abs(p["DXYZ"][1][0] - 1.0) > eps:
447 print(
448 f"\nWARNING: value of single cylindrical "
449 f"mesh DY ({p[’DXYZ ’][1][0]}) reset to unity\n"
450)
451 p["DXYZ"][1][0] = 1.0
452

453 if "SPHERICAL" in p["TYPE"]:
454 if (not (p["NXYZ"][1] == 1)) or (not (p["NXYZ"][2] == 1)):
455 print(f"ERROR in spherical mesh: NXYZ={p[’NXYZ ’]}, while NY & NZ must be 1")
456 sys.exit("input inconsistency")
457 else:
458 if VERBOSE > 1:
459 print("spherical mesh has correct Y & Z dimensions")
460

461 if abs(p["DXYZ"][1][0] - 1.0) > eps or abs(p["DXYZ"][2][0] - 1.0) > eps:
462 print(

41

463 f"\nWARNING: value of single spherical mesh DY "
464 f"({p[’DXYZ ’][1][0]}) & DZ ({p[’DXYZ ’][2][0]}) reset to unity\n"
465)
466 p["DXYZ"][1][0] = 1.0
467 p["DXYZ"][2][0] = 1.0
468

469 p["DXYZ"] = tuple(p["DXYZ"])
470

471 # %%%%%%%%%%%%%%%%%%%%
472 # add ORIGIN and BOUNDS for domains that didn’t specify it
473 if not "ORIGIN" in p:
474 p["ORIGIN"] = (0.0, 0.0, 0.0)
475

476 if not "BOUNDS" in p:
477 p["BOUNDS"] = [p["ORIGIN"]]
478

479 p["BOUNDS"]. append(tuple(v0 + sum(d) for v0 , d in zip(p["ORIGIN"], p["DXYZ"])))
480

481 if VERBOSE > 1:
482 # dump for debugging
483 print("\nParsed input")
484 for k in p.keys():
485 print(k, p[k])
486

487 # ((
488 # primary region options
489 #))
490

491 # regions can be points , areas , or volumes
492 # each handled differently
493

494 # region must use one of the following 4 possibilities
495

496 # option 1
497 # COORDINATE <float float float >
498 # single point in space for OBSERVATION locations
499

500 # option 2
501 # COORDINATES
502 # x_min y_min z_min
503 # x_max y_max z_max
504 # END
505 # volume for assigning MATERIALs or SOURCE_SINKs
506

507 # option 3
508 # BLOCK istart iend jstart jend kstart kend
509 # i,j,k bounded volume for assigning MATERIALs or SOURCE_SINKs
510

511 # option 4
512 # CARTESIAN_BOUNDARY [WEST , EAST , SOUTH , NORTH , BOTTOM , TOP]
513 # area for applying BOUNDARY_CONDITIONs
514

515 # if region with COORDINATES or BLOCK has
516 # FACE [WEST , EAST , SOUTH , NORTH , BOTTOM , TOP]
517 # one side of volume is area for BOUNDARY_CONDITION
518

519 r = {}
520

521 for block in level_0_blocks:
522 if block [0] == "REGION":
523

524 bn = block [1]
525 reg_row_idx = block [2:4]
526 reg_rows = rows[reg_row_idx [0] : reg_row_idx [1]]
527 nl = len(reg_rows)
528

529 # each region a dictionary , keyed on its case -sensitive name
530 r[bn] = {}
531

532 # arguments with following values on one line
533 for row in reg_rows:
534 if "COORDINATE" in row:
535 r[bn]["COORDINATE"] = tuple(ffloat(x) for x in row [1:])
536 elif "BLOCK" in row:
537 r[bn]["BLOCK"] = tuple(
538 int(x) - 1 for x in row [1:]
539) # convert to 0-based

42

540 elif "FACE" in row:
541 r[bn]["FACE"] = row [1]. upper()
542 elif "CARTESIAN_BOUNDARY" in row:
543 r[bn]["CARTESIAN_BOUNDARY"] = row [1]. upper ()
544 elif "FILE" in row:
545 # Specifies a file (e.g. HDF5) from which cell ids and
546 # face directions (for structured: 1=west , 2=east ,
547 # 3=south , 4=north , 5=bottom , 6=top) can be read.
548 r[bn]["FILE_LIST"] = row [1:]
549 print(
550 f"python conversion script can’t handle regfion FILE inputs ’{bn}’"
551)
552 sys.exit("script fail")
553

554 # arguments in a multi -line block with an END
555 for j, row in enumerate(reg_rows):
556 if "COORDINATES" in row:
557 r[bn]["COORDS"] = tuple(
558 tuple(ffloat(x) for x in r) for r in reg_rows[j + 1 : j + 3]
559)
560

561 for bn in r.keys():
562 if "COORDINATE" in r[bn]:
563 r[bn]["DIM"] = "POINT"
564 elif "CARTESIAN_BOUNDARY" in r[bn] or "FACE" in r[bn]:
565 r[bn]["DIM"] = "SURFACE"
566 elif "BLOCK" in r[bn] or "COORDS" in r[bn]:
567 r[bn]["DIM"] = "VOLUME"
568 else:
569 print(f"REGION of unknown type? {bn}")
570 print(r[bn])
571 sys.exit("script fail")
572

573 gb0 = p["BOUNDS"][0] # grid bounds
574 gb1 = p["BOUNDS"][1]
575

576 for bn in r.keys():
577 if "COORDS" in r[bn]:
578 rb0 = r[bn]["COORDS"][0] # region bounds
579 rb1 = r[bn]["COORDS"][1]
580 rdx = rb1 [0] - rb0[0]
581 rdy = rb1 [1] - rb0[1]
582 rdz = rb1 [2] - rb0[2]
583 for j, rr in enumerate ([rdx , rdy , rdz]):
584 if rr < 0.0:
585 print(f"ERROR: negative -width region ’{bn}’ in {dv[j]} direction")
586 sys.exit("input inconsistency")
587 for j in range (3):
588 if rb1[j] < gb0[j] or rb0[j] > gb1[j]:
589 print(
590 f"ERROR: region ’{bn}’ doesn ’t overlap "
591 f"grid in {dv[j]} direction"
592)
593 sys.exit("input inconsistency")
594

595 for bn in r.keys():
596 if p["TYPE"][1] in ["CYLINDRICAL", "SPHERICAL"]:
597 f = ""
598 if "CARTESIAN_BOUNDARY" in r[bn]:
599 f = r[bn]["CARTESIAN_BOUNDARY"][0]
600 elif "FACE" in r[bn]:
601 f = r[bn]["FACE"]
602 if f == "NORTH" or f == "SOUTH":
603 print(
604 f"ERROR in {p[’TYPE ’]} grid , illegal "
605 f"NORTH or SOUTH (Y) faces in region ’{bn}’"
606)
607 sys.exit("input inconsistency")
608 if "SPHERICAL" in p["TYPE"]:
609 if f == "TOP" or f == "BOTTOM":
610 print(
611 f"ERROR in SPHERICAL grid , illegal "
612 f"TOP or BOTTOM (Z) faces in region ’{bn}’"
613)
614 sys.exit("input inconsistency")
615

616 if VERBOSE > 1:

43

617 print("\nParsed region blocks")
618 for j, bn in enumerate(r.keys()):
619 print(f"{j} {bn}", r[bn])
620

621 # ((
622 # compute explicit mesh stuff
623 #))
624 m = {}
625 d = p["DXYZ"]
626 d2 = [[val / 2.0 for val in vec] for vec in p["DXYZ"]] # dx/2.0
627

628 # compute x,y,z coordinates of cell centers
629 # ******************************
630

631 m["vXYZc"] = [[], [], []]
632 for i in range (3):
633 m["vXYZc"][i]. append(p["ORIGIN"][i] + d2[i][0])
634 for j in range(1, p["NXYZ"][i]):
635 m["vXYZc"][i]. append(m["vXYZc"][i][j - 1] + d2[i][j] + d2[i][j - 1])
636 m["vXYZc"][i] = tuple(m["vXYZc"][i])
637

638 if VERBOSE > 2:
639 print("\nCell centers , each dimension")
640 for i in range (3):
641 print(i, m["vXYZc"][i])
642

643 # Cartesian product of dxdydz vectors (sets ordering of cells)
644 m["XYZc"] = []
645 m["IDX"] = []
646

647 m["dXYZc"] = {} # save in dict for reverse lookup
648

649 ii = 0
650 for i, x in enumerate(m["vXYZc"][0]):
651 for j, y in enumerate(m["vXYZc"][1]):
652 for k, z in enumerate(m["vXYZc"][2]):
653 # z changes fastest , x changes slowest
654 # same as product(dx,dy,dz)
655 m["XYZc"]. append ((x, y, z, d[0][i], d[1][j], d[2][k]))
656 m["IDX"]. append ((ii, i, j, k))
657 # (x, y, z) tuple as key
658 m["dXYZc"][(i, j, k)] = (ii, x, y, z, d[0][i], d[1][j], d[2][k])
659 ii += 1
660

661 if VERBOSE > 2:
662 print("\nCell coordinates / extents (x,y,z, dx,dy,dz)")
663 print(m["XYZc"])
664

665 print("\nCell indices (idx , i,j,k)")
666 print(m["IDX"])
667

668 # compute cell volumes
669 # ******************************
670 m["VOL"] = []
671

672 if "CARTESIAN" in p["TYPE"]:
673 for dx, dy, dz in product(d[0], d[1], d[2]):
674 # box
675 m["VOL"]. append(dx * dy * dz)
676

677 elif "CYLINDRICAL" in p["TYPE"]:
678 for i, (dx, dy, dz) in enumerate(product(d[0], d[1], d[2])):
679 # annular ring
680 # form that doesn’t involve subtraction or squaring x coordinate
681 m["VOL"]. append(np.pi * 2.0 * dx * m["XYZc"][i][0] * dz)
682

