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EXECUTIVE SUMMARY 

The increasing adoption of engineering designs based on modeling and simulation necessitates 
assessment of credibility of the numerical results. Uncertainty quantification (UQ) has thus 
become a major thrust area in the field of computational sciences, especially when applied in 
engineering research and development. UQ is often considered at the intersection of 

multidisciplinary domains such as statistics, probability theory, computer sciences, and 
engineering, which necessitates expertise in these domains collectively. Although there are a 
number of different software tools where UQ methods have been implemented and offer users to 
perform UQ analysis in a structured way, the expertise required to use these software toolkits 

effectively is no less than the expertise required to understand the methods. 

To enable an easier adoption of UQ methodologies, a graphical workflow based software has 

been developed at the U.S. Department of Energy’s (DOE) National Energy Technology 
Laboratory (NETL) as part of the ongoing Verification, Validation and Uncertainty 
Quantification (VVUQ) initiatives. Nodeworks (https://mfix.netl.doe.gov/nodeworks) is an open-
source toolset written in Python. It was developed for enabling users to tackle challenging tasks 

like non-intrusive UQ analysis, optimization, or supervised machine learning through visually 
constructed workflows. Nodeworks utilizes the existing optimization and UQ libraries in 
Python’s ecosystem such as SciPy, SALib, Scikit-Learn, etc., and embeds them in specialized 
nodes. Users can perform non-intrusive UQ analysis or optimization through the connection of 

available analysis nodes or user-defined custom nodes to construct a workflow. 

The study presented in this report was aimed to demonstrate UQ analysis performed not only 

with Nodeworks, but also two other well-established UQ software tools from the U.S. DOE’s 
National Laboratories (PSUADE from Lawrence Livermore National Laboratory and DAKOTA 
from Sandia National Laboratory). It is important to emphasize that the motivation of this study 
was not to determine the best UQ software, but to verify if the global sensitivity analyses from 

the end-to-end workflow in Nodeworks are consistent with the results of other two UQ software. 
The components of Nodeworks from Python’s ecosystem have been tested as standalone 
libraries. However, an assessment study for the complete workflow targeting a specific UQ 
analysis has not been performed for Nodeworks. Hence, this study is expected to serve as an 

equivalent of solution verification for Nodeworks using other established UQ tools as reference 
solution. For this purpose, three distinct flow configurations (i.e., settling bed, bubbling 
fluidized, and circulating fluidized bed) have been used as representative multiphase flow 
problems of interest. The results of the systematic simulation campaigns performed in an earlier 

study using the particle-in-cell (PIC) approach in the Multiphase Flow with Interphase 
eXchanges (MFiX) suite of solvers (i.e., MFiX-PIC) was utilized. The same set of tabulated 
results was provided as input to the different UQ software for global sensitivity analysis. Results 
for the three cases indicate that based on the Sobol’ Sensitivity Indices method the order of 

importance ranking determined by Nodeworks for the Sobol’ Total Sensitivity Indices is 
consistent with PSUADE and DAKOTA in each case for the five model parameters considered. 
The input files for Nodeworks for the three cases are also shared through NETL’s Gitlab 
repository for the reader interested in reproducibility and further analysis (See Section 1.2). 

about:blank
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1. INTRODUCTION 

1.1 MOTIVATION 

Uncertainty quantification (UQ) is increasingly becoming a critical component of simulation-

based engineering, where the credibility of the model predictions needs to be assessed with 
established methods, such as forward propagation of input uncertainties or global sensitivity 
analysis. Non-intrusive UQ techniques where the application software, such as a finite-volume 
discretization based fluid flow model, is treated as a black box and random drawing-based 

samples from model results are utilized to perform the analysis has been of particular interest 
(Gel et al., 2013a,b). These non-intrusive techniques allow for the use of existing and 
commercial software where significant development would be required to utilize intrusive UQ 
techniques. To support these types of analyses, various UQ software tools have been developed 

and are available both under commercial and open-source licensing. 

The work presented here focuses on global sensitivity analysis methodology as part of the 

ongoing UQ efforts at the U.S. Department of Energy’s (DOE) National Energy Technology 
Laboratory (NETL), and comparison of the sensitivity analysis results obtained from multiple 
UQ software tools (Nodeworks, PSUADE, and DAKOTA). The same dataset generated from the 
simulation campaign using the PIC (particle-in-cell) solver in the open-source software suite 

Multiphase Flow with Interphase eXchanges (MFiX) was provided as input to each UQ toolkit. 
Three distinct problems covering different flow regimes typically encountered were investigated: 
gravitational particle settling, fluidization, and a circulating fluidized bed. 

