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EXECUTIVE SUMMARY 

The United States is heavily reliant on imports of certain mineral commodities that are vital to 
the Nation's security and economic prosperity. This dependency creates a strategic vulnerability 
for industry and the military to supply chain disruptions, but also limits U.S. competitiveness in a 
number of growing markets, particularly clean energy technologies. The importance of these key 

minerals has been underscored by several Executive Orders (The White House Briefing Room, 
2021; Executive Order 13817, 2017; DOE, 2017), including the President’s recent declaration of 
a national emergency to deal with the supply chain threat to critical minerals (CM) and rare earth 
elements (REE).  

Conventional sources of REE and CM resources in the U.S. are relatively limited, with some, 
such as gallium and graphite, being 100% imported from foreign sources  (DOE, 2017). However, 

the U.S. has significant deposits of sedimentary rocks, including coal and carbon ore deposits, 
that have been documented in case studies to host REEs (NETL, 2020; Bauer et al., 2020). In 
addition, published studies indicate that CM resources occur in mine waste products, such as acid 
mine drainage, sludge, tailings and other materials currently viewed as byproducts from coal, 

iron, and other mineral mines (Sutterlin, 2019; Qin et al., 2015; Wang et al., 2015; Petlovanyi 
and Medianyk, 2018). 

At present, there is no systematic method or approach to predict and identify REE/CM resource 
potential and occurrence from sedimentary systems, carbon-ores, or mine waste streams. This 
lack of a systematic assessment method inhibits our ability to predict where these occurrences 
are likely to be found and quantify the in-place or economically accessible volumes of 

unconventional REE/CMs in domestic sedimentary, carbon-ore, and mine byproducts. Thus, to 
quantify and establish a domestic supply of unconventional REE/CMs requires a systematic, 
data-driven, science-based assessment method and approach. This type of resource assessment 
method underpins oil, gas, coal, copper, uranium, gold and all other mineral exploration efforts. 

Development of these assessment methods usually take decades to a hundred years (e.g. , oil/gas, 
gold) to produce. In addition, assessing unconventional REE/CMs off ers an opportunity to 
beneficiate mine waste and byproducts which currently afford no value and may in some 
instances be the cause of environmental impacts. This data and knowledge are key to both 

assessing and predicting the occurrence and volumes of REE/CMs, but also to support future 
separations and extraction technologies to ensure their commercial viability as a domestic 
resource. Systematic resource assessment methods are proven to work. For example, from the 
1800s to the 1970s oil and gas drilling success rate was 50% or less. After development of the 

petroleum system method in the 1980s, exploration success rate increased to above 90% at 
present (Wang et al., 2015).     

In 2018, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory 
(NETL) initiated development of an assessment model designed to systematically predict and 
assess domestic deposits of REEs and CMs from carbon ore and other sedimentary systems (i.e., 
NETL’s REE sedimentary assessment method, REE-SED; NETL, 2020). This systematic 

approach leverages existing resource assessment methodologies matured through decades of 
R&D. This report presents the latest version of the NETL Unconventional Rare earth and 
Critical minerals (NETL-URC) model. The model provides a data-driven path to identify and 
commercialize domestic deposits containing critical minerals in coal basins. Moreover, the 
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NETL-URC model surpasses the capability of traditional probabilistic mineral resource 
assessment models used for reserve calculations by assessing the prospectivity of a deposit based 
on a comprehensive set of spatial geologic attributes. These additional considerations allow for a 

more robust assessment and calculation of resource reserves that are not solely based on the 
occurrence of the reserve, but on the accessibility and feasibility of recovering the resource in a 
sustainable and economical manner.    

This effort aims to accelerate the development of technologies that lead to the commercialization 
of domestic REE deposits by:  

• Guiding determinations of in-place resource estimates.   

• Assessing whether REE are likely to occur in sufficient concentrations and recoverable 

volumes to support commercial extraction from domestic sedimentary basins.  

• Revealing key knowledge and data gaps that hinder resource predictions and addresses 

select gaps in priority areas.   

Results from development and initial testing have helped identify key trends and highlight 
potential opportunities to maximize the utility of coal resources, as well as identify current waste 
material with potential for REE monetization.   
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1. INTRODUCTION 

Rare earth elements (REE) are a group of 17 chemically similar elements (atomic numbers 57-
71, and Sc and Y) that are required to manufacture advanced materials and develop new 
technologies supporting the United States’ infrastructure, defense, and energy needs. REE are 
typically found in bedrock- and regolith-hosted geologic ore deposits. Domestic coal deposits 

have also been identified as promising sources of REE (Seredin and Dai, 2012; Hower et al., 
2016a; Hower et al., 2020) and other critical minerals (CM) (DOE, 2017). However, there 
remains a limited understanding of the spatial and volumetric occurrence of these deposits and 
resources. Specifically, the concentration and type of REE (e.g., excessive vs. critical) that are 

present and recoverable from domestic coal and other sedimentary deposits is largely unknown. 
Both concentration and type of REE present determine the economic viability of the deposit and 
the potential to provide a stable and secure domestic source of critical elements and minerals. 
Coal and coal-bearing sedimentary rock contains REE and many other trace and critical metal 

elements that are associated with organic matter (Lin et al., 2017) and inorganic minerals 
(Seredin and Dai, 2012). Occurrences of REE in domestic coal beds, coal utilization byproducts, 
and associated sedimentary strata have been investigated in a number of studies (Yang et al., 
2020; Hower et al., 2020; Montross et al., 2018; Rozelle et al., 2016; Franus et al., 2015; Seredin 

and Dai, 2012; Hower et al., 1999), and concentrations typically exceed estimates of average 
REE concentrations in the upper continental crust (Rudnick and Gao, 2003). In some cases, REE 
concentrations in coal (on ash basis) are higher than those found in partings (Dai et al., 2018) and 
can be enriched in the especially important “heavy” REE (HREE: Ho, Er, Tm, Yb, and Lu) over 

