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ABSTRACT
Ensemble-based Data Assimilation (EDA), based on the Monte Carlo approach, has been ef-
fectively applied to estimate model parameters through inverse modeling in subsurface flow
and transport problems. However, implementation of EDA approach involves a complicated
workflow that include setting up and executing ensemble forward model simulations, processing
observations and model simulation results for parameter updates, and repeat for sequential or it-
erative EDA. To facilitate the management of such workflow and lower the barriers for adopting
EDA-based parameter estimation in subsurface science, we develop a generic software frame-
work linking the Data Assimilation Research Testbed (DART) with a massively parallel subsur-
face FLOw and TRANsport code PFLOTRAN. The new DART-PFLOTRAN leverages both the
core data assimilation engines in DART and the computational power afforded by PFLOTRAN.
In addition to the standard smoother and filtering options, DART-PFLOTRAN enables an iter-
ative EDA workflow based on the Ensemble Smoother for Multiple Data Assimilation method
(ES-MDA) to improve estimation accuracy for nonlinear forward problems. We verify the im-
plementation of ES-MDA in DART-PFLOTRAN using two synthetic cases designed to estimate
static permeability and dynamic exchange fluxes across the riverbed, respectively, from contin-
uous temperature measurements made across a depth profile. One-dimensional hydro-thermal
simulations are performed in both cases to relate temperature responses with the parameters of
interest. In the case of estimating dynamic parameters, we demonstrate the flexibility of DART-
PFLOTRAN in automating sequential ES-MDA workflow, which will significantly reduce the
time researchers spend on managing complex workflows in similar applications. Both studies
yield accurate estimations of the parameters compared to their synthetic truth, while ES-MDA
leads to more accurate estimation when a high level of nonlinearity exist between observed re-
sponses and unknown parameters. With a code base in Python and Fortran, DART-PFLOTRAN
paves the way for applications in large-scale subsurface inverse modeling by automating the
complex workflow of sequential ES-MDA that can be executed on various computing platforms.

1. Introduction1

Ensemble-based Data Assimilation (EDA) methods, including Ensemble Kalman Filter (EnKF) and Ensemble2

Smoother, have been extensively used to update model state vectors or estimate model parameters in various Earth3

science domains [1, 2, 3, 4]. Using a Monte Carlo-based ensemble representation of the joint probability for model4

states or parameters, EDA not only relaxes the constraint of Gaussian states required by the classic Kalman Filter, but5

also enables the nonlinear evolution of system states through physics-based process models. In subsurface hydrol-6

ogy and petroleum engineering, EDA has been widely used for parameter estimation (e.g., hydraulic conductivity or7

permeability) or “history matching” using field observations, such as hydraulic head, soil moisture, and tracer concen-8

trations [5, 6, 7, 8, 9]. Iterative EDAmethods, including ensemble smoother with multiple data assimilation (ES-MDA)9

[10, 11] and ensemble randomized maximum likelihood (EnRML) [12, 13, 7], have been developed to alleviate the ac-10

curacy deterioration caused by the nonlinear relationship in the evolution of model states or between model parameters11

and model states, similar to the Gauss-Newton or Levenberg-Marquardt approaches for nonlinear optimization. ES-12

MDA has been applied to delineate distinct geological facies and estimating permeability and exchange fluxes through13

riverbed through inverse modeling for its computational efficiency and estimation accuracy [8, 14].14

∗Corresponding author: Xingyuan.Chen@pnnl.gov
ORCID(s):

Jiang et al.: Preprint submitted to Elsevier Page 1 of 13



DART-PFLOTRAN

Although the iterative ES methods significantly reduce the number of forward simulation restarts required to con-15

serve physical laws [7], the implementation of ES-MDA for large-scale inverse modeling is not trivial besides the16

complex workflow in launching multi-physics, parallel forward simulations, which is often required for managing the17

computational challenges [7, 8, 15]. Therefore, a user-friendly software framework for performing EDA associated18

with computationally intensive forward models and heterogeneous observational data will significantly increase sci-19

entific productivity. There exist multiple community-supported data assimilation tools, including PEST++ and Data20