In an earlier study by Vaidheeswaran et al. (2021) the sensitivities of five MFiX-PIC model 
parameters were analyzed through global sensitivity analysis using Nodeworks. This current 
work aims to establish a direct comparison of the sensitivity analysis results obtained from two 

additional UQ software packages (PSUADE and DAKOTA) by providing the same input deck to 
all three UQ packages and seeing if the same input variable ranking of importance is achieved. It 
is important to note that the aim is not to compare the capabilities of the UQ software to identify 
which one is the best, but to provide some sort of a solution verification process for Nodeworks 

by comparing against other established UQ capabilities, which have gone through their own 
verification processes. This study will serve as the documentation that demonstrates Nodeworks’ 
several features are working as intended. 

1.2 OUTLINE 

This report is part of activities designed to document verification, validation , and uncertainty 
quantification studies for MFiX-PIC (NETL, 2021). However, the focus is primarily assessing 
the UQ capabilities of Nodeworks (NETL, 2020a,b; Weber et al., 2020), utilizing the results 
generated from MFiX-PIC simulations. Although Nodeworks can be operated as an independent 

tool, its tight integration with the MFiX suite of solvers enables users to perform various tasks 
with complicated workflows, such creating simulation campaigns with a statistical design of 
experiments, sensitivity analysis, or optimization. The layout of this report is arranged to help the 
reader, with the first section providing a brief background of the UQ software utilized (Section 

2). Then a high-level overview of the three demonstration cases selected for the sensitivity 
analysis comparison is provided in Section 3. Some details on the surrogate  models constructed 
to be utilized during sensitivity analysis in lieu of the actual MFiX-PIC simulations are presented 
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in Section 4. Finally, the comparison of the sensitivity results obtained from three UQ toolkits 
for the three distinct demonstration cases are presented in Section 5. 

Several UQ methods and UQ software toolkits were used in the analysis presented in this report. 
Associated files for Nodeworks are also shared through NETL’s Gitlab for the reader who is 
interested in reproducing the findings provided that same software setup is employed. However, 

it is important to note that the intent of this report does not include teaching the reader the 
theoretical underpinnings of statistical analysis as it relates to surrogate model construction or 
sensitivity analysis, nor how to use associated software. In each of the relevant sections, 
additional references are provided to direct the user to more comprehensive guidance , if 

required. 

Workflow for the Global Sensitivity Analysis Employed in this Study  

The workflow outlined below was followed to perform the Sobol’ Sensitivity Indices based 
global sensitivity analysis presented in this study. 

1. Identify the model parameters to be investigated for sensitivity analysis, and determine the 
lower and upper bounds for each of these parameters to be used. 

2. Plan a simulation campaign with the aid of statistical design of experiments principles that 

will enable the construction of a data-fitted surrogate model. The surrogate model should 
adequately characterize the relationship between model parameters considered as input and 
the response variables (a.k.a. quantities of interest (QoI) or output). This step is crucial 
when the simulations are expensive or time consuming to perform as the sensitivity 

analysis process requires thousands of function evaluations of the QoI to be performed 
cheaply. 

3. Post-process the simulation campaign results and compile an American Standard Code for 
Information Interchange (ASCII) based file as a tabulated dataset consisting of the design 

of experiments for the model parameters and the corresponding QoIs  from the simulation 
campaign results. This should be prepared in Comma Separated Values (CSV)  or plain 
ASCII format for importing into UQ software easily. 

4. Utilize UQ software (Nodeworks, PSUADE, and DAKOTA) to import the datasets and 
perform the global sensitivity analysis employing Sobol’ Sensitivity Indices method, 
which is classified under variance decomposition methods (Sobol’, 2001, Trucano et al., 
2006). Note that the surrogate model constructed is used to perform the evaluations of the 

QoI required for Sobol’ Sensitivity Indices computations, in lieu of actual MFiX-PIC 
simulations for each instance. Hence, the performance of the surrogate model to accurately 
represent the parameter space needs to be carefully assessed prior to the optimization step 

with measures such as adjusted R2 or cross-validation error assessment. Doing so ensures 
the error introduced by the surrogate is minimized. 

5. Plot and compare the computed Sobol’ Total Sensitivity Indices from Nodeworks, 
PSUADE, and DAKOTA for the corresponding QoI in each case considered. It is 

important to note that the same simulation campaign based dataset was provided as input 
to all UQ software. 
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This report also includes a separate data management and repository section (Appendix A). 
There, the user is given information necessary to replicate the global sensitivity analysis 
described for Nodeworks only as the objective of this study was to  conduct a solution 

verification study for Nodeworks. For example, results in this report rely on specific versions and 
libraries of Nodeworks, Python, PSUADE, and DAKOTA. If the user trying to reproduce the 
data in this work does not apply the same versions of the employed software and pathway to 
solution, it should not be surprising if exact results are not replicated especially due to 

randomness involved in the use of particular data sampling techniques (like Latin Hypercube). 
However, the user should expect to see consistent results, provided their solution process is 
similarly sound. 

 

Note: The results presented in this document and shared through Gitlab were based on MFiX-

PIC version 20.1 simulations. The authors have become aware of a bug in the MFiX-

PIC solver that affects the results from simulation campaigns presented. As the 

objective of this work was to demonstrate and compare the sensitivity analysis with 

PSUADE, DAKOTA, and Nodeworks for any given input dataset (i.e., simulation 

campaign inputs and quantities of interest), no further revisions were implemented. 