“light” REE (LREE: La, Ce, Pr, Nd, and Sm). During diagenesis and coalification, non-mineral 
elements (e.g., REEs) and mineral phases are introduced into the coal and adjacent strata. Non- 
mineral elements can be bound to both the organic macerals and inorganic phases in the coal as 
described by Dai et al. (2020) and Lin et al. (2017). Both describe the partitioning of LREE and 

HREE in coal and the different mechanisms that lead to enrichment of HREE over LREE in 
some coals. Lin et al. (2017) demonstrated a correlation between ash yield, REE concentration, 
and HREE/LREE ratio in studies of coal samples collected from a preparation plant in Kentucky. 
Their results indicate that the organic fraction in the coal is enriched in HREE. Other studies 

have also shown similar trends related to the affinity/complexation of HREE over LREE to 
organic material in the coal (Lin et al., 2017; Hower et al., 2016a).  

While preliminary analyses of data from open-source resources (Ekmann, 2012) show promising 
concentrations of REE in individual coal samples from a number of sites and basins in the U.S., 
other sparse data for REE in domestic coal-related strata suggest that many occurrences are low, 
“subeconomic” concentrations. At present, there is no method for systematically assessing 

potential sedimentary occurrences of REE. However, the geologic processes responsible for REE 
occurrences in coal-related strata are systematic; the unpredictability of REE resources in coal-
related strata is due to poorly quantified spatial resource trends and the lack of an exploration 
method tailored to these resources. Thus, there exists a need for a systematic assessment 

approach that incorporates knowledge of geological variation in the mechanisms of REE 
enrichment within coal basins to help minimize geologic uncertainty and reduce commercial 
exploration risk. 
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2. BACKGROUND 

2.1 REE OCCURRENCES 

Despite their name, REEs can and do occur in significant concentrations in nature. At present the 
main sources of REE ore are carbonatite and peralkaline intrusive complexes and their weathered 
byproducts—termed weathered crust elution deposits (WCED). These types of intrusion-related 

deposits are found throughout the world. However, in the historical context, few sites have 
supported economically viable mining. Carbonatites comprise bastnaesite and monazite minerals 
and generally have high REE+Y (1-10%). Large carbonatite deposits that are predominantly 
LREE exist within the U.S. at Mountain Pass, CA, originally described in Olson et al. (1954), but 

these have not provided a stable and secure supply of REE to domestic market that is competitive 
with foreign sources. Recently, these deposits have received renewed attention with the 
development of more cost-effective separations (enrichment and recovery) technologies 
(Anenburg et al., 2020; Weng et al., 2015) and management of waste. Weathered crust elution 

ore deposits with ion exchangeable REE are sources for all REE (LREE, HREE). The ores are 
characterized by LREE (0.03–0.25%) and exist within small isolated reserves (Bao and Zhao, 
2008; Chi and Tian, 2008). WCED are mined in China successfully due to simple techniques for 
REE extraction and the economic benefit of recovering critical HREE. Beneficiation from 

carbonatite and WCED is further challenged by environmental concerns as many deposits 
contain significant concentrations of uranium and thorium, complicating waste stream 
management.    

2.1.1 REE in Sedimentary Systems 

As demand for REE has increased with technological advances over the past decades, other types 
of geologic systems have been considered as potential sources of these critical minerals. In 

comparison to traditional bedrock ore deposits, sedimentary REE deposits offer significant 
potential for domestic feedstocks given the abundance of sedimentary basins within the U.S. 
(Coleman and Cahan, 2012). 

REE occurrences in sedimentary systems are generally classified into two groups: primary- or 
secondary-type accumulations. Primary-type sedimentary REE accumulations involve 
contemporaneous deposition of a REE-rich source material and host sediment, such as deposition 

of volcanic ash within peat, or mineral detritus within channel sand. In contrast, secondary-type 
accumulations require the following series of events to occur after deposition of a host sediment: 
mobilization of REE from a source material, transport from the source, and, given suitable 
geochemical conditions, enrichment of the sediment horizon or zone.  

Within the U.S., heavy-mineral sands (HMS) are the main source of titanium feedstock 
(ilmenite), and also a major source of zircon and monazite, with the latter serving as a valuable 

REE-Th deposit (Van Gosen et al., 2014). There are two types of HMS deposits, based on their 
depositional environment: coastal plain and alluvial (stream or river) deposits. Coastal deposits 
are substantially more voluminous than their counterparts; the largest globally are coastal (Van 
Gosen et al., 2014). Three of the largest monazite heavy mineral sands deposits in the U.S. are 

the North Carolina and South Carolina stream (alluvial) deposits, Florida-Georgia beach 
deposits, and southeastern Idaho stream deposits. Local geology and estimated resources in these 
districts are well-documented in the literature (Long et al., 2010 and references therein). 
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2.1.2 REE Occurrences and Concentrations in Coal Systems 