Assimilation Research Testbed (DART). PEST++ , developed byU.S. Geological Survey for both parameter estimation21

and uncertainty analysis, adopts an iterative ensemble smoother for solving Gauss-Levenberg-Marquardt algorithm in22

model calibration [16]. DART, developed by the National Center for Atmospheric Research, provides a variety of EDA23

tools, including different filter techniques as well as various localization and inflation options [17]. Here, we employ24

DART as the core assimilation due to its modular structure that allows integration with various forward simulators by25

customizing a model-specific interface while keeping the data assimilation engine of DART and the forward simulator26

intact. DART has been successfully linked with a number of community codes for Earth system research, such as the27

Weather Research and Forecasting Model [18], the Community Atmosphere Model [19], and the Community Land28

Model [20], to facilitate model-data integration and consequently improve model accuracy.29

The objective of this study is to develop a generic EDA software framework for improving subsurface flow and30

transport models by linking DART with PFLOTRAN [21], an open-source parallel subsurface flow and reactive trans-31

port model. Sequential ES-MDA, which performs ES-MDA in a sequence of assimilation time windows, is considered32

as a generic EDA approach that is flexible to be configured for performing traditional EnKF and ES-MDA. One key33

feature of PFLOTRAN is its embedded ensemble simulation capability, which greatly facilitates the implementation34

of EDA workflow for subsurface permeability estimation as demonstrated in multiple applications [7, 8]. We will35

allow flexible data subsetting in space and time to reduce the data dimension by sequentially assimilating those data36

subsets using ES-MDA. We implemented the DART-PFLOTRAN in a combination of Python, C-shell, and Fortran37

scripting. We also provide a Jupyter notebook [22] template as an alternative to python scripting for users to configure38

the data assimilation options, set up forward simulation models, and eventually execute the sequential ES-MDA work-39

flow using the C-shell script. Jupyter notebook not only provides a straightforward way of documentation using the40

Markdown language, but also serves as an interactive coding and visualization platform. To verify the performance of41

DART-PFLOTRAN software framework, we employ the proposed framework to conduct sequential ES-MDA through42

two synthetic case studies that aim to estimate the exchange fluxes across sediment-water interface from continuous43

temperature measurements.44

In the remaining of the paper, Section 2 provides an overview of sequential ES-MDA workflow and the detailed45

design of the DART-PFLOTRAN framework. Then, in Section 3, we verify the implementation of inverse modeling46

framework using two synthetic test cases. The estimated static and dynamic parameters are compared against the47

synthetic true values to assess implementation success. A brief conclusion is drawn in Section 4.48

2. Methodology49

In this section, we first describe the general workflow of sequential ES-MDA. Then, we introduce the detailed50

software design of the DART-PFLOTRAN framework, which includes enabling ensemble smoother in DART, the51

integrated workflow for performing sequential ES-MDA in DART-PFLOTRAN, and utilities used for coupling DART52

with PFLOTRAN.53

2.1. Sequential ES-MDA54

Figure 1 illustrates the steps we take in sequential ES-MDA to assimilate different subsets of data. The observation55

data contain N time steps tj (1 ≤ j ≤ N), which are divided into M sub-domains or assimilation windows, i.e., ttti56

with i = [1, ...,M]. Each window ttti contains one or multiple consecutive observations. The workflow starts with a57

model spin-up to ensure that the model reaches a reasonable initial state for forward simulations that generate state58

predictions to confront observation data. After the spin-up, ES-MDA is sequentially performed on each ttti following59

a prescribed order. Within each assimilation time window, ES-MDA assimilates all the observations taken within60

that time window, which may include more than one observation step. Note that EnKF is a special case of this general61

workflowwhen observations from one time step are assimilated for every ttti (i.e.,M = N) without themultiple/iterative62

data assimilation. Similarly, ES is another special case of this general workflow when all the observations are included63

in one single assimilation time window without iterations.64
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Figure 1: Illustration of the workflow for sequential ES-MDA. The posterior ensemble states are obtained from rerunning
the forward simulation using updated parameters. The posterior end states from a previous assimilation time window serve
as the initial states for the next assimilation time window.