However, the readers are warned about the potential differences should the reader use 

MFiX-PIC other than version 20.1 to replicate the simulation campaigns. 

 

The files used in the analyses performed with Nodeworks are available within NETL’s Gitlab 
environment, which is accessible through the following URL: 

 

https://mfix.netl.doe.gov/gitlab/quality-assurance/pic-sensitivity-study.git  

 

The repository is publicly accessible at the time of the writing of this report. 

The purpose of the repository is two-fold: to have the information necessary to fully replicate 
this study, and to provide the reader with a baseline to begin their own exploration of global 
sensitivity analysis utilizing a surrogate model constructed from a systemically designed 

simulation campaign. Note, however, that there is a clear expectation that a person accessing this 
repository has pre-existing knowledge of how to use the Nodeworks software, which is the 
primary focus of this study. For other software used as comparison for Nodeworks, the reader is 
advised to review the respective websites and user manuals of the relevant UQ software.  

about:blank
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2. OVERVIEW OF THE UQ SOFTWARE USED 

Three open-source UQ software tools were employed in this study: Nodeworks (NETL, 2020a,b, 
Weber et al., 2020), PSUADE (Tong, 2010; Tong, 2020), and DAKOTA (Adams, 2008, Adams 

et al., 2009). Although all three UQ software tools have nearly the same non-intrusive UQ 
analysis options available, there are some differences in terms of implementation of the UQ 
methods and also additional advanced UQ features, such as Bayesian Calibration, multifidelity 
surrogate models, etc. Table 1 aims to provide a high level overview of similarities and 

differences between these three UQ software tools under three UQ analysis capabilities. Hence, 
it is not a comprehensive comparison.  

2.1 NODEWORKS 

Nodeworks, developed at NETL, is an open-source graphical programming interface library and 

workflow framework where users can add, delete, and connect nodes to create customized visual 
workflows (NETL, 2020a,b; Weber et al., 2020). Nodes perform prescribed operations on data 
whose results are then passed to other nodes using connections (or edges). The library was 
specifically developed in the Python programming language to remain flexible, portable, and 

take advantage of all the libraries available in the Python ecosystem. It can support a wide 
variety of applications and contains several collections of default nodes to assist deployment of 
commonly used workflows quickly, even for novice users. Users can also create and add custom 
nodes for specific applications. This work leverages a collection of nodes known as the 

Surrogate Modeling and Analysis Toolset, which was developed to implement workflows that 
construct and use data-fitted surrogate models or response surfaces. The Surrogate Modeling and 
Analysis Toolset provides access to specialized nodes including optimization, sensitivity 
analysis, and forward propagation of uncertainty. 

Additionally, Nodeworks is directly embedded into MFiX’s graphical user interface (GUI), thus 
allowing Nodeworks to create MFiX input decks with parametrically varying inputs directly. 

This allows for simple setup and management of simulation campaigns. Similarly, Nodeworks 
can be employed by other modeling software to create workflows with ease. 

2.2 PSUADE 

PSUADE is an open-source UQ software toolkit developed at the Lawrence Livermore National 

Laboratory by Dr. Charles Tong (Tong, 2010) and released under GNU Lesser General Public 
License (LGPL) since 2007. The name of the software, PSUADE, comes from the acronym for 
Problem Solving Environment for Uncertainty Analysis and Design Exploration. The program 
supports a variety of non-intrusive UQ analysis methods where the simulation application can be 

treated as “black-box” code. Subsequently, many UQ analysis tasks can be performed by 
sampling the black-box directly or through a data-fitted surrogate model constructed from the 
computational model. The software offers a diverse range of sampling methods to enable users to 
perform simulation campaigns with the objective of constructing an adequate data-fitted 

surrogate model (a.k.a. response surface model, meta-model). The user can perform both basic 
uncertainty analysis such as forward propagation of uncertainties and more complex analysis  like 
mixed aleatory-epistemic uncertainty analysis. PSUADE has a built-in statistical calibration 
capability (i.e., Bayesian calibration with Markov Chain Monte Carlo (MCMC)). However, 

deterministic calibration requires user-defined supporting code to incorporate residual 
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evaluations. PSUADE is written in C++ and operates primarily as a command line based 
software, which may be an impediment to new users. Additional details on the capabilities of 
PSUADE can be found in https://computing.llnl.gov/projects/psuade/software (Tong, 2020). 

2.3 DAKOTA 

DAKOTA is an open-source software toolkit developed at the Sandia National Laboratory and 
distributed under LGPL (Adams, 2008, Adams et al., 2009). The acronym DAKOTA stands for 
Design Analysis Kit for Optimization and Terascale Applications. This general-purpose software 

toolkit is used to perform systems analysis and design on high performance computers. 
DAKOTA includes algorithms for design optimization, uncertainty quantification, parameter 
estimation, design of experiments, and sensitivity analysis, as well as a range of parallel 
computing and simulation interfacing services. These capabilities may be used independently or 

as components within advanced strategies such as surrogate-based optimization, mixed integer 
nonlinear programming, or optimization under uncertainty. 