Coal and coal utilization by-products are a source of REE and other critical metals and minerals 
(Montross et al., 2018; Lin et al., 2017; Hower et al., 2016a,b; Seredin and Dai, 2012). Hard coal 
(e.g., bituminous and anthracite) tends to have the highest REE content of all geologic material 
(Rudnick and Gao, 2003; Ketris and Yudovich, 2009). For example, global averages for cerium 

(Ce, used as a metric for LREE concentrations in global reserves) for soft coal (brown lignite) 
and hard (including bituminous to anthracite) are 22 and 23 ppm, respectively. Typical 
continental crust values for Ce are 64 ppm (Rudnick and Gao, 2003). Brown and hard coal fly 
ash, produced from the combustion of coal for power generation, contain nearly 6x this amount 

of Ce (Ketris and Yudovich, 2009). Heshan coals in southern China are found in late Permian 
marine carbonate successions and represent another lithofacies in which REE are enriched in 
high concentrations. The coals are low volatile bituminous coals containing 5–12% sulfur, of 
which 90% is organic sulfur (Shao et al., 2003; Dai et al., 2013). The coal strata are intercalated 

with marine carbonates and detrital terrigenous minerals such as quartz and albite. The work by 
Shao et al. (2003) determined that a variety of factors control the geochemical and mineralogical 
composition of coal preserved within marine carbonate sequences. The most prevalent f actor in 
this case is multi-stage hydrothermal activity coupled with inputs of organic sulfur and elevated 

B, Mg, K, Sr, and Rb from seawater. 

The relative distribution of REE associated with organic and inorganic material in coal is 

dependent on the depositional environment and presence of molecules or mineral phases that can 
capture REE (Given and Miller, 1987). Lin et al. (2017) showed that the REE in coal are not 
only associated with inorganic component (e.g., detrital minerals), but also the organic matter, 
and the organic matter is relatively enriched in HREE compared with the inorganic matter. Many 

coals are slightly enriched in HREE relative to LREE, compared to chondrite and shale (Lin et 
al., 2017; Eskenazy, 1999). Eskenazy (1999) hypothesized that fractionation of HREE/LREE 
may be linked to the complexation of HREE with organic compounds that are more stable than 
those formed by LREE. The authors demonstrated the ability for organic matter to adsorb up to 

0.2 mEq/0.5g of xylain, using organic molecules xylain and humic acids; and demonstrated the 
cation exchange mechanism in which Na, K, Ca, and Mg bound to –COOH and –OH groups 
were replaced by REE cations. However, there was no difference in HREE/LREE in ion 
exchange and therefore no evidence that fractionation of HREE and LREE are controlled by 

organic material in the sample. The experimental work by Eskenazy (1999) and Sonke and 
Slaters (2006) confirmed that strong complexation of REE occurred when humic substances 
were present. The coupled results indicate that humic substances play an important role in the 
fractionation of REE in geologic systems.  

Seredin and Dai (2002) proposed four distinct mechanisms for the accumulation of REE in coal: 

1. Terrigenous: input by surface water 

2. Tuffaceous: connected with falling and leaching of acid and alkaline volcanic ash 

3. Infiltrated: meteoric (ground) water driven 

4. Hydrothermal: connected with ascending flows of thermal mineral water and deep 

reduced fluids 

Inter-seam tonstein layers have been found in some coal seams around the world  (Dai et al., 
2014; Spears, 2012; Rozelle et al., 2016; Zhou et al., 2000). Dai et al. (2014) investigated the 
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mineralogy and geochemistry of dacite magma derived tonstein layers in Chinese coal. The 
tonstein layers were dominated by kaolinite, mixed layer illite/smectite, and minor quartz.  
Hydrothermal leaching of the buried volcanic ash layer led to the removal of certain ions 

resulting in Nb/Ta, Zr/Hf, and U/Th ratios much lower in the tonsteins than in the adjacent coal 
beds or floor/roof rock. Pennsylvania-aged fire clay coal is a source of REE (Hower et al., 2020; 
Zhang et al., 2018) and is distributed across the central and southern Appalachian basin, 
predominately concentrated in the Central and Southern coal regions of WV, KY, and AL. Coals 

within fire clay seams have distinct REE and Sc concentrations that are related to the position of 
the lithotype within the coal seam (Hower et al., 2020). Geochemical relationships such as the 
ratio of light to heavy REE are also related to the lithotype position within the coal seam. 
Hydrothermal alteration may also play a role in the enrichment of REE in certain layers that are 

in proximity to the tonstein (Hower et al., 2020; Hower et al., 2016b). Seredin and Dai (2012) 
proposed four modes of REE enrichment in coal to go along with an organic association. 
Kentucky fire clay coal is enriched in REE and other critical minerals via emplacement by 
volcanic ash fall into the coal mire. Researchers have demonstrated these tonstein layers can be 

pervasive horizontally throughout the coal seam and partings (Hower et al., 2018) and are the 
source of REE in the rock partings and within the coal itself (Seredin and Dai, 2012; Hower et 
al., 2018). The predominant mechanism of REE enrichment in the f ire clay is from 
tuffaceous/volcanic, infiltrational/leaching, and hydrothermal processes that began in the coal 

depositional environment during coal formation and continued through subsequent diagenetic 
(e.g., dissolution and weathering in the subsurface) events (Hower et al., 2016a). 