At the first assimilation window ttt1, the prior ensemble of the model parameters are sampled from their prior65

distributions. In the remaining windows ttti, the prior ensemble for static parameters are directly adopted from their66

updated posterior ensemble at the preceding assimilation window ttti−1; the prior ensemble for dynamic parameters, if67

assuming continuity in time, can be sampled from distributions that preserve their mean values computed from the68

posterior ensemble of the preceding assimilation window with the same variance or lower and upper bounds used in69

the first assimilation time window; otherwise, the prior ensemble used in the first assimilation time window can be70

adopted in all the remaining time windows as well.71

During each iteration of ES-MDA, ensemble forward simulations are performed to generate the prior ensemble
of the state vectors within the assimilation time window. Model parameters are updated using the following equation
[11]:

mmmuk,l = mmm
f
k,l +CCC

f
MD,l(CCC

f
DD,l + �lCCCD)

−1(dddobs +
√

�lCCC
1∕2
D zzzk − ddd

f
k,l), k = 1, ..., Ne and l = 1, ..., L, (1)

where the superscripts u and f refer to updated and forecast, respectively; the subscripts k and l are the indices of the72

ensemble member and the iteration, respectively; Ne is the ensemble size; L is the total number of iterations in ES-73

MDA;mmmuk,l andmmmfk,l are the kth ensemble member of the updated (i.e., posterior) and forecast (i.e., prior) parameters,74

respectively, at the lth iteration; dddobs is the observation data; zzzk is the corresponding observation noise vector sampled75

from independent standard normal distributions for the kth ensemble member; dddfk,l is the kth ensemble member of76

the predicted observation variables by the forward model driven by the prior ensemble of the parameters at the lth77

iteration; CCCfMD,l is the cross-covariance matrix between the prior parameters and the predicted observation variables;78

CCCfDD,l is the auto-covariance matrix of the predicted observation variables based on all the ensemble membersdddfk,l;CCCD79

is the auto-covariance matrix of the observation errors; and �l is the inflation coefficient at the lth iteration, satisfying80
∑L
l=1 1∕�l = 1.81

Once all the iterations within the assimilation time window are completed, the posterior ensemble of the parameters82

are fed to the forward simulator to generate the posterior ensemble of the state vector at the end of the assimilation83

window ttti, which will then serve as the ensemble of the initial conditions for the next assimilation time window.84
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2.2. Design of the DART-PFLOTRAN framework85

We developed a new software framework to perform the sequential ES-MDA illustrated in Figure 1 by linking86

DART and PFLOTRAN. We first enabled ensemble smoother capability in DART (see Section 2.3) to leverage all the87

assimilation options in its core data assimilation engine. Then, we developedmultiple utility functions (see Section 2.5)88

to modularize the execution of DART-PFLOTRAN in four primary steps: (1) configuring data assimilation specifics;89

(2) PFLOTRAN forward model configuration and preparation; (3) DART preparation; and (4) performing sequential90

ES-MDA. Scripts were developed in Python and C-shell to conduct the first three steps and the last step, respectively.91

A Jupyter notebook is also provided to integrate the entire workflow, which can be used as a tool to learn the framework92

and as a template for adapting to other applications.93

2.3. Enabling ensemble smoother in DART94

Designed for updating model states using the filter approach, the original DART adopts a local least-square op-95

timization algorithm, referred to as the Anderson & Collins algorithm hereafter [23, 24]. The algorithm obtains the96

posterior state and parameter ensembles by adding up all individual increment ensembles which result from assimilat-97

ing a single dimension of the multi-dimensional observation at a given time step. Although the original DART does98

not directly allow the assimilation of observations frommultiple time steps within a given time window, the underlying99