2.4 COMPARISON OF UQ ANALYSIS CAPABILITIES 

It is difficult to make a direct comparison between the three UQ software. There have been 

several studies that attempted to identify the key features of available UQ software under several 
dimensions, such as Simpson et al. (2008) which presented a table showing the available 
capabilities for metamodeling and optimization in the commercially available software. Another 
study by the U.S. DOE’s Pacific Northwest National Laboratory (Lin et al., 2012) aimed to 

survey the available UQ methods and then carried out a systematic evaluation of these methods 
implemented in ten UQ software identified, which included PSUADE and DAKOTA. 

In the current study, Nodeworks version 20.2.0, PSUADE version 2.0, and DAKOTA version 
6.13 were employed. 

For additional information on the theoretical foundations and usage of these UQ software, the 
reader is referred to the resources in the references section for each software (NETL, 2020; 
Weber et al., 2020; Tong, 2010; Tong, 2020; Adams, 2008; Adams et al., 2009, 2015; Adams 
and Hough, 2012). 
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Table 1: Comparison of Features Implemented in Nodeworks, PSUADE, and DAKOTA under 

Several UQ Capabilities 

 Nodeworks PSUADE DAKOTA 

Sampling Methods    

(i) Classical Design of 
Experiments  

Factorial, Central 
Composite Design 

Factorial, Central 
Composite Design, Box-
Benhken 

Factorial, Central 
Composite Design, Box-
Benhken 

(ii) Space Filling Designs 
Latin Hypercube, Monte-
Carlo 

Latin Hypercube, quasi-
MC, Orthogonal arrays 

Latin Hypercube, 
Monte-Carlo, 
Orthogonal arrays 

Data-fitted Surrogate Models 

Polynomial Regression, 
Gaussian Process Model 
(GPM), Radial Basis 
Functions (RBF), 
multilayer perceptron, 
support vector machine, 
decisions tree, random 
forest, gradient boosting, 
MARS, PyTorch 

Polynomial Regression, 
Kriging, GPM, RBF 

Polynomial Regression, 
Kriging, GPM, RBF 

Sensitivity Analysis Methods 

Sobol’ Sensitivity Indices, 
Morris One-At-A-Time 
(MOAT), Fourier 
Amplitude Sensitivity Test 
(FAST), Delta Moment-
Independent Measure 

Sobol’ Sensitivity 
Indices, MOAT 

Sobol’ Sensitivity 
Indices, MOAT via 
PSUADE interface 
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3. DEMONSTRATION CASES 

3.1 OVERVIEW OF DEMONSTRATION CASES CONSIDERED 

This report is part of series of studies on sensitivity analysis and calibration of MFiX-PIC that 

aims to utilize three industrial applications that span a wide range of flow regimes that is 
typically encountered. In particular, the studies/cases are particle settling, a fluidized bed, and a 
circulating fluidized bed.. 

3.2 CASE 1: GRAVITATIONAL PARTICLE SETTLING 

The problem of particles settling under gravity in a dense medium has an analytical solution. 
This means that a well-controlled experiment would give exactly the same result as a hand 
calculation. From a calibration standpoint, this implies that there is no worry of added 
experimental error when evaluating any hypothetical physical set-up. Any hand-calculation for 

the solution is the truth. This indicates that the question of error moves entirely to the surrogate 
model generated from the simulation campaign. 

The setup, borrowed from Vaidheeswaran et.al. (2020b), is described in Figure 1. The 

computational domain considered is 0.02 m (x-direction) × 0.02 m (z-direction) × 1 m (y-
direction). Uniform grid sizes of 4 mm were used in the x- and z- directions, while a grid size of 
2 mm was used in the y-direction. The duration of each simulation was 1 s, and a constant time-
step size of 5e-4 s was used. 

Once the simulation begins, two concentration (kinematic) shocks evolve. The first originates 
from the top of particle bed and corresponds to settling, while the other originates from the 

bottom and corresponds to filling. The location of the filling shock (y2) is the quantity of interest 
(QoI) considered in this study. Its analytical solution is given by: 

 

  (1) 

 

where  and  are volume fraction of solids-phase and gas-phase at close packing.  and  are 

initial volume fractions. and ur0 represent relative velocities calculated using close packing and 
initial conditions, respectively. The filling shock propagates upward when a lower region is fully 

packed by solids. Properly predicting the filling shock may correspond well with other 
simulations where solids concentration is high and particle motion is relatively slow. Previously, 
Vaidheeswaran et al. (2020b) used this case to compare results from MFiX-PIC, MFiX-TFM 
(two-fluid model), and MFiX-DEM (discrete element method) simulations as shown in Figure 2. 