2.2 GEOLOGIC RESOURCE ASSESSMENT METHODOLOGIES 

Geologic systems-based analytical methods are proven tools for predicting subsurface properties, 
having served over several decades as key tools for discovering and assessing in situ geologic 
resources. For example, from the 1800s to the 1970s oil and gas drilling success rate was 50% or 

lower. After development of the petroleum system concept in the 1980s and other technological 
breakthroughs, exploration success rate increased from only 60% to above 90% at present 
(Cochener, 2010). The endeavor to systematically predict, find, quantify, and characterize REE 
accumulations in sedimentary carbon ore deposits can be accelerated based on lessons learned 

from decades to centuries of geologic and geochemical data, and science knowledge. In this 
section, existing resource assessment methods and complementary analytical approaches are 
reviewed and summarized to provide the basis for formulating the U.S. Department of Energy’s 
(DOE) National Energy Technology Laboratory (NETL) Unconventional Rare earth and Critical 

minerals (NETL-URC) model method.  

Geologic resource assessment methodologies are used for exploration and quantification of 

critical resources, such as precious metals, coal, or petroleum. Any assessment methodology 
begins with an understanding of the geologic processes and systems that result in the deposition 
of the target resource. This knowledge base provides a conceptual foundation or framework to 
identify the appropriate datasets and analytics to develop the methodology. Data and knowledge 

frameworks on these systems are then applied using analytical techniques to either determine the 
prospectivity of the commodity within an area and/or obtain volumetric ore estimates.  

Building a knowledge framework for a given mineral or hydrocarbon resource involves a spatial 
and temporal understanding of the geologic processes or components that contribute to or are 
required for accumulation. This typically requires an understanding of the source, transport 
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mechanism, and containment for a given resource. For example, the petroleum system is a 
conceptual process model that considers the origin and evolution of the geologic system that 
produced—or at least was capable of producing—an accumulation of hydrocarbons (Magoon, 

1988). Application of this concept relies on the existence of a genetic relation between timing of 
deposition, source rock, reservoir rock, seal rock, trap formation, and thermal maturation (i.e., 
the critical moment). Another type of knowledge framework relies less on the interdependencies 
between these processes or components, but instead focuses on the spatial and temporal 

coincidence of the critical independent contextual factors for ore genesis (Hronsky and Kreuzer, 
2019). Factors for this approach include favorable lithospheric architecture, fertility (favorable 
geochemical conditions, transient favorable geodynamics; i.e., tectonic/stress conditions over 
time), and ore preservation (of primary depositional zone) (McCuaig and Hronsky, 2014). The 

development of a knowledge framework may depend on the availability of knowledge or data for 
a specific mineral resource. 

Information beneficial for a regional evaluation of mineral resources includes: 1) well-defined 
key descriptive terms; 2) geologic map data, to identify genetically related geologic map units 
and determine the geologic history; 3) mineral occurrence data, to establish attributes and 
locations of known mineral deposits, and relate deposits to host rocks and tectonic origins; 4) 

geochemical and geophysical data, to locate chemical anomalies of pathfinders on the surface 
and interpret the subsurface structure, respectively; and 5) exploration history and mineral 
deposit models of known deposits in the region, to understand outcome of previous assessments 
and infer the potential of nearby undiscovered deposits (Nokleberg et al., 2007; Lipin and 

Bawiec, 2000). Geological estimates of the deposit, such as grade, tonnage, and spatial extent, 
can (and often do) introduce significant amounts of error and uncertainty in assessing mineral 
resources and ore reserves (Dominy, 2002). Ultimately, these types and quantities of data can 
inform analytical techniques to map and quantify ore estimates. 

For many decades mineral resource assessments from the U.S. Geological Survey (USGS) have 
followed, almost exclusively, a three-part quantitative assessment methodology. This approach, 

now seen as the “traditional approach” for quantitative assessments of nonfuel mineral deposits, 
uses known mineral site locations and deposit resources in combination with associated geologic 
features to predict regions that potentially host undiscovered mineral deposits (Singer, 2010). 
The first step in this approach is to delineate geographic regions that appear favorable for the 

occurrence of mineral deposits (e.g., Pb-Zn) based on known deposits, mineral deposit models, 
and geologic regimes. Favorable regions identified in this step are called permissive tracts; it is 
necessary to use a geologic map to delineate these regions. Next, the number of undiscovered 
deposits which may exist in the permissive tract is estimated using probabilistic estimates. 

Finally, the probable amount of the undiscovered mineral resource within the permissive tract is 
calculated using Monte Carlo simulations based on grade-tonnage models of known deposits and 
the number of undiscovered deposits estimated in the previous step (Singer, 1993, 2010). In 
recent years, resource assessment methodologies have expanded beyond the “traditional 

approach” to include remote sensing techniques (Zarasvandi et al., 2008) and more advanced 
mathematical methods (Bardossy et al., 2003). Zarasvandi et al. (2008) used multispectral remote 
sensing techniques to complete reconnaissance mapping for karst bauxite deposits across  the 
Zagros Mountain Belt, which is remote and treacherous to map on-foot. The authors also 

compiled a database of existing geological and geomorphological data for the assessment. The 
data from both techniques were input into GIS to prepare maps, from which the authors 
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determined potential mineral prospects. Hammarstrom and Dicken (2019) present an assessment 
method that characterized different areas of the U.S. by “focus” area in order to collect data on 
the distribution of critical minerals and REE. The assessment model is based on the distribution 

of non-fuel mineral systems and REE-bearing deposits that are identified within three focus 
zones located in the contiguous U.S. and Alaska. The deposits are determined by characteristics 
of data collected on mineral assemblage and other meta-attributes of samples and GIS mapping 
of deposits within each zone. 