Anderson & Collins algorithm offers the flexibility to be readily extended for ensemble smoother-based approaches.100

It is noted that the Anderson & Collins algorithm is theoretically equivalent to using Eq. (1) for non-iterative updat-101

ing (i.e., setting l=1 in Eq. (1)) when assimilating one observation dimension in each time window [24], and is also102

practically equivalent to the ES using Eq. (1) when several multi-dimensional observations are assimilated within the103

window. Therefore, we enabled the smoother option in DART by modifying how the original DART maps the obser-104

vations with model simulated states in a given assimilation time step. Observed or modeled states from different time105

steps are treated as multiple dimensions of data from a single time step. In doing so, both filter and smoother options106

are now available in the assimilation engine of DART.107

2.4. Integrated workflow of performing sequential ES-MDA in DART-PFLOTRAN108

With the smoother option enabled in DART, we run DART-PFLOTRAN following the integrated workflow shown109

in Figure 2:110

Step 1: Data assimilation configuration. The following information is required to configure aDART-PFLOTRAN111

application: (1) the path to relevant files/folders, such as the PFLOTRAN executable, the application folder storing112

PFLOTRAN files and DART prior/posterior ensemble, and the DART-PFLOTRAN framework folder storing the util-113

ity files needed to execute the workflow (e.g., those described in Section 2.5); (2) information about the observation114

data, such as the observation variables to be assimilated, the spatio-temporal domains of the observations, and the115

folder location of the observation file; (3) information about the model parameters to be updated, such as the list of116

parameter names and their corresponding prior distributions for generating the prior ensemble; and (4) the data assim-117

ilation setting, such as the ensemble size, the assimilation window size, number of iterations along with the inflation118

coefficient for each iteration [11], and any other data assimilation options supported by DART.119

Step 2: PFLOTRAN preparation. At this step, PFLOTRAN input files are prepared and model spin-up is per-120

formed. PFLOTRAN inputs are composed of a PFLOTRAN input deck, which users have to provide to configure a121

PFLOTRAN model conforming to the conceptual model of a specific application, and an HDF5 [25] file that contains122

the prior ensemble of the parameters generated from their prior distributions defined at Step 1. Once the PFLOTRAN123

inputs are ready, model spin-up will be performed for a selected period of time prior to the beginning of the first124

assimilation time window to ensure reasonable initial conditions for the forward simulations.125

Step 3: DART preparation. To configure DART for the ES-MDA task for a specific application, we use utility126

tools (see Section 2.5) to automatically generate the following files based on the user input and preparation done127

at the previous two steps: (1) the Fortran namelist file that records a variety of DART configurations using the data128

assimilation setting specified at Step 1; (2) the updatedDART variable library that includes newPFLOTRANparameter129

and state names at Step 2; and (3) a utility function file convert_nc.f90 to convert the observations at each time window130

from the netCDF file into a DART sequence file (see Section 2.5). Finally, this step will generate all the executables131

for running DART.132

Step 4: Performing the sequential ES-MDA. The assimilation process performs ES-MDA in each time window133

to update model parameters, as illustrated in Figure 3, until all observations are assimilated. In each assimilation134

time window, the ES-MDA starts with updating the prior ensemble of model parameters in HDF5 file, which is then135
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Figure 2: Integrated workflow of running the DART-PFLOTRAN software framework, including the initial configuration,
preparing PFLOTRAN and DART files, and conducting sequential Ensemble Smoother for Multiple Data Assimilation
(ES-MDA).

provided to launch ensemble PFLOTRAN simulations that produce the prior ensemble of simulated state vectors. After136

the forward simulations, the prior ensembles of parameters and model states are combined and saved into a netCDF file137

for each ensemble member. Then, the data in the DART observation sequence file are assimilated through DART to138

generate the posterior ensemble of parameters, which become the prior ensemble of parameters for the next iteration.139