Plots compare time evolution of concentration fronts from the three models with the analytical 
solution when . 

The location of settling shock (y1) is another QoI post-processed from the simulations. This 
shock propagates in the direction of gravity, and corresponds to the transition between 

homogeneously distributed solids with concentration  and a dilute region where . The 
analytical solution for y1 is given by, 
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  (2) 

 

Average void fraction at the first cell location (y3) is the final QoI post-processed from 
simulations. However, both y1 and y3 are not considered in the current study. Using Equation 1, a 

standalone dataset was generated at 21 different x1 settings where x1 is equivalent to , the 
initial solids concentration. Note that it is this dataset, consisting of 21 samples, that is used in 
lieu of experimental data required for deterministic calibration. 

 

 

Figure 1: Schematic of particles settling in a dense medium. 

 

 

Figure 2: Comparison of time evolution of shock fronts obtained using uncalibrated MFiX-

DEM, MFiX-PIC, and MFiX-TFM simulations with the analytical solution. 
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3.3 CASE 2: FLUIDIZATION 

The case of bubbling fluidization corresponds to the study of Vaidheeswaran et al. (2020a) and 
Vaidheeswaran and Rowan (2020). Glass particles having density and Sauter mean diameter of 

2510 kg/m3 and 332 µm classified under Group B based on Geldart’s criterion (Geldart, 1973) 
were used. Three different geometries and five different flow conditions were analyzed, and  one 

particular setting was selected for the current study as shown in Figure 3. The internal diameter 
of the cylinder is 6.35 cm. Several measurement ports are located along the axis to measure 

differential pressure, of which ∆P2 = P1−P2, ∆P3 = P2−P3, and ∆P4 = P3 − P4 are used as QoIs (y1, 
y2, and y3, respectively). y1 and y2 are useful in understanding the sensitivity of model parameters 

under dense flow conditions while at higher velocities compared to the settling case. y3 contains 
the transition between dense and dilute regions where particles constantly engage and disengage, 
and it remains to be determined if the existing closure models in PIC are capable of handling 

such transitions. Figure 4 shows instantaneous snapshots of bed expansion at different U/U mf, 
where the red line indicates the height determined by the image processing technique used in 
Vaidheeswaran et al. (2020a). 

The computational domain consists of a single cylinder, whose bottom end is a mass inflow 

boundary, where a value of U = 0.234 m/s is specified corresponding to U/Umf = 2.97. A pressure 
outflow boundary condition is used at the top, while the walls are treated as no-slip boundaries. 
Glass particles are filled up to a height of 15.24 cm having a solids packing fraction of 0.6. A 

uniform grid 3.33 mm ×3.33 mm ×3.33 mm is used, and the simulations are run for a total 
duration of 50 s using a variable time step with a maximum value of 5E-4 s. 

 

 

Figure 3: Schematic of Case 2 setup showing the computational domain and location of 

pressure ports. 
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Figure 4: Instantaneous snapshots from fluidization experiments showing bed expansion for 

different U/Umf (Vaidheeswaran et al., 2020). 

 

3.4 CASE 3: CIRCULATING FLUIDIZED BED 

The setup of Xu et al. (2018) is used for analyzing the sensitivity of MFiX-PIC model 

parameters in a circulating fluidized bed (CFB). Figure 5 shows the schematic of the CFB 
configuration and Figure 6 shows comparison between experiments and numerical simulations 
using MFiX-DEM as reported by Xu et al. (2018). The CFB unit contained 350 g of high-density 
polyethylene (HDPE) particles having a Sauter mean diameter of 871 µm and a density of 863 

kg/m3 (grouped under Geldart B classification). Primary air was injected into the system using 
the flow controller FTC180 located below the riser. Move air was supplied using FTC135 and 
FTC115 at the top and bottom of the CFB return leg after the standpipe. The QoIs used in this 

study were interface height, pressure drop across riser, and pressure drop across standpipe (y1, y2, 

and y3, respectively). In a sense, the dynamics in the standpipe are comparable to Case 1, where 
the particles motion is relatively slow. The move air flow past the standpipe ensures particles do 
not stagnate. Multiphase dynamics at the bottom of riser are comparable to the bubbling 
fluidized bed albeit at much higher air superficial velocity. The solids concentration is less 
compared to dense portions in Case 2. 

The geometry and boundary conditions used in the simulation campaign were identical to the 
study of Xu et al. (2018). The grid size was set to 5 mm in all the directions. Flow rates from 

mass flow controllers FTC180, FTC135, and FTC115 used in this study were 300, 7, and 2.5 
standard liter per minute (SLPM), respectively. Mass inflow boundary condition was specified at 
the bottom of the riser having a uniform velocity of 2.46 m/s. The computational fluid dynamics 
(CFD) calculations were performed over a duration of 45 s using a variable time step, with the 

maximum value set at 5e-4 s. 
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Figure 5: Schematic of Case 3 setup showing the location of mass flow controllers. 