These analytical techniques can be categorized into data- and knowledge-driven methods to 
integrate known mineral occurrences with spatial evidence layers (i.e., proxy maps). When there 

is a relatively large number of known mineral occurrences and their relationships to explanatory 
datasets are well known within a study area, data-driven modeling techniques such as neural 
networks (Zaremotlagh and Hezarkhani, 2017; Wang et al., 2011), logistic regression (Xiong and 
Zuo, 2018), Naïve Bayes (Zaremotlagh and Hezarkhani, 2016), weights of evidence (Nykanen et 

al., 2008), and Monte Carlo simulations (Lysytsyn , 2015) may be appropriate. Data-driven 
techniques also allow for the quantification of uncertainty due to statistical randomness. 
Knowledge-driven techniques rely on expert knowledge due to few or no known mineral 
occurrences within a study area, thus incorporating uncertainty due to ambiguity of data or lack 

of knowledge (Lysytsyn, 2015). Common knowledge-driven methods successfully applied 
specifically to delineate potential mineral targets are variations of fuzzy logic (Lysytsyn, 2015; 
Abedi et al., 2017; Levaniemi et al., 2017; Dag and Mert, 2008; Nykanen et al., 2008; Yousefi 
and Carranza, 2015) and various ranking and weighting techniques (Karl et al., 2016). For 

example, Bardossy et al. (2003) assessed karst bauxite deposits in Hungary using the fuzzy set 
theory. A key advantage of the fuzzy set theory is the ability to express uncertainty at different 
levels of possibility and the ability to evaluate both quantitative and semi-quantitative inputs. 
Hybrid data- and knowledge-driven methods have also been proposed probabilistic fuzzy logic 

for example (Lysytsyn, 2015). 

As data science capabilities to process and analyze big data evolve, so do methodologies that can 

further improve predictions for poorly constrained resources through the integration of data 
science. The Subsurface Trend Analysis (STA) method developed by (Rose et al., 2020) is a 
systematic, science- and data-driven method that utilizes geologic systems knowledge to inform 
statistical analyses of subsurface properties and resources. The workflow integrates geologic data 

used in traditional assessment approaches (e.g., geologic maps, in situ core) with appropriate 
statistical methods (e.g., geostatistics, dimensional analysis) to characterize the subsurface 
property of interest. Moreover, machine learning and data mining techniques allow these 
assessments to efficiently collect and integrate large, disparate datasets for better informed 

analyses. 

The development of a systematic approach for predicting and quantifying the occurrence of REE 

in coal and related strata requires: (1) knowledge and data associated with REE concentration 
mechanisms, and (2) integration of key elements from previous methods. 
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3. DISCUSSION: REALIZATION OF THE REE-SED METHOD FOR COAL 

SYSTEMS 

3.1 KNOWLEDGE-DATA FRAMEWORK 

The NETL-URC model foundational knowledge-data framework includes an understanding of 
the systematic nature of mineral accumulation in sediments and leverages data related to the 

processes of critical mineral and REE accumulation and in situ rock properties. In this section, a 
knowledge-data framework is presented for applications of the NETL-URC model in coal 
sedimentary systems. Although the model and supporting database as presented herein align to 
coal-REE assessments, the method is highly adaptable and applicable for predicting and 

assessing REE occurrences in other sedimentary systems as well.  

For purposes of convenience, the coal-REE knowledge-data framework reclassifies the genetic 

types of coal-REE accumulation defined by Seredin and Dai (2012) into six distinct occurrence 
types. Occurrences differ by the timing of REE enrichment relative to sediment deposition, REE 
transport mode, and resulting REE phase (Table 1). Conceptual deposit models developed for the 
various coal-REE occurrences type represent the knowledge of how and why REE accumulate in 

sedimentary systems. Similar to the conceptualization of other mineral deposit models (Cox and 
Singer, 1986) or the petroleum system, the coal-REE deposit models involve unique 
combinations of REE sources and accumulation processes (Figure 1). Additional geological 
factors such as depositional history, tectonic and diagenetic influences, and geochemical 

alteration are also represented in the models as individual geologic components. Since the coal-
REE deposit models comprise the core of knowledge-data framework, it is critical that the 
models accurately depict the various accumulation mechanisms. Accordingly, the components 
and relationships defined in the deposit models are the culmination of an extensive literature 

review on the current state of knowledge of the coal-REE system (NETL, 2021a). As the 
scientific understanding of REE occurrences in coal sedimentary systems continues to evolve 
and improve, these deposit models will be refined, and additional deposit models may be 
developed. 

Having developed the coal-REE deposit models, the key geologic components needed for REE 
accumulation can then be assessed per the model using a data science approach, such that 

associated data can be queried to test for evidence that a process or component occurred in the 
geologic past. Formally defining the relationships between the datasets and process of 
sedimentary REE accumulation is vital to a successful assessment at the basin, mine, or 
stratigraphic layer scales.   
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Table 1: Classification of the Various REE-Coal Occurrence Types as Considered by the 

NETL-URC Model (Adopted and modified from Seredin and Dai (2012)) 

 

 

Figure 1: Flowchart of pathways for primary- and secondary-type occurrences of REE in 
sedimentary geologic material. Each unique pathway (arrow path) involves a source of REE 
and an accumulation process that can result in an REE sedimentary deposit. Boxes are a 
simplification of the geologic components assessed by the NETL-URC model, as per the 

NETL-URC method. 