After all ES-MDA iterations are completed within an assimilation time window, the posterior ensemble of parameters140

are used to run PFLOTRAN simulations to generate the posterior state vectors at the current window, which are used141

as the initial conditions for the subsequent assimilation time window.142

2.5. Utility functions to link DART and PFLOTRAN143

To facilitate the four-step integrated workflow, the following utility functions are developed to link DART and144

PFLOTRAN (shown as blue lines and grey texts in Figure 3):145
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Figure 3: Design of the DART-PFLOTRAN software framework in one assimilation window of the sequential ES-MDA
workflow in Figure. 1. (Green and yellow boxes are files associated with DART and PFLOTRAN, respectively; and blue
arrows represent actions involving using utility functions, with the corresponding utility file name in gray text)

• prepare_input_nml.py is used in Step 3 to generate a Fortran namelist file from user-specified data assimilation146

configurations, such as the number of ensemble members, paths to prior and posterior files, temporal range of147

observations. A detailed description on the namelist file is available at DART’s official website [26].148

• list2dartqty.py is used in Step 3 to modify DART Fortran files to register a list of PFLOTRAN parameter and149

state variable names in DART variable library, so that DART can extract the prior ensemble from in the netCDF150

files and map the ensemble model state vectors with the data in the observation file.151

• prepare_prior_nc.py is used to prepare an individual netCDF file for each prior ensemble member of PFLO-152

TRAN parameters and state vectors as well as their spatial locations and time steps.153

• convert_nc.f90 is used to generate a DART observation sequence file at each assimilation window by extracting154

the associated data from the observation netCDF file. To use this utility function, users need to provide a stan-155

dardized netCDF file in Step 1, which includes the times when the observations were taken, the spatial locations156

of observations, values of each observation variable in a two-dimensional matrix (i.e., temporal and spatial di-157

mensions), and an additional two-dimensional matrix for observation errors with one-to-one correspondence to158

all the observation values.159

• model_mod.f90 contains a set of Fortran subroutines that allows DART to (1) define the spatial and temporal160

domains of observations at a data assimilation step and (2) compile the ensemble members of model simulated161

state variables at the same locations and times of the observations.162

• update_pflotran_inputs.py is used to update PFLOTRAN input files after an ES-MDA iteration. The realizations163

of PFLOTRAN parameters in the HDF5 file will be updated using the posterior ensemble of parameters. The164

model simulation time window in PFLOTRAN input deck will be updated if the data assimilation proceeds to165

the next assimilation time window.166

Jiang et al.: Preprint submitted to Elsevier Page 6 of 13



DART-PFLOTRAN

3. Verification of data assimilation implementation167

We verified the implementation of DART-PFLOTRAN using two test cases that aim to estimate static and dynamic168

parameters, respectively. We attempted to estimate the permeability field as well as the dynamic exchange fluxes across169

the riverbed from temperature depth profiles monitored beneath the riverbed over time, as illustrated in Figure 4(a).170

The groundwater temperatures below the riverbed at different depths are related to the dynamic exchange fluxes through171

one-dimensional (1-D) flow and heat transport processes simulated by PFLOTRAN:172

q =
k�wg
�w

dℎ
dl
, (2a)

Qe =
)
)t
[��U + (1 − �)�rcpT ] + ∇ ⋅ (�qH − �∇T ), (2b)

where q is the groundwater exchange flux [m/s]; k is the soil permeability [m2]; �w is water density [kg/m3]; g is the173

gravitational acceleration [m/s2]; �w is water viscosity [kg/ms]; dℎ is the difference between two hydraulic heads [m];174

dl is the flow path length between two points [m]; � is the porosity of soil matrix; Qe is source/sink terms for energy175

transport [J/(m3K)]; � is molar water density [kmol/m3]; U is internal energy of the fluid [J/kg]; T is the groundwater176

temperature in Kelvin K;H is enthalpy [J/kg]; �r is rock density [kg/m3]; cp is specific heat capacity [J/(kgK)]; and �177

is thermal conductivity [J/(mKs)] of the porous media. For the flow process, the Darcy’s law is used to compute the178

exchange flux (Eq.(2a)), which is coupled to the heat transport process in groundwater governed by the energy balance179