 

 

 

Figure 6: Snapshot of the experimental setup (left) and MFiX-DEM simulation (right) (Xu et 

al., 2018). 
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4. SURROGATE MODELS CONSTRUCTED 

The non-intrusive uncertainty quantification method, such as the Sobol’ Sensitivity Indices based 
global sensitivity analysis employed in this study, requires Monte Carlo simulations to be 

performed by randomly drawing different settings for each of the input parameters within their 
prescribed range and then computing the QoI for each sample. Although MFiX-PIC is 
substantially faster in time-to-solution when compared to the other MFiX suite solvers like 
MFiX-DEM or MFiX-TFM, performing Monte Carlo simulations by directly running MFiX-PIC 

at each new sample setting is not practical. Instead, a simulation campaign was systematically 
designed, using space filling techniques to have coverage for samples within each input 
parameter’s lower and upper bounds. The sampling simulations in the campaign are carried out 
independently on a high-performance computing cluster. Then the simulation campaign results 

are compiled and utilized to construct a data-fitted surrogate model (a.k.a. response surface or 
meta-model) to characterize the relationship between the input parameters and QoIs (a.k.a. 
response variables) as reliably as possible. For additional detailed information on this important 
step, refer to Gel et al. (2013a, 2016). 

Prior to presenting the Sobol’ Sensitivity Indices based sensitivity analysis results, this section 
presents details on the simulation campaigns used to construct the surrogate models for each QoI 

in the three representative cases considered. It is important to note that, in non-intrusive UQ 
analysis surrogate model construction is one of the most time consuming and critical step as the 
quality of the constructed surrogate model directly affects the remaining UQ analysis. 

4.1 SIMULATION CAMPAIGNS DESIGNED TO CONSTRUCT SURROGATE 

MODELS 

Case 1: Particle Settling 

An Optimal Latin Hypercube (OLH) sampling method implemented in Nodeworks was used to 
generate a sampling campaign for five MFiX-PIC input parameters. The first five were modeling 

parameters specific to MFiX-PIC, accessible to the user through keywords. These included: θ1 : 
Pressure linear scale factor (P0); θ2 : Volume fraction exponential scale factor (β); θ3 :Statistical 

Weight (Wp); θ4 : Void fraction at maximal close packing ; and θ5 : Solids slip velocity scale 

factor (α). In the remainder of this report, abbreviated versions of the input parameter names 
have been used due to font issues in plotting software. Table 2 offers these abbreviations along 
with lower and upper bound values used for each model parameter in the simulation campaign. 

For example, anywhere t1:P_0 or t1 or Theta1 appears in this report, it is equivalent to 

θ1:Pressure linear scale factor (P0). It is noted that actual bounds generated at the end of Latin 
Hypercube sample generation are shown, which might be slightly different than the initially 
targeted bounds due to the randomness of the Latin Hypercube method (e.g., targeted upper 
bound for (P0) was 20.0, but actual samples generated show a maximum value of 19.99). 
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Table 2: List of Input Parameter Abbreviations, Descriptions, Lower, and Upper Bounds 

Values Considered in the Simulation Campaign for Case 1 

Symbol Description Min. Max. 

𝜃1 or t1:P_0 Pressure linear scale factor, (P0) 1.04 19.99 

𝜃2 or t2:beta Volume fraction exponential scale factor, (β) 1.01 4.99 

𝜃3 or t3:StatWeight Statistical Weight, (Wp) 3.04 7.96 

𝜃4 or t4:ep_g* Void fraction at maximal close packing,  0.35 0.49 

𝜃5 or t5:VelfacCoeff Solids slip velocity scale factor, (α) 0.5 0.99 

 

The initial QoIs extracted from the simulation campaign were y1:Location of Settling Shock; 

y2:Location of Filling Shock; and y3:Void fraction in the first cell nearest to the bottom of the 
experimental vessel. y1 corresponds to the transition between dilute region of the settling bed and 

= 1. It was of interest to determine the sensitivity of PIC parameters in regions having 

intermediate to dense solids concentration. Hence, y1  was not considered in this study although 
MFiX-PIC computations were performed and the results were post-processed to compile this 

QoI. Also, y3 has a single value (0.40) for all values of , and it is not a suitable candidate for 
sensitivity analysis or calibration. y2:Location of Filling Shock alone was considered as the QoI 
in Case 1. Note that in the remainder of this report, abbreviated versions of this QoI name might 

have been used such as y2:LocSettling corresponding to y2 :Location of Filling Front or Shock 
due to font issues in plotting software. 

 

 

Figure 7: Scatter matrix plot of all input parameters and QoIs employed in simulation 

campaign for Case 1 using OLH design based 110 samples of simulations. 
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Figure 7 shows a scatter matrix plot of all input parameters and QoIs. This type of plot can be 
used to make a quick visual assessment of obvious correlations. For example, Figure 7 indicates 

that there appears to be a positive correlation between θ4 : Void fraction at maximal close 

packing  and y3:Void fraction in the first cell nearest to the bottom of the experimental vessel; 

this evaluation is based on examining the block representing (t4 v. y3) as an independent graph 
and observing clustering of the samples to indicate an apparent positive correlation between the 

variables. Likewise, similar linear correlations, but inversely, can be seen in the block for t3 v. 
y2. 