683 elif "SPHERICAL" in p["TYPE"]:
684 for i, (dx, dy, dz) in enumerate(product(d[0], d[1], d[2])):
685 # spherical shell
686 # form that doesn’t involve subtraction or cubing x coordinate
687 m["VOL"]. append(np.pi * dx / 3.0 * (dx ** 2 + 12.0 * m["XYZc"][i][0] ** 2))
688

689 if VERBOSE > 2:
690 print("\nCell volumes")
691 print(m["VOL"])
692

693 # compute connectivity

44

694 # ******************************
695 m["CON"] = []
696

697 for i in range(p["NXYZ"][0]): # x
698 for j in range(p["NXYZ"][1]): # y
699 for k in range(p["NXYZ"][2]): # z
700

701 # down = this element
702 v_dn = m["dXYZc"][(i, j, k)]
703

704 if k < p["NXYZ"][2] - 1:
705 # Z direction
706 v_up = m["dXYZc"][(i, j, k + 1)]
707 up_idx = v_up [0]
708 dn_idx = v_dn [0]
709 x, y, z = v_dn [1:4]
710 dx, dy , dz = v_dn [4:7]
711 xf = x
712 yf = y
713 zf = z + dz / 2.0
714

715 if "CARTESIAN" in p["TYPE"]:
716 A = dx * dy
717 elif "CYLINDRICAL" in p["TYPE"]:
718 A = np.pi * 2.0 * dx * x # annular area
719

720 # no spherical
721 m["CON"]. append ((up_idx , dn_idx , xf, yf, zf , A, 0))
722

723 if j < p["NXYZ"][1] - 1:
724 # Y direction
725 v_up = m["dXYZc"][(i, j + 1, k)]
726 up_idx = v_up [0]
727 dn_idx = v_dn [0]
728 x, y, z = v_dn [1:4]
729 dx, dy , dz = v_dn [4:7]
730 xf = x
731 yf = y + dy / 2.0
732 zf = z
733

734 # only cartesian
735 A = dx * dz
736 m["CON"]. append ((up_idx , dn_idx , xf, yf, zf , A, 0))
737

738 if i < p["NXYZ"][0] - 1:
739 # X direction
740 v_up = m["dXYZc"][(i + 1, j, k)]
741 up_idx = v_up [0]
742 dn_idx = v_dn [0]
743 x, y, z = v_dn [1:4]
744 dx, dy , dz = v_dn [4:7]
745 xf = x + dx / 2.0
746 yf = y
747 zf = z
748

749 if "CARTESIAN" in p["TYPE"]:
750 A = dy * dz
751 elif "CYLINDRICAL" in p["TYPE"]:
752 A = dz * 2.0 * xf * np.pi # dz * circ
753 elif "SPHERICAL" in p["TYPE"]:
754 A = 4.0 * np.pi * xf ** 2 # spherical area
755

756 m["CON"]. append ((up_idx , dn_idx , xf, yf, zf , A, 0))
757

758 if VERBOSE > 2:
759 print("\nCell connections")
760 print(m["CON"])
761

762 # compute vertices of hexahedral blocks
763 # ******************************
764 m["Vidx"] = {}
765 m["Vxyz"] = {}
766

767 nx , ny , nz = p["NXYZ"]
768 nx1 , ny1 , nz1 = [v + 1 for v in p["NXYZ"]]
769 nz1ny1 = nz1 * ny1
770

45

771 ijk = 0 # zero -based index
772

773 for i, x in enumerate(m["vXYZc"][0]):
774 for j, y in enumerate(m["vXYZc"][1]):
775 for k, z in enumerate(m["vXYZc"][2]):
776

777 v_here = m["dXYZc"][(i, j, k)]
778 dx2 , dy2 , dz2 = [v / 2.0 for v in v_here [4:7]]
779 indicies = []
780

781 # xmin , ymin
782 idx = k + nz1 * j + nz1ny1 * i
783 indicies.extend ([idx , idx + 1]) # [0,1]
784 m["Vxyz"][idx] = (x - dx2 , y - dy2 , z - dz2)
785 if k == nz - 1:
786 m["Vxyz"][idx + 1] = (x - dx2 , y - dy2 , z + dz2)
787

788 # xmin , ymax
789 idx = k + nz1 * (j + 1) + nz1ny1 * i
790 indicies.extend ([idx , idx + 1]) # [2,3]
791 if j == ny - 1:
792 m["Vxyz"][idx] = (x - dx2 , y + dy2 , z - dz2)
793 if k == nz - 1:
794 m["Vxyz"][idx + 1] = (x - dx2 , y + dy2 , z + dz2)
795

796 # xmax , ymin
797 idx = k + nz1 * j + nz1ny1 * (i + 1)
798 indicies.extend ([idx , idx + 1]) # [4,5]
799 if i == nx - 1:
800 m["Vxyz"][idx] = (x + dx2 , y - dy2 , z - dz2)
801 if k == nz - 1:
802 m["Vxyz"][idx + 1] = (x + dx2 , y - dy2 , z + dz2)
803

804 # xmax , ymax
805 idx = k + nz1 * (j + 1) + nz1ny1 * (i + 1)
806 indicies.extend ([idx , idx + 1]) # [6,7]
807 if (i == nx - 1) and (j == ny - 1):
808 m["Vxyz"][idx] = (x + dx2 , y + dy2 , z - dz2)
809 if k == nz - 1:
810 m["Vxyz"][idx + 1] = (x + dx2 , y + dy2 , z + dz2)
811 m["Vidx"][ijk] = tuple(indicies)
812 ijk += 1
813

814 if VERBOSE > 3:
815 print("\nZero -based Indices of Vertices")
816 print(m["Vidx"])
817

818 print("\nCoordinates of Vertices (x,y,z)")
819 print(m["Vxyz"])
820

821 # ((
822 # write explicit mesh files
823 #))
824 def write_uge_file(BASE_FN , M, order="old"):
825

826 EXFN = f"{BASE_FN }.uge"
827 fh = open(EXFN , "w")
828

829 DOMFN = f"{BASE_FN}-domain.h5"
830 dom = File(DOMFN , "w") # hdf5
831

832 # CELL block
833 ncells = len(M["VOL"])
834 w = int(np.ceil(np.log10(float(ncells + 1)))) # width for formatting ints
835

836 fh.write(f"CELLS {ncells }\n")
837 for cidx in range(ncells):
838 x, y, z = M["XYZc"][cidx][:3]
839 # cell ID; x,y,z of cell center; cell volume
840 fh.write(
841 f"{cidx +1:{w}} {x:.{df}E} {y:.{df}E} {z:.{df}E} {M[’VOL ’][cidx]:.{vf}E}\n"
842)
843

844 # CONNECTIONS block
845 nconn = len(M["CON"])
846 fh.write(f"CONNECTIONS {nconn }\n")
847 for cidx in range(nconn):

46

848 iup , idn , x, y, z, A, _ = M["CON"][cidx]
849 # upstr cell ID; downst cell ID; x,y,z of connection center; area perpendicular to connection
850 fh.write(
851 f"{iup +1:{w}} {idn +1:{w}} {x:.{df}E} {y:.{df}E} {z:.{df}E} {A:.{af}E}\n"
852)
853

854 # ELEMENTS block (PFLOTRAN doesn’t use uge section , paraview uses h5 data)
855 nverts = len(M["Vxyz"])
856 w = int(np.ceil(np.log10(float(nverts + 1))))
857 # H=hexahedral , vert ID for 8 corners of hex
858 fstr = f"H %{w}i %{w}i %{w}i %{w}i %{w}i %{w}i %{w}i %{w}i\n"
859 h5_cells = []
860 h5_cents = []
861

862 fh.write(f"ELEMENTS {ncells }\n")
863 for eidx in range(ncells):
864 ii = [i + 1 for i in M["Vidx"][eidx]] # convert to 1-based index
865 # Exodus II numbering scheme (fig 4 on p. 10 of SAND92 -2137)
866 if order == "old":
867 this_element = (ii[0], ii[4], ii[6], ii[2], ii[1], ii[5], ii[7], ii[3])
868 else:
869 this_element = tuple(ii)
870 fh.write(fstr % this_element)
871

872 ee = [9] # "hexahedral (8+1)"
873 # paraview -read hdf5 arrays are 0-based
874 ee.extend ([e - 1 for e in this_element])
875 h5_cells.extend(ee)
876

877 h5_cents.append(M["XYZc"][eidx])
878

879 hg_cells = np.array(h5_cells , dtype=np.int32)
880 dom.create_dataset("Domain/Cells", data=h5_cells)
881 del h5_cells
882

883 # float32 is the default type in xdmf , but pflotran writes 64-bit
884 h5_cents = np.array(h5_cents , dtype=np.float64)
885 dom.create_dataset("Domain/XC", data=h5_cents[:, 0])
886 dom.create_dataset("Domain/YC", data=h5_cents[:, 1])
887 dom.create_dataset("Domain/ZC", data=h5_cents[:, 2])
888 del h5_cents
889

890 h5_verts = []
891

892 # VERTICES block (PFLOTRAN doesn’t use uge section , paraview uses h5 data)
893 fh.write(f"VERTICES {nverts }\n")
894 for vidx in range(nverts):
895 x, y, z = M["Vxyz"][vidx]
896 # x,y,z coordinates of vertices
897 fh.write(f"{x:.{df}E} {y:.{df}E} {z:.{df}E}\n")
898

899 h5_verts.append ((x, y, z))
900

901 fh.close ()
902 h5_verts = np.array(h5_verts , dtype=np.float64)
903 dom.create_dataset("Domain/Vertices", data=h5_verts)
904 del h5_verts
905 dom.close()
906

907 return (EXFN , DOMFN)
908

909

910 # call previous
911 efn , dfn = write_uge_file(base_fn , m)
912

913 # ((
914 # write explicit region/boundary files
915 #))
916

917 # vectors of coordinates for cell edges , inserting origin as 0th element
918 cumDX = tuple(np.cumsum(np.array([v0] + v)) for v, v0 in zip(p["DXYZ"], p["ORIGIN"]))
919