 

Timing of REE 
Enrichment Transport Mode REE Phase Occurrence Type 

Syn-depositional Eolian Allogenic mineral Primary – Eolian 

Syn-depositional Fluvial Allogenic mineral Primary – Fluvial 

Post-depositional Meteoric fluids Ion adsorption 
Secondary – Meteoric 

Adsorption 

Post-depositional Meteoric fluids Authigenic mineral 
Secondary – Meteoric 

Precipitation 

Post-depositional Hydrothermal fluids Ion adsorption 
Secondary – 

Hydrothermal Adsorption 

Post-depositional Hydrothermal fluids Authigenic mineral 
Secondary – 

Hydrothermal 
Precipitation 
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During formulation of the NETL-URC model, a collection of publicly available resources was 
compiled to support testing and development. This data collection, named the REE Coal Open 
Geodatabase (NETL, 2018), comprises both spatial and non-spatial geological, geochemical, and 

geospatial datasets spanning across the U.S. Key data include surface lithology, mineralogy, 
structural geology, geochemical analytical samples, sediment provenance, and paleogeographic 
reconstructions, from sources such as the USGS, U.S. DOE, state geologic surveys, and other 
government agencies. The collection is available for download via U.S. DOE NETL’s Energy 

Data eXchange (EDX) REE Coal Open Geodatabase (NETL, 2018).   

The abundance of available data varies significantly across the U.S. (Figure 2). Visualizing 

where data are available prior to implementing an assessment can help to identify suitable 
locations. However, given the proprietary nature of most local or mine scale coal data, the REE 
Coal Open Geodatabase is mostly applicable for basin scale analyses (Figure 2). Note the 
relative abundance of data in the Powder River Basin is largely due to the latest USGS coal 

resource assessment (Kinney et al., 2015; Luppens et al., 2015).   

 

 

Figure 2: Count of overlapping datasets within the REE Coal Open Geodatabase (NETL, 
2018), collected for development and testing of the NETL-URC model. Grid cells are 25 x 25 

km. Warmer colors (shades of red) indicate a greater number of available datasets. Analysis 

performed using NETL’s Cumulative Spatial Impact Layers tool (Romeo et al., 2019). 

 

3.2 APPLYING THE KNOWLEDGE-DATA FRAMEWORK TO THE 

ANALYTICAL METHOD 

The NETL-URC model entails two primary aspects: geological characterization and 
spatial/volumetric assessment. Geological characterization involves reconstructing depositional, 

structural, and diagenetic history of the region of interest using geological, geochemical, and 
geophysical data. The characterization aspect of the assessment informs of locations where past 

https://edx.netl.doe.gov/dataset/ree-and-coal-open-geodatabase
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conditions were favorable for REE accumulation, presented as a “Potential Enrichment” (PE) 
Score. In this context, the term enrichment is used inclusively to represent both pre- and post-
depositional accumulation of REEs in the sediment. The spatial assessment aspect incorporates 

results from the geologic characterization with REE concentration data, coalbed geometry and/or 
volumetric calculations, and other relevant spatial data into a geostatistical interpolation method 
to estimate the inferred resource quantity. In areas with no REE measurements in close 
proximity, only the PE Score is applied to predict regions of higher REE accumulation potential.  

 

         

Figure 3: Generalized workflow for implementing the REE-SED assessment method. 

 

In practice, implementation of the assessment method occurs in four stages, with the first three 
addressing geological characterization of the assessment area and the last stage integrating the 
available information and applying a spatial (volumetric) calculation to estimate the resource 

quantity (Figure 3). The NETL-URC model workflow is summarized as follows:  

Step 1: Postulate spatial domains on the basis of a common geologic attributes. This 

involves characterizing the geologic history of the region of interest and identifying areas with 
common geologic histories, such as basin sediments with shared provenance or regions with 
similar structural style. Domains are defined using geologic knowledge about three primary 
factors affecting subsurface properties: lithology, structure, and secondary alteration (Figure 4). 

Each unique spatial domain identifies areas with a distinctive geologic history (Figure 4).  

Postulate 
spatial 

domains

Assemble 
knowledge-

data

Calculate PE 
Score

Volumetric 
assessment
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Figure 4: Example application of the Subsurface Trend Analysis method for postulating 

genetically related spatial domains in Step 1 of an assessment (see detailed discussion in Rose 
et al., 2020). (A) Ternary diagram with the primary factors affecting subsurface properties as 

end-members (colored text). Spatial domains are postulated for each geologic end-member.  
Black text lists example data and information utilized in an assessment, plotted according to 
association with geologic end-members (i.e., “fault zones” information provides constraints 

for structure domains). (B) Delineated spatial domains for an anonymous test area.  Grey box 
is the assessment area boundary, colored lines are delineated domain boundaries based on 
available data and knowledge for the given domain type (structure, green; lithology, red). (C) 

Aggregation of unique lithologic and structure domains from (B), for use in later steps of the 

assessment method.   