(Eq.(2b)).180

In the first test case, we assumed that the hydraulic heads at the top and bottom boundaries were measured con-181

tinuously along with temperature. Therefore, the exchange fluxes can be estimated using the Darcy’s Law if the per-182

meability of the porous media is known. In this case, we implemented ES-MDA to estimate the permeability of the183

soil column that does not change over time (see Figure. 4(b)). In contrast, in the second test case, we assumed that184

no hydraulic heads were measured. As a result, the exchange flux within a time window has to be directly estimated185

from the temperature responses below the riverbed. Furthermore, the exchange flux could vary over time driven by the186

stage fluctuations in the river, which was reflected as the Neumann type boundary condition for exchange flux based187

on the synthetic data. Thus, we implemented the sequential ES-MDA in the second test case to sequentially estimate188

the exchange fluxes in a set of predefined time windows (see Figure. 4(c)).189

Figure 4: Illustration of the one-dimensional groundwater flow and heat transport model and the two data assimilation
test case in Section 3. (a) depicts the vertical soil column where the model generates the synthetic groundwater exchange
flux and temperature at 5/15/25cm below the riverbed. (b) shows the diagram of Case 1, where permeability is estimated
using ensemble smoother for multiple data assimilation (ES-MDA) by assimilating groundwater temperature observation
at multiple depths given the hydraulic head. (c) shows the diagram of Case 2 where the temporal dynamics of exchange
flux are estimated using sequential ES-MDA assuming hydraulic heads are not known at the boundaries.
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3.1. Generation of synthetic observation data190

In order to evaluate the accuracy of the estimated parameters in both test cases, we generated synthetic observation191

data of hydraulic heads and temperature responses with known permeability and dynamic exchange fluxes, which serve192

as the ground truth of the parameters estimated by DART-PFLOTRAN for performance assessment. PFLOTRANwas193

used to generate the temperature responses in a 65cm soil column shown in Figure 4(a). The model domain was194

discretized into 1cm vertical grid cells with a homogeneous soil permeability value across the entire depth. The time-195

varying hydraulic heads and temperature at the top and bottom boundaries, which can be obtained from monitoring196

data in practice, were used as the boundary conditions. The PFLOTRAN simulation generated riverbed exchange flux197

at a 30-min resolution and groundwater temperature at the center of each grid cell at a 5-min resolution for 3 months.198

We assumed that the temperature observations were available at the depths of 5cm, 15cm and 25cm, in addition to the199

top and bottom of the boundaries. The synthetic temperature observation data were obtained by adding observation200

errors generated from a Gaussian distribution with a mean of 0 and a standard deviation of 0.05/3 Celsius, mimicking201

an observation error of 0.05 Celsius. We used the same observation error during the data assimilation process.202

3.2. Case 1: estimating static permeability using ES-MDA203

In this test case, the prior ensemble of log10 transformed permeability was generated by sampling 100 realizations204

from a log-normal distribution with mean and standard deviation being -11 and 1 (log10(m2) ), respectively. We205

first performed a two-day spin-up data assimilation to constrain the initial temperature profile conformed to the point206

observations at the observation depths. Then, the permeability ensemble was updated from the aforementioned prior207

ensemble by assimilating observations at the depths of 5cm, 15cm and 25cm over 50 time steps using the ES-MDA in208

DART-PFLOTRAN with a single assimilation time window.209

We assessed the impact of the number of iterations, i.e., L = [1,2,3], on estimating the unknown permeability. In210