920 for bn in r.keys():
921

922 if r[bn]["DIM"] == "POINT":
923

924 # only way to specify a point is via coordinates

47

925 # write the id of cell containing point (may fall on boundary)
926 idx = find_point_idx_up(r[bn]["COORDINATE"], cumDX , bn)
927

928 cell_id = m["dXYZc"][idx][0]
929 if VERBOSE > 1:
930 print(f"cell ijk: {idx}, cell id: {cell_id}")
931 txt_fn = f"{base_fn}-region -POINT -{bn}.txt"
932 r[bn]["FILENAME"] = txt_fn
933 fh = open(txt_fn , "w")
934 ii = cell_id + 1
935 fh.write(f"{ii}\n")
936 r[bn]["REG_CELL_IDS"] = np.array([ii ,], dtype=np.int32)
937 fh.close ()
938

939 elif r[bn]["DIM"] == "SURFACE":
940 # write connections associated with boundary conditions
941 # i_min , j_min , k_min
942 # i_max , j_max , k_max
943 idx = []
944

945 # specify COORDINATES and FACE
946 if "COORDS" in r[bn]:
947 idx.append(find_point_idx_up(r[bn]["COORDS"][0], cumDX , bn))
948 idx.append(find_point_idx_down(r[bn]["COORDS"][1], cumDX , bn))
949 face_idx = face_str_to_idx(r[bn]["FACE"], bn)
950

951 # specify BLOCK and FACE
952 if "BLOCK" in r[bn]:
953 idx.append ((r[bn]["BLOCK"][0], r[bn]["BLOCK"][2], r[bn]["BLOCK"][4]))
954 idx.append ((r[bn]["BLOCK"][1], r[bn]["BLOCK"][3], r[bn]["BLOCK"][5]))
955 face_idx = face_str_to_idx(r[bn]["FACE"], bn)
956

957 # specify CARTESIAN_BOUNDARY
958 if "CARTESIAN_BOUNDARY" in r[bn]:
959 face_idx = face_str_to_idx(r[bn]["CARTESIAN_BOUNDARY"], bn)
960

961 nXYZ = [v - 1 for v in p["NXYZ"]]
962

963 if face_idx == 1:
964 # WEST (x-min , full range of y and z)
965 idx.append ([0, 0, 0])
966 idx.append ([0, nXYZ[1], nXYZ [2]])
967 elif face_idx == 2:
968 # EAST (x-max , full range of y and z)
969 idx.append ([nXYZ[0], 0, 0])
970 idx.append ([nXYZ[0], nXYZ[1], nXYZ [2]])
971 elif face_idx == 3:
972 # SOUTH (y-min , full range of x and z)
973 idx.append ([0, 0, 0])
974 idx.append ([nXYZ[0], 0, nXYZ [2]])
975 elif face_idx == 4:
976 # NORTH (y-max , full range of x and z)
977 idx.append ([0, nXYZ[1], 0])
978 idx.append ([nXYZ[0], nXYZ[1], nXYZ [2]])
979 elif face_idx == 5:
980 # BOTTOM (z-min , full range of x and y)
981 idx.append ([0, 0, 0])
982 idx.append ([nXYZ[0], nXYZ[1], 0])
983 elif face_idx == 6:
984 # TOP (z-max , full range of x and y)
985 idx.append ([0, 0, nXYZ [2]])
986 idx.append ([nXYZ[0], nXYZ[1], nXYZ [2]])
987

988 # also have option to save this info in hdf5 format
989 txt_fn = f"{base_fn}-region -SURFACE -{bn}.ex"
990 r[bn]["FILENAME"] = txt_fn
991 fh = open(txt_fn , "w")
992 nDIR = [(i1 - i0) + 1 for i0 , i1 in zip(idx[0], idx [1])]
993 nCONN = nDIR [0] * nDIR [1] * nDIR [2]
994 cell_ids = []
995 face_ids = []
996 fh.write(f"CONNECTIONS {nCONN }\n")
997 if VERBOSE > 1:
998 print("CONN i range:", list(range(idx [0][0] , idx [1][0] + 1)))
999 print("CONN j range:", list(range(idx [0][1] , idx [1][1] + 1)))

1000 print("CONN k range:", list(range(idx [0][2] , idx [1][2] + 1)))
1001

48

1002 for i in range(idx [0][0] , idx [1][0] + 1):
1003 for j in range(idx [0][1] , idx [1][1] + 1):
1004 for k in range(idx [0][2] , idx [1][2] + 1):
1005 v = m["dXYZc"][(i, j, k)]
1006 ii = v[0] + 1
1007 x, y, z = v[1:4]
1008 dx, dy , dz = v[4:7]
1009 sign = 1.0
1010

1011 if face_idx in [1, 3, 5]:
1012 sign = -1.0
1013

1014 if face_idx in [1, 2]: # X-direction connection
1015 X = x + sign * dx / 2.0
1016 Y = y
1017 Z = z
1018 if "CARTESIAN" in p["TYPE"]:
1019 A = dy * dz
1020 elif "CYLINDRICAL" in p["TYPE"]:
1021 # dz * circumference
1022 A = dz * 2.0 * X * np.pi
1023 elif "SPHERICAL" in p["TYPE"]:
1024 # spherical area
1025 A = 4.0 * np.pi * X ** 2
1026

1027 elif face_idx in [3, 4]: # Y-direction connection
1028 X = x
1029 Y = y + sign * dy / 2.0
1030 Z = z
1031

1032 # only ever cartesian
1033 A = dx * dz
1034

1035 else: # face_idx in [5, 6] # Z-direction connection
1036 X = x
1037 Y = y
1038 Z = z + sign * dz / 2.0
1039

1040 if "CARTESIAN" in p["TYPE"]:
1041 A = dx * dy
1042 elif "CYLINDRICAL" in p["TYPE"]:
1043 # annular area
1044 A = np.pi * 2.0 * X * dx
1045

1046 fh.write(f"{ii} {X:.{df}E} {Y:.{df}E} {Z:.{df}E} {A:.{af}E}\n")
1047 cell_ids.append(ii)
1048 face_ids.append(face_idx) # same for every element
1049

1050 r[bn]["REG_FACE_IDS"] = np.array(face_ids , dtype=np.int32)
1051 r[bn]["REG_CELL_IDS"] = np.array(cell_ids , dtype=np.int32)
1052

1053 elif r[bn]["DIM"] == "VOLUME":
1054 idx = []
1055

1056 # specify COORDINATES (no FACE)
1057 if "COORDS" in r[bn]:
1058 idx.append(find_point_idx_up(r[bn]["COORDS"][0], cumDX , bn))
1059 idx.append(find_point_idx_down(r[bn]["COORDS"][1], cumDX , bn))
1060

1061 # specify BLOCK (no FACE)
1062 elif "BLOCK" in r[bn]:
1063 idx.append ((r[bn]["BLOCK"][0], r[bn]["BLOCK"][2], r[bn]["BLOCK"][4]))
1064 idx.append ((r[bn]["BLOCK"][1], r[bn]["BLOCK"][3], r[bn]["BLOCK"][5]))
1065

1066 txt_fn = f"{base_fn}-region -VOLUME -{bn}.txt"
1067 r[bn]["FILENAME"] = txt_fn
1068 fh = open(txt_fn , "w")
1069 cell_ids = []
1070 if VERBOSE > 1:
1071 print("VOL i range:", list(range(idx [0][0] , idx [1][0] + 1)))
1072 print("VOL j range:", list(range(idx [0][1] , idx [1][1] + 1)))
1073 print("VOL k range:", list(range(idx [0][2] , idx [1][2] + 1)))
1074

1075 for i in range(idx [0][0] , idx [1][0] + 1):
1076 for j in range(idx [0][1] , idx [1][1] + 1):
1077 for k in range(idx [0][2] , idx [1][2] + 1):
1078 v = m["dXYZc"][(i, j, k)]

49

1079 ii = v[0] + 1
1080 fh.write(f"{ii}\n")
1081 # PFLOTRAN -read hdf5 arrays are 1-based
1082 cell_ids.append(ii)
1083

1084 r[bn]["REG_CELL_IDS"] = np.array(cell_ids , dtype=np.int32)
1085

1086 h5fn = f"{base_fn}-regions.h5"
1087 h5 = File(h5fn , "w")
1088 # PFLOTRAN -read hdf5 arrays are 1-based
1089 global_cell_ids = np.arange(len(m["VOL"]), dtype=np.int32) + 1
1090 h5.create_dataset("Materials/Cell Ids", data=global_cell_ids)
1091

1092 for bn in r.keys():
1093 h5.create_dataset(f"Regions /{bn}/Cell Ids", data=r[bn]["REG_CELL_IDS"])
1094 if r[bn]["DIM"] == "SURFACE":
1095 h5.create_dataset(f"Regions /{bn}/Face Ids", data=r[bn]["REG_FACE_IDS"])
1096

1097 h5.close ()
1098

1099 # ((
1100 # write replacement input file blocks
1101 #))
1102 outfn = f"{base_fn}-explicit.in"
1103 outfh = open(outfn , "w")
1104 PRINTED = False
1105

1106 # put the GRID and REGION cards where the GRID card used to be
1107 # TODO the position of each component should be remembered and replaced with new version
1108

1109 outfh.write("# comments and leading/trailing whitespace have been stripped\n")
1110 outfh.write("# and ’/’ tokens converted to END\n")
1111 for j in range(len(rows)):
1112 if context[j] == 1:
1113 outfh.write(" ".join(rows[j]) + "\n")
1114 elif context[j] == -1 and not PRINTED:
1115 echostring = ""
1116 for item in p["ECHO"]:
1117 echostring += "\n" + " ".join([" "] + item)
1118