 

Step 2: Assemble and inventory knowledge-data for the coal-REE deposit models to assess 

limitations of data availability. Like any other resource assessment or modeling effort, the 
REE-SED method requires data. A “Data Availability” (DA) metric is calculated to represent the 

amount of uncertainty in the assessment due to missing or incomplete information. The metric is 
simply a ratio of the number of geologic components with related data versus the total number of 
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components for the occurrence type (e.g., Primary – Eolian). In this step, individual components 
in the NETL-URC model are related to datasets to establish the occurrence of required geologic 
components, as part of the geologic characterization. Each dataset used in the assessment must 

be related to at least one geologic component. For example, observation of a volcanic ash layer 
in coal core represents a potential REE source, thus the observation can be related to that 
component. Some components are not directly testable and thus have no related data. For 
example, it is challenging, if not impractical or impossible to acquire data that evidences a mire 

was downwind of contemporaneous volcanic activity. In select cases such as this, evidence for 
non-testable components can be inferred. In the ash-bearing coal example above, presence of the 
ash layer implies the (then) mire was downwind of contemporaneous volcanism. This also allows 
multiple geologic components to be represented by a single observation or dataset. Implicit 

relationships are also utilized to assign an occurrence of geologic components for an area. 
Considering again the ash-bearing coal example above, given a sufficiently thick ash and 
proximity to volcanism and no tectonic influences, one can assume the ash layer extends beyond 
the immediate vicinity of the core. Thus, in the absence of data suggesting otherwise, occurrence 

of the ash can be inferred for local area around the cored site. Implicit assignment of a geologic 
component based on spatially explicit (i.e., coal core) data permits an assessment of an area or 
volume using discrete measurements. Uncertainty associated with these assumptions is in the 
subsequent step. 

Step 3: Calculate PE score using prospectivity analytics to assess potential REE 

occurrences. Component datasets are queried for evidence of coal REE occurrences based on 

geological interpretation of the data. For example, core descriptions could be queried for 
observations of ash horizons, which provides evidence of a possible REE source. For each unit 
area, a PE Score is calculated that indicates the number of components with supporting data 
versus the total number of components for each occurrence type. Each REE-coal occurrence type 

is assigned a PE Score value ranging from zero to one. Zero indicates no evidence for favorable 
conditions, one indicates supporting evidence for all required components, and values in between 
indicate supporting evidence for a portion of the required components. For a given area (cell) or 
volume (voxel), the PE Score is equal to or less than the value for DA. Results  from this step 

indicate locations with potentially undiscovered REE occurrences and also supplement the 
spatial/volumetric assessment (Step 4). 

Uncertainty is accounted in this step using a spatialized component additive method with fuzzy 
logic. Each component of a coal-REE deposit model may be represented by one or more datasets 
that are either explicit or implicit (Figure 5). Explicit data include data with exact locations and 
representations of geology or geochemistry that support evidence of REE enrichment. Implicit 

data represent combinations of structural, lithologic, and secondary alteration domains (or 
general areas) that are more likely to support REE enrichment. To better represent the influence 
of these data, fuzzy logic is employed to weight their importance (as evidence of REE 
enrichment) across the study area. Fuzzy representations of explicit and implicit data are 

combined to represent the component itself and the associated uncertainty (Figure 5). Fuzzy 
component representation is then created by adding the implicit and explicit fuzzy weighted data. 
The additive approach allows the explicit data to carry more importance than the implicit data 
and better prioritizes known evidence for each component within the deposit model. Conversely, 

the uncertainty of each component subtracts the explicit fuzzy representation from the implicit 
fuzzy representation. Use of a subtractive approach allows the location of the explicit data to 
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have the lowest uncertainty, and if the implicit data does not spatially coincide with explicit data, 
those locations will have the highest uncertainty (Figure 5). For each component these two 
outputs are then applied to the deposit model to obtain the final PE Scores and associated 

uncertainty (Figure 5).  

 

 

Figure 5: Example fuzzy logic application for representing implicitly assigned component data 

and associated uncertainty in Step 3 of the NETL-URC model.  See Step 3 above for detailed 

discussion. 

 

Step 4: Spatial/volumetric assessment to estimate inferred resource quantities. First, PE 
Scores and REE concentration data are evaluated for spatial autocorrelation to determine whether 
values are spatially clustered, dispersed, or randomly distributed. Evaluations are performed for 
the area of assessment and within individual spatial domains. In domains without REE 

concentration measurements, the PE Score is integrated with coal volume estimates to produce 
maps of potential resources with varying degrees of certainty. Where REE measurements are 
sufficiently available, REE concentrations in areas with highest PE Score and a subset of 
validation data (geochemical measurements from rock samples) are interpolated to assign 

enrichment potential. Interpolations are only applied in areas with moderate to high confidence 
in the PE score. If no data exists to interpolate REE concentrations in areas of high PE Score, 
rankings of high vs low PE Score and confidence indicate a qualitative metric for REE 
enrichment potential. Implementation of the NETL-URC model involves a multistep workflow 

(Figure 3).   