Figure 5, the prior and updated posterior distributions of log10 transformed permeability resulted from different number211

of iterations are shown in violin plots and compared with its ground truth (i.e., -10.41 log10(m2)) represented by the red212

dashed line. It can be observed that the mean of the posterior ensemble is improved to approach the true permeability213

with the increasing number of iterations, while the spread in the posterior ensemble shrinks significantly with more214

iterations. Two iterations appear to be adequate in this test case as there is negligible improvement in the estimation215

by increasing to three iterations. The convergence of posterior permeability estimation to its true value verifies our216

implementation of DART-PFLOTRAN in using ES-MDA for a single assimilation time window by compiling data217

taken in different locations and at different times.218

Figure 5: Violin plots of the prior and posterior ensemble of the permeability updated using different iteration numbers
L = [1, 2, 3] of ES-MDA for Case 1 in Section 3. The red dashed line is the true permeability value, i.e., -10.41 log10(m2).

3.3. Case 2: estimating dynamic groundwater exchange fluxes using sequential ES-MDA219

In this test case, we sequentially estimated the hourly exchange fluxes over a month by assimilating the asso-220

ciated groundwater temperature observations within each assimilation time window (i.e., hourly, with 12 observed221

temperature data points at each depth). The initial prior ensemble of the exchange flux was generated by sampling222

100 realizations from a Gaussian distribution with a mean of 0 m/s and standard deviation of 0.5 m/s (positive and223

Jiang et al.: Preprint submitted to Elsevier Page 8 of 13



DART-PFLOTRAN

negative fluxes refer to the downwelling and upwelling fluxes, respectively). In each of the subsequent assimilation224

time windows, we generated the 100 realizations of the exchange flux for the prior ensemble by shifting its mean to225

the posterior mean resulting from the immediate preceding assimilation time window while maintaining 0.5 m/s as the226

standard deviation. The data assimilation was started two days earlier than the targeted estimation time window as the227

spin-up to minimize the impact of the initial conditions on the flux estimation accuracy.228

Figure 6: The assimilation results using DART-smoother for Case 2 in Section 3. The sequential ES is employed (i.e.,
the number of iterations L = 1 in sequential ES-MDA), with one-hour assimilation window. (a) plots the prior of the
exchange flux and groundwater temperature at depths of 5/15/25cm, including all the ensemble (the dashed gray line),
the ensemble mean (the red line), and the ground truth (the black line). (b) plots the corresponding posterior results.

We first tested the flux estimations using one iteration (i.e., L = 1) to verify the implementation of sequential ES229

in DART-PFLOTRAN. Figure 6 shows the ensembles of the hourly exchange fluxes and the simulated groundwater230

temperature before and after assimilating temperature responses, as compared against the synthetic observations and231
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ground truth in both the time series and scatter plots. All pairs of ensemble mean of the estimated hourly flux vs232

its ground truth are tightly distributed around the 1:1 line with substantial reduction in the ensemble uncertainty,233

which consequently improve the simulated temperature responses below the riverbed. The results in Figure 6 clearly234

demonstrate the effective dynamic parameter estimation using the sequential ES approach implemented in DART-235

PFLOTRAN.236

Figure 7: Mean absolute error (MAE) on the posterior of the exchange fluxes and groundwater temperature estimated
using three different approaches in Case 2 in Section 3, including sequential ensemble smoother (ES), ensemble filter (EF),
and sequential ensemble smoother for multiple data assimilation (ES-MDA) with three iterations L = 3. All the three
approaches were performed using one-hour assimilation window. (a) shows the 1:1 plots between MAE from ES and EF
in estimating exchange fluxes and groundwater temperature at 5/15/25cm depths. (b) shows the corresponding 1:1 plots
between MAE from ES and ES-MDA. (Note that �MAE refers to the temporally averaged MAE in each subplot.)