1119 # grid block is required
1120 outfh.write(
1121 f""" GRID
1122 TYPE UNSTRUCTURED_EXPLICIT {efn}
1123 DOMAIN_FILENAME {dfn} {echostring}
1124 END
1125 """
1126)
1127

1128 for bn in r.keys():
1129 outfh.write(
1130 f""" REGION {bn}
1131 FILE {r[bn][" FILENAME "]}
1132 END
1133 """
1134)
1135 PRINTED = True
1136

1137 outfh.close ()
1138

1139 if VERBOSE > 0:
1140 print(f"--------- finished processing GRID/REGION inputs from {fn} ---------")
1141

1142 # %%
1143 # %%
1144 if READ_IN_ELEVATIONS:
1145 # element tops/bottoms assumed piecewise flat (i.e., stair -stepped)
1146 # values read here are elevations of center of top/bottom faces
1147 # everything in this section updates the mesh properties in -place
1148 # any multi -continuum stuff should then just work with new variable -z data
1149

1150 try:
1151 zfn = f"{base_fn}-zelev.h5"
1152 zfh = File(zfn , "r")
1153 except OSError:
1154 READ_IN_ELEVATIONS = False
1155 if VERBOSE > 0:

50

1156 print(f"WARNING: elevation file name ’{zfn}’ not found , skipping ...")
1157

1158 if READ_IN_ELEVATIONS and ("CARTESIAN" in p["TYPE"]):
1159 # there will 2D arrays of elevations values for N+1 arrays ,
1160 # top of each layer (1-N), and bottom of lowest layer (00)
1161

1162 Ztopbot = []
1163 nlays = len(zfh.keys()) - 1
1164 Ztopbot.append(zfh["elev -00"][:, :])
1165

1166 for lay in range(nz):
1167 Ztopbot.append(zfh[f"elev -{lay + 1:02}"][:, :])
1168

1169 if VERBOSE > 1:
1170 print(
1171 f"opened ’{zfn}’ reading {len(Ztopbot)} "
1172 f"arrays , each of shape {Ztopbot [0]. shape}"
1173)
1174

1175 for j, zarray in enumerate(Ztopbot):
1176 if zarray.shape != p["NXYZ"][0:2]:
1177 print(
1178 f"ERROR: incorrect shape of array read from ’{zfn}’ for level {j} "
1179 f"in elev -{j:02}: {zarray.shape}. should be {p[’NXYZ ’][0:2]}"
1180)
1181 sys.exit (1)
1182

1183 # modify mesh and write a z-variable version
1184 # 0) only makes sense for CARTESIAN (not CYLINDRICAL or SPHERICAL)
1185 # 1) z-component of element centers
1186 # 2) dz values
1187 # 3) element volumes
1188 # 4) z-component of connection centers (not guaranteed orthogonal anymore)
1189 # 5) z-component of element vertices
1190 # connectivity , xy coordinates/extents remain the same
1191 # assume regions computed apply to initial mesh don’t change for now ...
1192

1193 # compute new dz & z (matricies , rather than lists)
1194 DZ = np.empty(p["NXYZ"], dtype=np.float64)
1195 Z = np.empty(p["NXYZ"], dtype=np.float64) # element center
1196 for lay in range(nz):
1197 DZ[:, :, lay] = Ztopbot[lay + 1] - Ztopbot[lay]
1198 Z[:, :, lay] = (Ztopbot[lay + 1] + Ztopbot[lay]) / 2.0
1199

1200 # re-compute locations and volumes
1201 ii = 0
1202 for i in range(p["NXYZ"][0]):
1203 for j in range(p["NXYZ"][1]):
1204 for k in range(p["NXYZ"][2]):
1205 (x, y, z, dx , dy , dz) = m["XYZc"][ii] # old value
1206 m["XYZc"][ii] = (x, y, Z[i, j, k], dx, dy, DZ[i, j, k])
1207 # m["IDX"] unchanged
1208 m["dXYZc"][(i, j, k)] = (ii, x, y, Z[i, j, k], dx , dy, DZ[i, j, k])
1209 m["VOL"][ii] = dx * dy * DZ[i, j, k]
1210 ii += 1
1211

1212 if VERBOSE > 2:
1213 print("\nUpdated (z-variable) Cell coordinates / extents (x,y,z,dx ,dy,dz)")
1214 print(m["XYZc"])
1215

1216 print("\nUpdated (z-variable) Cell Volumes")
1217 print(m["VOL"])
1218

1219 valid_var_z_opts = ["average", "minimum"]
1220 # TODO: should create another option to compute "overlap ."
1221 # Adjacent elements might have same dz, but different origins
1222 # this method
1223 if not VARIABLE_Z_CONNECTION_AREA in valid_var_z_opts:
1224 print(
1225 f"invalid value for VARIABLE_Z_CONNECTION_AREA "
1226 f"{valid_var_z_opts }: ’{VARIABLE_Z_CONNECTION_AREA}’"
1227)
1228 sys.exit (1)
1229

1230 # re-compute connection locations and areas
1231 ii = 0
1232 for i in range(p["NXYZ"][0]): # x

51

1233 for j in range(p["NXYZ"][1]): # y
1234 for k in range(p["NXYZ"][2]): # z
1235

1236 # down = this element
1237 v_dn = m["dXYZc"][(i, j, k)]
1238

1239 if k < p["NXYZ"][2] - 1:
1240 # Z direction
1241 v_up = m["dXYZc"][(i, j, k + 1)]
1242 up_idx = v_up [0]
1243 dn_idx = v_dn [0]
1244 xdn , ydn , zdn = v_dn [1:4]
1245 xup , yup , zup = v_up [1:4]
1246 dx, dy , dzdn = v_dn [4:7]
1247 dzup = v_up [6]
1248 xf = xdn
1249 yf = ydn
1250 zf = zdn + dzdn / 2.0
1251 A = dx * dy # no projection in z-direction
1252 m["CON"][ii] = (up_idx , dn_idx , xf , yf , zf, A, 0)
1253 ii += 1
1254

1255 if j < p["NXYZ"][1] - 1:
1256 # Y direction
1257 v_up = m["dXYZc"][(i, j + 1, k)]
1258 up_idx = v_up [0]
1259 dn_idx = v_dn [0]
1260 xdn , ydn , zdn = v_dn [1:4]
1261 xup , yup , zup = v_up [1:4]
1262 dxup , dyup , dzup = v_up [4:7]
1263 dxdn , dydn , dzdn = v_dn [4:7]
1264 dzup = v_up [6]
1265 xf = xdn
1266 yf = ydn + dydn / 2.0
1267 zf = (zup + zdn) / 2.0 # avg z-elev
1268 if VARIABLE_Z_CONNECTION_AREA == "minimum":
1269 dz = min(dzup , dzdn)
1270 else:
1271 dz = (dzup + dzdn) / 2.0
1272 # project area onto normal of line connecting centers
1273 Ly = dyup / 2.0 + dxup / 2.0
1274 A = dxdn * dz * (Ly / np.sqrt((zup - zdn) ** 2 + Ly ** 2))
1275 m["CON"][ii] = (up_idx , dn_idx , xf , yf , zf, A, 0)
1276 ii += 1
1277

1278 if i < p["NXYZ"][0] - 1:
1279 # X direction
1280 v_up = m["dXYZc"][(i + 1, j, k)]
1281 up_idx = v_up [0]
1282 dn_idx = v_dn [0]
1283 xdn , ydn , zdn = v_dn [1:4]
1284 xup , yup , zup = v_up [1:4]
1285 dxup , dyup , dzup = v_up [4:7]
1286 dxdn , dydn , dzdn = v_dn [4:7]
1287 dzup = v_up [6]
1288 xf = xdn + dxdn / 2.0
1289 yf = ydn
1290 zf = (zup + zdn) / 2.0 # avg z-elev
1291 if VARIABLE_Z_CONNECTION_AREA == "minimum":
1292 dz = min(dzup , dzdn)
1293 else:
1294 dz = (dzup + dzdn) / 2.0
1295 Lx = dxup / 2.0 + dxdn / 2.0
1296 A = dydn * dz * (Lx / np.sqrt((zup - zdn) ** 2 + Lx ** 2))
1297 m["CON"][ii] = (up_idx , dn_idx , xf , yf , zf, A, 0)
1298 ii += 1
1299

1300 if VERBOSE > 2:
1301 print("\nUpdated (z-variable) Cell connections")
1302 print(m["CON"])
1303

1304 valid_var_z_verts = ["piecewise", "continuous"]
1305 if not VARIABLE_Z_VERTICES in valid_var_z_verts:
1306 print(
1307 f"invalid value for VARIABLE_Z_VERTICES "
1308 f"{valid_var_z_verts }: ’{VARIABLE_Z_VERTICES}’"
1309)

52

1310 sys.exit (1)
1311

1312 if VARIABLE_Z_VERTICES == "continuuous":
1313 # this approach "re-uses" vertices between adjacent elements
1314 # only update z-coordinate of element vertices
1315 for i in range(p["NXYZ"][0]):
1316 for j in range(p["NXYZ"][1]):
1317 for k in range(p["NXYZ"][2]):
1318

1319 v_here = m["dXYZc"][(i, j, k)]
1320 zdn = Z[i, j, k] - DZ[i, j, k] / 2.0
1321 zup = Z[i, j, k] + DZ[i, j, k] / 2.0
1322

1323 # xmin , ymin
1324 idx = k + nz1 * j + nz1ny1 * i
1325 xx, yy , _ = m["Vxyz"][idx]
1326 m["Vxyz"][idx] = (xx, yy, zdn)
1327 if k == nz - 1:
1328 m["Vxyz"][idx + 1] = (xx , yy , zup)
1329

1330 # xmin , ymax
1331 idx = k + nz1 * (j + 1) + nz1ny1 * i
1332 xx, yy , _ = m["Vxyz"][idx]
1333 if j == ny - 1:
1334 m["Vxyz"][idx] = (xx, yy, zdn)
1335 if k == nz - 1:
1336 m["Vxyz"][idx + 1] = (xx, yy , zup)
1337