Refer to Appendix A.1 for the ASCII based dataset compiled at the end of the simulation 
campaign for Case 1 with 110 samples for the five input parameters and the three QoIs shown in 
Figure 7. 

Case 2: Fluidization 

Similar to the sampling method employed in Case 1, OLH method based sampling was 
employed for generating the simulation campaign for Case 2, which had the same five MFiX-

PIC input parameters (θ1,θ2,θ3,θ4,θ5), but with different lower and upper bounds for some of 

these input parameters as shown in Table 3. For example, θ1:P0 range was between 1.04 and 
19.99 for Case 1, whereas the new upper bound for Case 2 was set as 99.83.  

Figure 8 shows a scatter matrix plot of all input parameters and QoIs for Case 2, similar to that 
presented for Case 1 in Figure 7. The scatter plot matrix is useful to qualitatively identify the 

apparent correlated parameters such as θ4:Void fraction at maximal close packing  with the 

four QoIs (y1 : ∆P2, y2 : ∆P3, y3 : ∆P4) and y4 : (∆P5). The results for the first three QoIs are used 
in this analysis. The fourth QoI, y4 : ∆P5 is neglected because it is the difference in pressure 

between ports P1 and P4 in Figure 1, and is the sum of the other QoIs (∆P5 = ∆P2 + ∆P3 + ∆P4). 

 

Table 3: List of Input Parameter Abbreviations, Descriptions, Lower, and Upper Bounds 

Values Considered in the Simulation Campaign for Case 2 

Symbol Description Min. Max. 

𝜃1 or t1:P_0 Pressure linear scale factor, (P0) 1.05 99.83 

𝜃2 or t2:beta Volume fraction exponential scale factor, (β) 2.01 4.97 

𝜃3 or t3:StatWeight Statistical Weight, (Wp) 10.61 99.78 

𝜃4 or t4:ep_g* Void fraction at maximal close packing,  0.4 0.49 

𝜃5 or t5:VelfacCoeff Solids slip velocity scale factor, (α) 0.85 0.98 
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Figure 8: Scatter matrix plot of all input parameters and QoIs employed in simulation 

campaign for Case 2 using OLH design based 110 samples of simulations. 

 

Refer to Appendix A.2 for the ASCII based dataset compiled at the end of the simulation 
campaign for Case 2 with 110 samples for five input parameters and four QoIs shown in Figure 

8. 

Case 3: Circulating Fluidized Bed 

The same sampling method employed for the previous cases was used to construct the simulation 

campaign for Case 3 with 110 samples for the same 5 MFiX-PIC input parameters but some with 
different lower and upper bounds as shown in Table 4. The results for three QoIs were post-
processed from the simulation campaign results: (i) Interface height in standpipe 

(y1:h_standpipe), (ii) Pressure drop across riser(y2:dP_riser), (iii) Pressure drop across standpipe 

(y3:dP_standpipe). 
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Table 4: List of Input Parameter Abbreviations, Descriptions, Lower, and Upper Bounds 

Values Considered in the Simulation Campaign for Case 3 

Symbol Description Min. Max. 

𝜃1 or t1:P_0 Pressure linear scale factor, (P0) 1.0 250 

𝜃2 or t2:beta Volume fraction exponential scale factor, (β) 2.0 5.0 

𝜃3 or t3:StatWeight Statistical Weight, (Wp) 10.32 206.34 

𝜃4 or t4:ep_g* Void fraction at maximal close packing,  0.35 0.5 

𝜃5 or t5:VelfacCoeff Solids slip velocity scale factor, (α) 0.85 0.98 

 

Figure 9 shows the scatter matrix plot of all input parameters and QoIs considered for Case 3. 
The scatter matrix plot for this case does not show any particularly apparent correlations between 
input parameters and QoIs. 

 

 

Figure 9: Scatter matrix plot of all input parameters and QoIs employed in simulation 

campaign for Case 3 using OLH design base (110 samples). 

 

The reader is referred to Appendix A.3 for the ASCII based dataset compiled at the end of the 

simulation campaign for Case 3 with 110 samples for 5 input parameters and 3 QoIs shown in 
Figure 9. 
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4.2 SURROGATE MODEL CONSTRUCTION 

After the simulation campaign results are post-processed, a tabulated dataset is compiled for each 
case to be provided as ASCII file based input to the three UQ libraries. To perform Sobol’ 

Sensitivity Indices based global sensitivity analysis, a data-fitted surrogate model is constructed 
in lieu of the actual MFiX-PIC simulations for evaluating the QoIs at different settings of the five 
MFiX-PIC model input parameters. It is important to note that, the surrogate models are 
constructed to adequately characterize the relationship between input parameters and QoIs for 

the range of parameters. In other words, the constructed surrogate model is valid for the lower 
and upper bounds of each of the five MFiX-PIC model parameters determined when designing 
the simulation campaign to avoid running a new simulation each time. Hence, quality and 
adequacy of the surrogate model is important and needs to be adequately assessed. For a detailed 

discussion related to surrogate model construction, including adequacy assessments and error 
minimization, refer to Gel et al. (2013a,b, 2016, 2021). 