A simpler, straightforward approach to characterizing in situ REE resources would be applying a 

geostatistical algorithm such as inverse distance weighting to interpolate between measured REE 
concentrations in coal core samples over an area or zone of interest. However, there are major 
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drawbacks to this approach. First, few samples have the information needed and those samples 
are not distributed evenly across U.S. coal basins (Figure 6). For example, the USGS CoalQual 
database (https://ncrdspublic.er.usgs.gov/coalqual/) (Palmer et al., 2015) is considered a 

preeminent dataset for REE concentrations in domestic coal basins, yet these data were collected 
for a different original purpose, and the homogenized nature of the analyses significantly limits 
the utility of that data for these types of assessments. Second, and perhaps more importantly, the 
simple interpolation approach neglects valuable information that can be gleaned from important 

contextual data. For example, interpolating across geologic domain boundaries (e.g., across a 
fault zone or across areas with vastly different lithologies) ignores changes in rock properties that 
may affect REE accumulation. Conversely, as demonstrated by the success of the petroleum 
systems concept in petroleum exploration, incorporating geologic contextual data into an 

assessment can significantly improve results. With knowledge of the geologic mechanisms of 
REE accumulation in coal, one could predict where REE likely occur in significant 
concentrations for a given area that experienced favorable conditions for accumulation, without 
having directly measured the rare earth concentrations. This consideration enables an assessment 

of potential enrichment for areas with sparse or even no REE measurements. Thus, the NETL-
URC model involves analysis of both measured geochemical concentrations (i.e., REE and other 
critical elements) and contextual data and information. 

 

 

Figure 6: Heat map displaying the density of CoalQual samples (Palmer et al., 2015) in U.S, 

coal basins (dark gray). Warmer colors indicate a higher relative density of coal samples. 

 

https://ncrdspublic.er.usgs.gov/coalqual/
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3.3 CURRENT STATUS 

The beta version of the NETL-URC model is in the final development stage and three major 
components have been advanced and integrated. The components are: 

1. Integration of raw data collection into structured machine-readable assessment “ready” 

databases (DA and DS) 

2. Calculation of PE Score for all REE enrichment mechanisms 

3. Application of fuzzy logic to better represent spatial and geologic uncertainty of the input 

datasets 

The tool was enhanced by modifying application scripts using open-source python libraries in 
order to optimize data processing and reduce overall run time. Other enhancements include the 
development of python script to process NETL-URC model data for sensitivity analysis for input 
into the NETL-URC model beta-tool. The enhancements made to scripting and data processing 

have increased utilization of existing data by 23% by applying new geologic constraints and 
refining select NETL-URC model algorithms, which leads to improved QA/QC protocols to 
increase processing efficiency and ensure data are correctly represented. 

3.4 NEXT STEPS: DEMONSTRATION AND VALIDATION 

NETL’s partnership activities with extramural stakeholders will continue to focus on identifying 
prospective unconventional REE/CMs from domestic mine byproducts that are relevant to 

domestic supply. While the resource assessment efforts target identifying in-place, technically 
and potentially economically recoverable scales of evaluation at the mine, seam and basin scale, 
they rely upon finer-scale data and studies as well. Core, outcrop, and mine scale data and 
information are key to constraining and understanding how and why unconventional REE/CMs 

form in these types of systems, and the processes and conditions that result in the vertical and 
lateral heterogeneity of these deposits. In addition, contextual geologic data and information at 
these finer scales is important for constraining the lithologic, structural, and secondary alteration 
history of these systems to improve predictions of the occurrence and concentrations of 

unconventional REE deposits at all scales. At present, much of these data and knowledge either 
does not exist in forms appropriate for supporting unconventional REE/CM assessments or is 
incomplete. For example, the U.S. Geological Survey CoalQual database (Palmer et al., 2015) is 
often cited as relevant to meeting these needs, but was collected for a different original purpose, 

and the homogenized nature of the analyses significantly limits the utility of that data for these 
types of assessments.   

For coal and related strata, coal-byproducts, and industry waste streams, it is also key to 
understand the human engineering and history of these systems as well. With sufficient data and 
knowledge from dedicated studies of these systems, the predictability and accuracy of the 
unconventional rare earth and critical minerals model will be greatly improved. To mitigate 

current data gaps, a template for sample data is provided to guide future data collection efforts 
(NETL, 2021a,b). The template is a spreadsheet for the data and information needed for 
geological samples used in the NETL-URC model. Relevant metadata categories include sample 
identification (unique ID numbers), sample description (sample, type, thickness, age), 

geolocation (latitude, longitude, depth), site characteristics (owner, geologic features, associated 
lithologies), collection information (lab name, data analyzed, etc.), other (various contact and 
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source information), and chemical analyses (elemental, proximate, ultimate, etc.). The metadata 
also includes a “level of importance” designation for each field (or attribute) contained within the 
template. Of most importance is if a field is labeled as “critical”, these fields are the minimum 

requirements for each record (or sample). Sample data can be entered in the “Sample_Metadata” 
and “Chemical_Analysis” tabs. 
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4. CONCLUSION 

The NETL-URC model is a big-data, machine learning enabled geoscience approach to improve 
prediction and identification of high concentration deposits of unconventional CM and REE in 
sedimentary, carbon-ore based systems. Underpinning the NETL-URC model is an 
understanding that occurrences of sedimentary natural resources are not random, but rather a 

product of systematic geologic processes and unique syn- and post-depositional histories. The 
holistic approach utilizes a knowledge-data framework to apply knowledge of how REE 
accumulate in sedimentary systems using various geologic and geospatial data-driven methods. 
Currently, no other fully developed methods or tools exist that are designed to model or simulate 

the complex behavior of REE and mineral phases within coal and related lithofacies.  

Resource assessments using approaches such as a the REE-SED method are key to the successful 

identification of promising geologic deposits that host the resources. Key insights and data about 
unconventional REE and CM resource estimates, host materials, and ore minerology are valuable 
to the development of commercially viable extraction and separation technologies. The 
assessment model data can also aid in the development of technological and systems-economic 

assessments that are critical to aspects of DOE’s research portfolio and for policy and 
commercial decision making.  
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