1338 # xmax , ymin
1339 idx = k + nz1 * j + nz1ny1 * (i + 1)
1340 xx, yy , _ = m["Vxyz"][idx]
1341 if i == nx - 1:
1342 m["Vxyz"][idx] = (xx, yy, zdn)
1343 if k == nz - 1:
1344 m["Vxyz"][idx + 1] = (xx, yy , zup)
1345

1346 # xmax , ymax
1347 idx = k + nz1 * (j + 1) + nz1ny1 * (i + 1)
1348 xx, yy , _ = m["Vxyz"][idx]
1349 if (i == nx - 1) and (j == ny - 1):
1350 m["Vxyz"][idx] = (xx, yy, zdn)
1351 if k == nz - 1:
1352 m["Vxyz"][idx + 1] = (xx, yy , zup)
1353

1354 zefn , zdfn = write_uge_file(f"{base_fn}-varz", m)
1355 else:
1356 # piecewise approach uses 8 new verticies for each element
1357 # completely replaces the Vxyz and Vidx arrays
1358 m["Vidx"] = {}
1359 m["Vxyz"] = {}
1360

1361 ijk = 0 # element index
1362 vidx = 0 # vertex index
1363

1364 for i, x in enumerate(m["vXYZc"][0]):
1365 for j, y in enumerate(m["vXYZc"][1]):
1366 for k in range(p["NXYZ"][2]):
1367

1368 zdn = Z[i, j, k] - DZ[i, j, k] / 2.0
1369 zup = Z[i, j, k] + DZ[i, j, k] / 2.0
1370 v_here = m["dXYZc"][(i, j, k)]
1371 dx2 , dy2 , dz2 = [v / 2.0 for v in v_here [4:7]]
1372

1373 m["Vxyz"][vidx] = (x - dx2 , y - dy2 , zdn)
1374 m["Vxyz"][vidx + 1] = (x + dx2 , y - dy2 , zdn)
1375 m["Vxyz"][vidx + 2] = (x + dx2 , y + dy2 , zdn)
1376 m["Vxyz"][vidx + 3] = (x - dx2 , y + dy2 , zdn)
1377

1378 m["Vxyz"][vidx + 4] = (x - dx2 , y - dy2 , zup)
1379 m["Vxyz"][vidx + 5] = (x + dx2 , y - dy2 , zup)
1380 m["Vxyz"][vidx + 6] = (x + dx2 , y + dy2 , zup)
1381 m["Vxyz"][vidx + 7] = (x - dx2 , y + dy2 , zup)
1382

1383 m["Vidx"][ijk] = tuple(vidx + i for i in range (8))
1384 vidx += 8
1385 ijk += 1
1386

53

1387 zefn , zdfn = write_uge_file(f"{base_fn}-varz", m, order="fixed")
1388

1389 if VERBOSE > 3:
1390 print("\nUpdated (z-variable) zero -based Indices of Vertices")
1391 print(m["Vidx"])
1392

1393 print("\nUpdated (z-variable) Vertices (x,y,z)")
1394 print(m["Vxyz"])
1395

1396

1397 # %%
1398 # %%
1399 if MULTIPOROSITY:
1400 # read in file specifying multiporosity -specific stuff
1401 mfn = "multiporosity.in"
1402 mfh = open(mfn , "r")
1403

1404 if VERBOSE > 0:
1405 print(f"--------- processing multiporosity inputs from {mfn} ---------")
1406

1407 mrows = parse_lines(clean_lines(mfh.readlines ()))
1408 mfh.close()
1409

1410 if VERBOSE > 2:
1411 print(f"processed rows of ’{mfn}’ read in")
1412 for mr in mrows:
1413 print(mr)
1414

1415 Q = {}
1416 mr = "INVALID"
1417 for j, row in enumerate(mrows):
1418 # %%%%%%%%%%%%%%%%%%%%%%%%%
1419 # process keywords and arguments
1420

1421 if "PINC" in row:
1422 # always first , so "mr" should be available below
1423 mr = row[1] # region name
1424 Q[mr] = {}
1425

1426 elif "TYPE" in row:
1427 mt = row [1]. upper()
1428 if mt == "DOUBLE_POROSITY" or mt == "DOUBLE_PERMEABILITY":
1429 Q[mr]["N"] = 2
1430 elif mt == "TRIPLE_POROSITY" or mt == "TRIPLE_PERMEABILITY":
1431 Q[mr]["N"] = 3
1432 elif mt == "N_POROSITY" or mt == "N_PERMEABILITY":
1433 Q[mr]["N"] = int(row [2])
1434 else:
1435 print(f"unknown multicontinuum type ’{mt}’ in region ’{mr}’")
1436 sys.exit (1)
1437 Q[mr]["TYPE"] = mt
1438

1439 elif "VOLUME_FRACTIONS" in row:
1440 # <float > volume fraction for N-1 porosities which sum to 1
1441 Q[mr]["VF"] = [ffloat(x) for x in row [1:]]
1442

1443 elif "DOMAIN_LENGTHS" in row:
1444 # length of subdomain; <float > for each of N porosities
1445 Q[mr]["LENS"] = [ffloat(x) for x in row [1:]]
1446

1447 elif "NUMBER_ELEMENTS" in row:
1448 # N_elements in subdomain <int > for each of N porosities (frac = 1)
1449 Q[mr]["NUM_EL"] = [int(x) for x in row [1:]]
1450

1451 elif "GEOMETRIES" in row:
1452 # geometry relating dx to (dA ,dV), one word per subdomain
1453 gv = [x.upper() for x in row [1:]]
1454 Q[mr]["GEOM"] = gv
1455

1456 for g in gv:
1457 if not g in ["FRACTURE", "SLAB", "NESTED_CUBES", "NESTED_SPHERES"]:
1458 print(f"unknown type of GEOMETRIES ’{g}’ in region ’{mr}’")
1459 sys.exit (1)
1460

1461 elif "DIRECTIONS" in row:
1462 # (e.g., X, Y, Z, +X, -X) assume +Y for if not specified (no gravity)
1463 # improve/modify visualization of output in paraview

54

1464 # impacts results w/ anisotropic permeability or thermal conductivity
1465 Q[mr]["DIRS"] = [x.upper () for x in row [1:]]
1466

1467 elif "MESH" in row:
1468 # mesh for each subdomain (on subsequent rows , with END block)
1469 # order of rows in mesh block correspond to the order of the continuua
1470 # UNIFORM: (don’t need to specify anything else ,
1471 # computed from NUMBER_ELEMENTS and DOMAIN_LENGTHS)
1472 # GEOMETRIC x0 factor (initial spacing , growth factor)
1473 # DX values (arbitrary mesh spacing values)
1474

1475 Q[mr]["MESH"] = []
1476

1477 for i in range(1, len(mrows) - j):
1478 jj = j + i
1479 mt = mrows[jj][0]. upper ()
1480

1481 if mt == "END":
1482 break
1483 if mt == "UNIFORM":
1484 Q[mr]["MESH"]. append (["UNIFORM"])
1485 # elif mt == "GEOMETRIC ":
1486 # Q[mr][" MESH "]. append(
1487 # [" GEOMETRIC "] + [ffloat(x) for x in mrows[jj][1:]]
1488 #)
1489 elif mt == "FRACTURE":
1490 # copy of initial mesh (in this region)
1491 Q[mr]["MESH"]. append (["FRACTURE"])
1492 elif mt == "DX":
1493 # TODO add ability to specify DX similar to DXYZ notation
1494 # (i.e., 17@2.5 and "\" end -of line continuuation characters)
1495 # for now just read in a single row of DX values
1496 Q[mr]["MESH"]. append (["DX"] + [ffloat(x) for x in mrows[jj][1:]])
1497 else:
1498 print(f"unknown MESH type ’{mt}’ in region ’{mr}’")
1499 sys.exit (1)
1500

1501 elif "SPATIAL_CONNECTIVITY" in row:
1502 # dual permeability
1503 # is there connectivity between spatial locations within each subdomain?
1504 # 1 = True connectivity (i.e., typical fracture),
1505 # 0 = False connectivity (i.e., typical matrix)
1506 Q[mr]["CONN"] = [bool(int(x)) for x in row [1:]]
1507

1508 elif "FAR_FIELD_CONNECTION" in row:
1509 # FAR_FIELD_CONNECTION
1510 # for subdomains with SPATIAL_CONNECTIVITY = 1 aren’t used
1511 # 0 is no -flow (default)
1512 # 1-N means it connects to other domain (a fracture ?)
1513 Q[mr]["FAR_FIELD"] = [int(x) for x in row [1:]]
1514

1515 elif "SLAB_AREAS" in row:
1516 # SLAB_AREAS is optional (only makes sense for slab)
1517 Q[mr]["SLAB_AREAS"] = [ffloat(x) for x in row [1:]]
1518

1519 elif "CONSTRAIN_TOTAL_VOL" in row:
1520 # logical (default is False , add for True)
1521 Q[mr]["CTV"] = True
1522

1523 if VERBOSE > 0:
1524 print(f"processed {len(Q)} PINC blocks")
1525 for mr in Q.keys():
1526 print(mr)
1527

1528 if VERBOSE > 2:
1529 print("dump of initially processes multicontinuum input")
1530 for mr in Q.keys():
1531 print(mr, Q[mr])
1532

1533 # perform checks on inputs , compute intermediates
1534 # %%%
1535 for mr in Q.keys():
1536 # check the correct number/type of things were specified for number of subdomains
1537 # can’t do this as it is being read because we don’t know the order of the cards
1538 # N could be specified last
1539

1540 if "N" in Q[mr]:

55

1541 N = Q[mr]["N"]
1542 else:
1543 print(f"specify TYPE of multicontinuum problem in region ’{mr}’")
1544 sys.exit (1)
1545