We then compared the performance of the sequential ES with the original ensemble filter (EF) scheme in DART237

for estimating the dynamic exchange fluxes, which does not honor different observed time steps in each assimilation238

window. This is done by computing the mean absolute error (MAE) against the ground truth in posterior flux and239

temperature estimations at each time window, as plotted in Figure 7(a) showing the MAE comparisons between ES240

and EF, with their corresponding means over the entire estimation time window (�MAE) shown on the top of each241

subplot. The results show that MAE of estimated fluxes from the two approaches are comparable, with most of the242

MAEs smaller than 0.2 m/s and data pairs distributed nearly symmetrically around the black-dotted 1:1 line. There243

are more data pairs falling below the 1:1 line in the larger MAE regime (i.e., larger than 0.3 m/s), illustrating that EF244

tends to produce more higher absolute errors, which is also consistent with its higher average MAE than that of ES245

(i.e., 0.141 m/s vs 0.116 m/s). The more accurate estimations of exchange fluxes by ES result in smaller MAEs in the246

simulated groundwater temperature across all depths, more so at the depths of 15 and 25 cm as evidenced by more247

data pairs falling below the 1:1 line. While the exchange fluxes by both ES and EF yield highly accurate predictions248

of groundwater temperature, as illustrated by the small magnitude of their maximum and average MAEs, ES reduces249

the average temperature MAEs to approximately half compared to EF. Such gain in estimation accuracy demonstrates250

the potential advantage of ES in parameter estimation over the original EF scheme in DART.251
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Lastly, we assessed the performance gain of multiple iterations in sequential ES-MDA by comparing the MAEs of252

both exchange fluxes and simulated groundwater temperatures produced by L = 3 and L = 1 (i.e., the ES approach),253

as shown in Figure 7(b). The results show universal reductions in MAEs when the number of iterations in ES-MDA is254

increased from one to three. Although there is only slight decrease in average MAE of estimated exchange fluxes (i.e.,255

from 0.116 m/s to 0.104 m/s) when increasing the iteration number from one to three, there are substantial reductions in256

a number of large flux MAEs with the iterative data assimilation as represented by the data pairs far above the 1:1 line.257

Such improvement in flux estimation through iterations leads to significant reductions in the MAEs of the simulated258

groundwater temperature, effectively eliminating all MAEs larger than 0.1 ◦C in ES. The performance gain through259

iterative ES in this test case not only verifies our implementation of the sequential ES-MDA in DART-PFLOTRAN, it260

also demonstrates the necessity of taking the iterative ES to improve data assimilation accuracy under nonlinearity.261

4. Conclusion262

In this study, we developed an open-source software framework, DART-PFLOTRAN, for conducting sequential263

ES-MDA to estimate static and dynamic parameters for subsurface flow and transport models. This new software264

framework links DART – a community facility for data assimilation with PFLOTRAN – a parallel simulation code for265

subsurface flow and reactive transport processes. We enabled the ensemble smoother option in DART and developed266

multiple utility functions to establish communications between DART and PFLOTRAN for sequential ES-MDA. We267

verified the implementation of DART-PFLOTRAN for both the static and dynamic parameter estimations using two268

synthetic cases, which demonstrated that we have successfully extended DART beyond its traditional applications in269

the atmospheric science for updating model state vectors.270

We implemented the integrated workflow of performing ES-MDA in both Python and C-shell scripts. We also271

provide a user-friendly interface using Jupyter notebook. The scripts and the Jupyter notebook templates can be eas-272

ily adapted to other applications to alleviate the burden in managing the complex data assimilation and parameter273

estimation workflow, especially when sequential and iterative assimilation is necessary to reduce the adverse effects274

of nonlinearity on estimation accuracy. With the added flexibility in subsetting observation data in space and time,275

DART-PFLOTRAN is poised for large-scale large scale applications. The workflow developed to link DART and276

PFLOTRAN can also be extended to link DART with other similar simulators such as the Advanced Terrestrial Sim-277

ulator [27] and ParFlow [28]), which will greatly accelerate the integration of multi-scale and multi-type observations278

above and below ground with watershed models to improve the predictability of a wide variety of real systems.279

Software availability280

The source code of DART-PFLOTRAN is available at: gitlab.pnnl.gov/sbrsfa/dart-pflotran.281
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