1546 if "VF" in Q[mr]:
1547 if len(Q[mr]["VF"]) == (N - 1):
1548 for vfv in Q[mr]["VF"]:
1549 if vfv <= 0.0:
1550 print(
1551 f"0: specify exactly {N-1} (N-1) <float > positive VOLUME_FRACTIONs"
1552 f" ({Q[mr][’VF ’]}) in region ’{mr}’"
1553)
1554 Q[mr]["VF"]. append (1.0 - sum(Q[mr]["VF"]))
1555 else:
1556 print(
1557 f"1: specify exactly {N-1} (N-1) <float > VOLUME_FRACTIONs "
1558 f"({Q[mr][’VF ’]}) in region ’{mr}’"
1559)
1560 sys.exit (1)
1561 else:
1562 print(f"2: specify N-1 <float > VOLUME_FRACTIONs in region ’{mr}’")
1563 sys.exit (1)
1564

1565 if "LENS" in Q[mr]:
1566 if len(Q[mr]["LENS"]) == N:
1567 for l in Q[mr]["LENS"]:
1568 if l <= 0.0:
1569 print(
1570 f"0: specify exactly N positive <float > DOMAIN_LENGTHS "
1571 f"({Q[mr][’LENS ’]}) in region ’{mr}’"
1572)
1573 sys.exit (1)
1574 else:
1575 print(
1576 f"1: specify exactly N <float > DOMAIN_LENGTHS "
1577 f"({Q[mr][’LENS ’]}) in region ’{mr}’"
1578)
1579 sys.exit (1)
1580 else:
1581 print(f"2: specify N <float > DOMAIN_LENGTHS in region ’{mr}’")
1582 sys.exit (1)
1583

1584 if "NUM_EL" in Q[mr]:
1585 if len(Q[mr]["NUM_EL"]) == N:
1586 for ne in Q[mr]["NUM_EL"]:
1587 if ne < 1:
1588 print(
1589 f"0: specify exactly N positive <int > NUMBER_ELEMENTS "
1590 f"({Q[mr][’NUM_EL ’]}) in region ’{mr}’"
1591)
1592 sys.exit (1)
1593 else:
1594 print(
1595 f"1: specify exactly N <int > NUMBER_ELEMENTS "
1596 f"({Q[mr][’NUM_EL ’]}) in region ’{mr}’"
1597)
1598 sys.exit (1)
1599 else:
1600 print(f"2: specify N <int > NUMBER_ELEMENTS in region ’{mr}’")
1601 sys.exit (1)
1602

1603 if "GEOM" in Q[mr]:
1604 if len(Q[mr]["GEOM"]) == N:
1605 pass
1606 else:
1607 print(
1608 f"0: specify exactly N GEOMETRY types ({Q[mr][’GEOM ’]}) in region ’{mr}’"
1609)
1610 sys.exit (1)
1611 else:
1612 print(f"1: specify N GEOMETRY types in region ’{mr}’ ")
1613 sys.exit (1)
1614

1615 if "DIRS" in Q[mr]:
1616 if len(Q[mr]["DIRS"]) == N:
1617 pass

56

1618 else:
1619 print(
1620 f"0: specify exactly N DIRECTIONS ({Q[mr][’GEOM ’]}) in region ’{mr}’"
1621)
1622 sys.exit (1)
1623 else:
1624 # default behaivor (optional card)
1625 Q[mr]["DIRS"] = ["+Y"] * N
1626

1627 if "MESH" in Q[mr]:
1628 if len(Q[mr]["MESH"]) == N:
1629 for cont , mm in enumerate(Q[mr]["MESH"]):
1630 if mm[0] == "GEOMETRIC":
1631 if len(mm) == 3:
1632 if mm[1] <= 0.0 or mm[2] <= 0.0:
1633 print(
1634 f"X0 {mm[1]} and GROWTH_FACTOR {mm[2]} in "
1635 f"MESH:GEOMETRIC :{cont} must be >=0 for region ’{mr}’"
1636)
1637 sys.exit (1)
1638 else:
1639 print(
1640 f"specify two <float > parameters (X0,GROWTH_FACTOR) for "
1641 f"MESH:GEOMETRIC :{cont} in region ’{mr}’"
1642)
1643 sys.exit (1)
1644 elif mm[0] == "DX":
1645 NE = Q[mr]["NUM_EL"][cont]
1646 if (len(mm[1:]) == NE) or (len(mm[1:]) > NE):
1647 for i in range(NE):
1648 if mm[1 + i] <= 0.0:
1649 print(
1650 f"all DX values in MESH:DX:{cont} ({mm}) "
1651 f"must be positive in region ’{mr}’"
1652)
1653 sys.exit (1)
1654 if len(mm[1:]) > NE:
1655 ldx = len(mm[1:])
1656 print(
1657 f"WARNING ignoring DX values beyond NE ({mm}) in region ({mr})"
1658)
1659 for _ in range(ldx - NE):
1660 mm.pop() # delete items from end of list
1661 else:
1662 print(
1663 f"specify NUMBER_ELEMENT ({NE}) <float > dx values ({mm}) for "
1664 f"MESH:GEOMETRIC :{cont} in region ’{mr}’"
1665)
1666 sys.exit (1)
1667 else:
1668 print(
1669 f"specify MESH block with exactly N rows ({Q[mr][’MESH ’]}) "
1670 f"in region ’{mr}’ [UNIFORM ,GEOMETRIC ,DX]"
1671)
1672 sys.exit (1)
1673 else:
1674 print(
1675 f"specify MESH block with a row for each "
1676 f"continuum in region ’{mr}’ [UNIFORM ,GEOMETRIC ,DX]"
1677)
1678 sys.exit (1)
1679

1680 if "CONN" in Q[mr]:
1681 if len(Q[mr]["CONN"]) == N:
1682 pass
1683 else:
1684 print(
1685 f"0: specify exactly N [0,1] <bool > SPATIAL_CONNECTIVITY "
1686 f"values ({Q[mr][’CONN ’]}) in region ’{mr}’"
1687 " or use the TYPE shortcuts DOUBLE_POROSITY , DOUBLE_PERMEABILITY , etc."
1688)
1689 sys.exit (1)
1690 else:
1691 if "TYPE" in Q[mr]:
1692 typ = Q[mr]["TYPE"]
1693 if typ == "DOUBLE_POROSITY":
1694 Q[mr]["CONN"] = [1, 0]

57

1695 elif typ == "DOUBLE_PERMEABILITY":
1696 Q[mr]["CONN"] = [1, 1]
1697 elif typ == "TRIPLE_POROSITY":
1698 Q[mr]["CONN"] = [1, 0, 0]
1699 elif typ == "TRIPLE_PERMEABILITY":
1700 Q[mr]["CONN"] = [1, 1, 1]
1701 elif typ == "N_POROSITY":
1702 Q[mr]["CONN"] = [1]
1703 Q[mr]["CONN"]. extend ([0] * Q[mr]["N"])
1704 elif typ == "N_PERMEABILITY":
1705 Q[mr]["CONN"] = [1]
1706 Q[mr]["CONN"]. extend ([1] * Q[mr]["N"])
1707 else:
1708 print(
1709 f"1: specify N [0,1] <bool > SPATIAL_CONNECTIVITY values in region ’{mr}’"
1710 " or use the TYPE shortcuts DOUBLE_POROSITY , DOUBLE_PERMEABILITY , etc."
1711)
1712 sys.exit (1)
1713 else:
1714 print(
1715 f"2: specify N [0,1] <bool > SPATIAL_CONNECTIVITY values in region ’{mr}’"
1716 " or use the TYPE shortcuts DOUBLE_POROSITY , DOUBLE_PERMEABILITY , etc."
1717)
1718 sys.exit (1)
1719

1720 if "FAR_FIELD" in Q[mr]:
1721 if len(Q[mr]["FAR_FIELD"]) == N:
1722 pass
1723 else:
1724 print(
1725 f"0: specify exactly N <int > FAR_FIELD_CONNECTION values "
1726 f"({Q[mr][’FAR_FIELD ’]}) in region ’{mr}’ (or leave out/optional)"
1727)
1728 sys.exit (1)
1729 else:
1730 pass # optional block doesn’t do anything yet
1731 # print(f"1: specify N <int > FAR_FIELD_CONNECTION values in region ’{mr}’")
1732 # sys.exit (1)
1733

1734 if "SLAB_AREAS" in Q[mr]:
1735 if len(Q[mr]["SLAB_AREAS"]) == N:
1736 pass
1737 else:
1738 print(
1739 f"0: specify exactly N <float > SLAB_AREAS values (only makes sense for slab geometry)

"
1740 f"(Q[mr][’ SLAB_AREAS ’]) in region {mr} (or leave out/optional)"
1741)
1742 sys.exit (1)
1743 else:
1744 pass # optional
1745

1746 if "CTV" not in Q[mr]:
1747 Q[mr]["CTV"] = False
1748

1749 if VERBOSE > 2:
1750 print("validated multiporosity inputs")
1751 print("dump of further processes and checked multicontinuum input")
1752 for mr in Q.keys():
1753 print(mr, Q[mr])
1754

1755 def direction_to_vec(DIR):
1756 # returns a unit vector representing
1757 # X,Y,Z,+X,-X,+Y,-Y,+Z,-Z (no sign assumed positive)
1758 vec = np.array ([0.0 , 0.0, 0.0], dtype=np.float64)
1759 DIR = DIR.upper()
1760

1761 if DIR [0] == "F":
1762 # i.e., no new "matrix" contiuum
1763 return vec
1764

1765 if DIR[-1] == "X":
1766 vec [0] = 1.0
1767 elif DIR[-1] == "Y":
1768 vec [1] = 1.0
1769 elif DIR[-1] == "Z":
1770 vec [2] = 1.0

58

1771 else:
1772 print("ERROR: invalid last character in dir (X,Y,Z): {DIR}")
1773 sys.exit (1)
1774

1775 if len(DIR) == 1:
1776 return vec
1777 elif DIR [0] == "-":
1778 vec *= -1.0
1779 return vec
1780

1781 def build_1d_mesh(dx, xyz , DIR , CONT_VOL , GEOM , AREAS):
1782 # build matrix (i.e., not connected in space) mesh
1783 vec = direction_to_vec(DIR)
1784 XYZ = np.array(xyz[:3], dtype=np.float64) # center of root cell
1785 dxdydz = np.array(xyz[3:], dtype=np.float64) # extents of root cell
1786

1787 dx = np.array(dx)
1788 L = dx.sum()
1789 NE = dx.shape [0]
1790

1791 nx, ny , nz = (1, 1, 1)
1792 if abs(abs(vec [0]) - 1.0) < eps:
1793 MDIR = 0
1794 nx = NE
1795 elif abs(abs(vec [1]) - 1.0) < eps:
1796 MDIR = 1
1797 ny = NE
1798 else:
1799 MDIR = 2
1800 nz = NE
1801

1802 # compute cell coordinates
1803 el_cent = np.empty((NE , 3), dtype=np.float64)
1804 # in local coordinates
1805 for i in range(NE):
1806 el_cent[i, :] = vec[None , :] * (dx[:i].sum() + dx[i] / 2.0)
1807

1808 # compute element volumes & connection areas
1809 el_vol = np.empty((NE ,), dtype=np.float64)
1810 c_areas = np.empty((NE ,), dtype=np.float64)
1811 c_cent = np.empty((NE, 3), dtype=np.float64)
1812

1813 if GEOM == "SLAB":
1814 # constant area and volum
1815 if AREAS is not None:
1816 c_areas [:] = AREAS # allow to optionally override area calc for slab
1817 else:
1818 c_areas [:] = CONT_VOL / L
1819 el_vol [:] = c_areas [:] * dx[:]
1820 elif GEOM == "NESTED_CUBES":
1821 # first element on outside / last element at center
1822 r = L - el_cent[:, MDIR] # distance from center
1823 c_areas [:] = 4.0 * (r[:] + dx[:] / 2.0) ** 2
1824 el_vol [:] = dx[:] ** 3 / 2.0 + 6.0 * dx[:] * r[:] ** 2
1825 elif GEOM == "NESTED_SPHERES":
1826 r = L - el_cent[:, MDIR]
1827 c_areas [:] = 4.0 * np.pi * (r[:] + dx[:] / 2.0) ** 2
1828 el_vol [:] = np.pi * dx[:] / 3.0 * (dx[:] ** 2 + 12.0 * r[:] ** 2)
1829 else:
1830 print("ERROR: invalid GEOM in build_1d_mesh (): {GEOM}")
1831 sys.exit (1)
1832

1833 # shift physical domain to begin at _center_ of root element
1834 el_cent[:, :] += XYZ[None , :]
1835 c_cent[:, :] = el_cent[:, :] - dx[:, None] * vec[None , :] / 2.0
1836

1837 # vertices for elements (for paraview) shouldn ’t overlap
1838 # maybe 95% of the size , so they don’t overlap (small gap)
1839

1840 # the volume of the elements computed from the verticies will not
1841 # be the same as that used by PFLOTRAN , but that was already the case
1842 # with SPHERICAL or CYLINDRICAL meshes (dy = 1.0)
1843

1844 # XY planes XZ planes YZ planes
1845 # z_lo z_hi y_lo y_hi x_lo x_hi
1846 # 3----2 7----6 4----5 7----6 7----4 6----5
1847 # | | | | | | | | | | | |

59

1848 # 0----1 4----5 0----1 3----2 3----0 2----1
1849

1850 el_indx = np.empty((NE , 8), dtype=np.int32) # hexahedra
1851 ids = {}
1852 verts = {}
1853 nx1 , ny1 , nz1 = [v + 1 for v in (nx, ny, nz)]
1854 nz1ny1 = nz1 * ny1
1855

1856 for i in range(nx):
1857 for j in range(ny):
1858 for k in range(nz):
1859 x = el_cent[i, 0]
1860 y = el_cent[j, 1]
1861 z = el_cent[k, 2]
1862 ijk = max(i, j, k) # 0-based
1863

1864 dx2 , dy2 , dz2 = (
1865 dx[ijk] * vec[:] - dxdydz [:] * (1.0 - abs(vec [:])) * most
1866) / 2.0
1867

1868 ids[ijk] = []
1869

1870 # xmin , ymin
1871 idx = k + nz1 * j + nz1ny1 * i
1872 ids[ijk]. extend ([idx , idx + 1]) # [0,1]
1873 verts[idx] = (x - dx2 , y - dy2 , z - dz2)
1874 if k == nz - 1:
1875 verts[idx + 1] = (x - dx2 , y - dy2 , z + dz2)
1876

1877 # xmin , ymax
1878 idx = k + nz1 * (j + 1) + nz1ny1 * i
1879 ids[ijk]. extend ([idx , idx + 1]) # [2,3]
1880 if j == ny - 1:
1881 verts[idx] = (x - dx2 , y + dy2 , z - dz2)
1882 if k == nz - 1:
1883 verts[idx + 1] = (x - dx2 , y + dy2 , z + dz2)
1884

1885 # xmax , ymin
1886 idx = k + nz1 * j + nz1ny1 * (i + 1)
1887 ids[ijk]. extend ([idx , idx + 1]) # [4,5]
1888 if i == nx - 1:
1889 verts[idx] = (x + dx2 , y - dy2 , z - dz2)
1890 if k == nz - 1:
1891 verts[idx + 1] = (x + dx2 , y - dy2 , z + dz2)
1892

1893 # xmax , ymax
1894 idx = k + nz1 * (j + 1) + nz1ny1 * (i + 1)
1895 ids[ijk]. extend ([idx , idx + 1]) # [6,7]
1896 if (i == nx - 1) and (j == ny - 1):
1897 verts[idx] = (x + dx2 , y + dy2 , z - dz2)
1898 if k == nz - 1:
1899 verts[idx + 1] = (x + dx2 , y + dy2 , z + dz2)
1900

1901 return (el_cent , el_vol , c_areas , dx, c_cent , ids , verts)
1902

1903 # %%
1904 # compute continuua mesh parameters
1905 CM = {}
1906

1907 # These regions multicontinuum is applied should be disjoint?
1908 # Not sure what to do if they overlap ...
1909 # connectivity will probably work , but need to think about
1910 # how to compute total volumes.
1911

1912 for mr in Q.keys():
1913 if mr in r:
1914 if r[mr]["DIM"] == "VOLUME":
1915 pass
1916 else:
1917 print(
1918 f"PINC ’{mr}’ mulst be associated "
1919 f"with volumetric REGION: {r[mr][’DIM ’]}"
1920)
1921 sys.exit (1)
1922 else:
1923 print(f"PINC ’{mr}’ has no corresponding REGION , out of: {r.keys()}")
1924 sys.exit (1)

60

1925

1926 # modify m dictionary with mesh parameters in-place.
1927 m["INIT_VOL"] = m["VOL"]
1928

1929 # volumes of elements in initial mesh then
1930 # bound total volume of sum of all elements total
1931 for mr in Q.keys():
1932 CM[mr] = {}
1933 dl = Q[mr]["LENS"]
1934 ne = Q[mr]["NUM_EL"]
1935 ge = Q[mr]["GEOM"]
1936 dr = Q[mr]["DIRS"]
1937 if "SLAB_AREAS" in Q[mr]:
1938 areas = Q[mr]["SLAB_AREAS"]
1939 else:
1940 areas = [None] * len(dl)
1941

1942 # each cell in the inital domain has
1943 # several continuua attached to it
1944 # these are 1-based (hdf5 array for PFLOTRAN)
1945 cell_ids = r[mr]["REG_CELL_IDS"]
1946 # make a copy and reset to zero -based
1947 initial_reg_cell_ids = [i - 1 for i in cell_ids [:]]
1948

1949 # empty list of lists with global cell ids for each continuum
1950 # to allow definition of regions
1951 region_ids = [[] for reg in range(Q[mr]["N"])]
1952

1953 # create a dictionary for each element in physical domain ,
1954 # which will have another continuum mesh attached to it
1955 # cid is now zero -based
1956 for cid in [i - 1 for i in cell_ids]:
1957 CM[mr][cid] = {}
1958

1959 # all cells fit in initial root physical volume
1960 CM[mr][cid]["TOTAL_VOL"] = m["VOL"][cid]
1961

1962 xyz = m["XYZc"][cid] # center (x,y,z) & extents (dx ,dy,dz)
1963

1964 # cycle through continuua
1965 for ctm in range(Q[mr]["N"]):
1966 CM[mr][cid][ctm] = {}
1967

1968 # total volume for this continuum
1969 # based on volume fraction and volume of element it is rooted in
1970 # volume of all elements in this continuum must add up to this\
1971 if "SLAB_AREAS" in Q[mr] and ge[ctm] == "SLAB":
1972 # compute volume from specified L and area
1973 # this only possible for slab geometry
1974 cvol = dl[ctm] * areas[ctm]
1975 else:
1976 cvol = CM[mr][cid]["TOTAL_VOL"] * Q[mr]["VF"][ctm]
1977

1978 CM[mr][cid][ctm]["CONTINUUM_VOL"] = cvol
1979 CM[mr][cid][ctm]["VF"] = Q[mr]["VF"][ctm]
1980

1981 mt = Q[mr]["MESH"][ctm]
1982 if mt[0] == "UNIFORM":
1983 # uniform grid spacing
1984 # SLAB , L specified by user
1985

1986 if ge[ctm] == "NESTED_SPHERES":
1987 # domain size is constrained total volume
1988 # L specified in input file not used
1989 # L is radius of outermost nested sphere
1990 L = (0.75 * cvol / np.pi) ** (1.0 / 3.0)
1991 elif ge[ctm] == "NESTED_CUBES":
1992 # L specified in input file not used
1993 # L is half edge of outermost nested cube
1994 L = (0.125 * cvol) ** (1.0 / 3.0)
1995 else:
1996 # for slab use L specified in input file
1997 L = dl[ctm]
1998

1999 dx = np.ones((ne[ctm],)) * L / float(ne[ctm])
2000

2001 R = build_1d_mesh(dx, xyz , dr[ctm], cvol , ge[ctm], areas[ctm])

61

2002 ec, ev , ca , dx, cc, id_dict , vert_dict = R
2003 CM[mr][cid][ctm]. update(
2004 {
2005 "GEOM": ge[ctm],
2006 "MESH": mt[0],
2007 "NE": ne[ctm],
2008 "L": L,
2009 "eXYZ": ec ,
2010 "DX": dx,
2011 "eVOL": ev ,
2012 "DIR": dr[ctm],
2013 "cAREA": ca ,
2014 "cXYZ": cc ,
2015 "idDict": id_dict ,
2016 "vertDict": vert_dict ,
2017 }
2018)
2019

2020 elif mt[0] == "DX":
2021 # all dx specified by user
2022 R = build_1d_mesh(mt[1:], xyz , dr[ctm], cvol , ge[ctm], areas[ctm])
2023 ec, ev , ca , dx, cc, id_dict , vert_dict = R
2024 CM[mr][cid][ctm]. update(
2025 {
2026 "GEOM": ge[ctm],
2027 "MESH": mt[0],
2028 "DX": dx,
2029 "NE": len(dx),
2030 "VOL": ev,
2031 "eXYZ": ec ,
2032 "DIR": dr[ctm],
2033 "cAREA": ca ,
2034 "cXYZ": cc ,
2035 "idDict": id_dict ,
2036 "vertDict": vert_dict ,
2037 }
2038)
2039

2040 elif mt[0] == "FRACTURE":
2041 # if this is the "first" continuum , re-use the continuum
2042 # provided as the seed. If this is a later fracture continuum ,
2043 # we need to make a copy of the first continuum to re-use
2044 # (only in the region of interest)
2045

2046 if Q[mr]["CTV"]:
2047 # CONSTRAIN_TOTAL_VOLUME
2048 # reduce volume of primary continuum
2049 # so all the continua together equal initial volume
2050 m["VOL"][cid] *= Q[mr]["VF"][ctm]
2051 CM[mr][cid][ctm]["MESH"] = "FRACTURE"
2052 CM[mr][cid][ctm]["XYZ"] = xyz [:3]
2053 CM[mr][cid][ctm]["dXdYdZ"] = xyz [3:]
2054 CM[mr][cid][ctm]["NE"] = 1
2055

2056 CM[mr][cid][ctm]["GIDS"] = []
2057

2058 if not (mt[0] == "FRACTURE"):
2059 # save local matrix continum into global data structures
2060 mat_ids = np.arange(ne[ctm])
2061 NN = len(m["VOL"]) # 0 to NN -1
2062

2063 for LMID , EC , EV, CA, DX, CC in zip(mat_ids , ec, ev , ca , dx, cc):
2064 GID = LMID + NN
2065 region_ids[ctm]. append(GID)
2066 CM[mr][cid][ctm]["GIDS"]. append(GID)
2067

2068 if VERBOSE > 5:
2069 print(
2070 f"rooted ={cid}, c={ctm}, global ={GID}, total={NN}, local={LMID}"
2071)
2072

2073 m["VOL"]. append(EV) # element volume
2074 # i,j,k don’t make sense here , save as -1
2075 m["IDX"]. append ((GID , -1, -1, -1))
2076 # 1D in x, 1 in other dirs?
2077 m["XYZc"]. append ((*EC , DX , 1.0, 1.0))
2078

62

2079 if LMID == 0:
2080 # connection back to intial domain
2081 idx_down = cid
2082 else:
2083 idx_down = GID - 1
2084

2085 # connections
2086 m["CON"]. append ((GID , idx_down , *CC, CA, ctm))
2087

2088 # material for ELEMENTS and VERTICES (.uge and .h5)
2089 nverts = len(m["Vxyz"])
2090 id_keys = sorted(id_dict.keys())
2091

2092 for LMID in id_keys:
2093 GID = LMID + NN
2094 # map onto global numbering
2095 m["Vidx"][GID] = [i + nverts for i in id_dict[LMID]]
2096

2097 for VID in vert_dict.keys():
2098 GID = VID + nverts
2099 # vertices not numbered
2100 m["Vxyz"][GID] = vert_dict[VID]
2101 else:
2102 # FRACTURE
2103 # add a region list for fractures too
2104 region_ids[ctm]. append(cid)
2105

2106 # if dual -permeability , need to add connections between matrix nodes
2107 for ctm in range(1, Q[mr]["N"]):
2108 # 0th porosity is assumed to have connectivity (already accounted for)
2109 if Q[mr]["CONN"][ctm]:
2110 # cycle through initial cell ids (before adding in other porosities)
2111 for cid in initial_reg_cell_ids:
2112 # apply similar connectivity from physical elements
2113 # to matrix elements that have "double permeability" turned on
2114

2115 XYZ_root = m["XYZc"][cid][0:3]
2116

2117 neighbors = {
2118 x[1]: x
2119 for x in m["CON"]
2120 if x[6] == 0 and x[0] == cid and x[1] in initial_reg_cell_ids
2121 }
2122

2123 for el in range(CM[mr][cid][ctm]["NE"]):
2124 GMID_here = CM[mr][cid][ctm]["GIDS"][el]
2125 for nb in neighbors.keys():
2126 GMID_next = CM[mr][nb][ctm]["GIDS"][el]
2127 XYZ_here = m["XYZc"][GMID_here][0:3]
2128 XYZ_next = m["XYZc"][GMID_next][0:3]
2129 # put center of connection at location of
2130 # root connection , with same offset as matrix
2131 offset = tuple(
2132 mv - rv for (mv , rv) in zip(XYZ_here , XYZ_root)
2133)
2134 rf_XYZ = neighbors[nb][2:5]
2135 face_A = neighbors[nb][5] # same area as in root connection
2136 dp_face_XYZ = tuple(
2137 rf + off for (rf, off) in zip(rf_XYZ , offset)
2138)
2139 m["CON"]. append(
2140 (GMID_here , GMID_next , *dp_face_XYZ , face_A , ctm)
2141)
2142

2143 cumulative_ids = []
2144 # iterate over regions used in PINC block
2145 for ctm , reg_ids in enumerate(region_ids):
2146 txt_fh = open(f"{base_fn}-region -mc-PINC -{ctm}-{mr}.txt", "w")
2147 # list of element IDs associated with a multicontinuum region
2148 for rid in reg_ids:
2149 RID = rid + 1 # make them plfotran -convention 1-based
2150 txt_fh.write(f"{RID}\n")
2151 cumulative_ids.append(RID)
2152 txt_fh.close()
2153 # write a text file that includes every continuum that is associated with the
2154 # region in the initial domain
2155 txt_fh = open(f"{base_fn}-region -mc-ALLCONTINUA -{mr}.txt", "w")

63

2156 txt_fh.write("\n".join([f"{idx}" for idx in cumulative_ids]) + "\n")
2157 txt_fh.close()
2158

2159 # write list of IDs for other regions too , which fall inside PINC block
2160 # useful for MATERIAL_PROPERTIES , SOURCE_SINK , or OBSERVATIONs.
2161 for bn in r.keys():
2162 if not bn == mr:
2163 # doesn ’t make sense for areas , which are connections
2164 # flux BC would need to be handled differently
2165 if r[bn]["DIM"] == "POINT" or r[bn]["DIM"] == "VOLUME":
2166 cumulative_ids = []
2167 ctm_fhs = []
2168 for Z, idx in enumerate(r[bn]["REG_CELL_IDS"]):
2169 IDX = idx - 1
2170 # only look in "base" porosity [0], where region was initially defined
2171 if IDX in region_ids [0]:
2172 for ctm in range(Q[mr]["N"]):
2173 if Z == 0:
2174 # first time through open up filehandles
2175 ctm_fhs.append(
2176 open(
2177 f"{base_fn}-region -mc -{ctm}-{bn}-OTHER -{mr}.txt",
2178 "w",
2179)
2180)
2181

2182 if ctm == 0:
2183 RIDs = [idx]
2184 else:
2185 RIDs = [i + 1 for i in CM[mr][IDX][ctm]["GIDS"]]
2186 ctm_fhs[ctm].write("\n".join([f"{i}" for i in RIDs]) + "\n")
2187 cumulative_ids.extend(RIDs)
2188 for fh in ctm_fhs:
2189 fh.close () # at end close filehandles
2190 txt_fh = open(
2191 f"{base_fn}-region -mc -ALLCONTINUA -{bn}-OTHER -{mr}.txt", "w"
2192)
2193 txt_fh.write("\n".join([f"{idx}" for idx in cumulative_ids]) + "\n")
2194 txt_fh.close()
2195

2196 if VERBOSE > 3:
2197 print("CM debug")
2198 for cm in CM.keys():
2199 print(f"PINC REGION: ******{ cm }*****")
2200 for k in CM[cm].keys():
2201 print(f"=root cell id {k}")
2202 for c in CM[cm][k].keys():
2203 if c == "TOTAL_VOL":
2204 print(f"==root element total volume: {CM[cm][k][c]}")
2205 else:
2206 print(f"---continuum {c}")
2207 for i in CM[cm][k][c].keys():
2208 print(f" {i} :: {CM[cm][k][c][i]}")
2209

2210

2211 # re-use mesh writing function , now with all multicontinuum elements
2212 # (from all the possible regions with PINC blocks
2213 mefn , mdfn = write_uge_file(f"{base_fn}-mc", m)

64

DISTRIBUTION
Email—Internal

Name Org. Sandia Email Address

Technical Library 01977 sanddocs@sandia.gov

This page left blank

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