As surrogate models are numerous and vary in form and function, for the purposes of this study a 
data-fitted surrogate model based on Gaussian Process Model (GPM) (Williams and Rasmussen, 
2006) was determined to adequately characterize the relationship between the QoIs and input 
parameters for all three UQ programs with the same tabulated simulation campaign results 

provided as input. It is noted that if individually evaluated for the best data fitted surrogate model 
within each UQ software, one might be able to identify another surrogate model to be a better fit 
than GPM due to some differences in implementation of the surrogate model method. For 
example, radial basis function based surrogate model appeared to be giving slightly better fits for 

the QoI in Case2 when using Nodeworks. However, to establish a common comparison basis, the 
same surrogate model type, i.e., GPM was used across the board, although some implementation 
differences might yield to slight variations. 

In the remainder of this section, the GPM based surrogate models constructed with Nodeworks is 
presented for each of the three cases, whereas for PSUADE and DAKOTA based surrogate 
models only the results are used directly for comparison basis as the scope of this study is not 

aimed to show how to construct a surrogate model with PSUADE and DAKOTA. 

Nodeworks Based Surrogate Model for Case 1: Particle Settling  

Figure 10 shows the workflow created to construct a surrogate model (a.k.a. response surface 
model) with Nodeworks. First, the Response Surface Model (RSM) node under Surrogate 
Modeling and Analysis nodes are added to a blank worksheet. Also, Parallel Coordinates Plot 

under matplotlib nodes option is added and connected to RSM node as shown in the figure by 
selecting “list” option in the Matrix Response port. The latter node is used to qualitatively 
visualize the simulation campaign dataset (i.e., 110 samples are shown as individual lines that 
pass through the six vertical axis corresponding to the five input parameters and one QoI) once it 

is imported into RSM node. The simulation campaign dataset, which is saved in CSV format, is 
imported through “Data” tab and selecting Import button. If the data is imported successfully, it 
is displayed in tabular format with parameter labels along the first line as shown in Figure 10. In 
the same figure, the Parallel Coordinates Plot node shown on the right side is displaying the 

dataset where each vertical column corresponds to one of the imported input parameters or QoI 
(usually the last column on right). This plot is helpful to identify outlier results qualitatively as 
such outliers could degrade the quality of the surrogate model constructed significantly and may 
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need to be investigated prior to better understand if they are non-physical results due to lack of 
convergence, meshing issues, or some other issue. 

For additional information on how to construct a surrogate model within Nodeworks refer to 
(NETL, 2020; Weber, 2017, 2018). 

 

 

Figure 10: Nodes required for the Nodeworks workflow to construct a surrogate model after 

importing the simulation campaign dataset for QoI #2 (110 samples) into RSM node. 

 

Figures 11–13 focus only on the RSM node shown in the above figure and demonstrate the pre-
processing and model fitting steps, which are achieved through “Preprocessing” and “Model” 
tabs within the node, respectively. After the simulation campaign dataset is imported, a pre -
processing step needs to be performed to scale the 110 samples of the five input parameters in 

the dataset to be between 0 and 1. Figure 11 shows the screenshot for the “Preprocessing” tab 
and selection of scale option to have all input parameters scaled to be between 0 and 1 values 
rather than their actual range. Some of the surrogate model methods have been determined to 
work better with scaled input parameters when constructing surrogate models.  
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Figure 11: Scaling of the input parameters under Preprocessing tab of the RSM node. 

 

Figure 12 (left) shows the surrogate model construction phase where the user selects the different 
types of surrogate models to be tested by clicking the checkmark in the left most column labeled 

fit to indicate which surrogate model methods to be included and constructed to identify the best 
data-fitted surrogate model for the given dataset. As shown in the figure, the following surrogate 
model methods have been selected and various quality metrics like Mean Squared Error (MSE), 

Sum of Squared estimate of Errors (SSE), R2, etc., have been computed: (i) decision tree, (ii) 
radial basis function, (iii) Gaussian Process Model (a.k.a. GPM), (iv) gradient boosting, (v) 
random forest, (vi) polynomial, and (vii) support vector machine. After selection of the surrogate 
model options, the user may want to review each method to see if the default settings for the 

various parameters or hyperparameters used are satisfactory. For example, in Figure 12 (left) the 
hyperparameters for a GPM are shown when gaussian process line is clicked and highlighted. 
As discussed later, the value of alpha setting plays an important role for the quality of the GPM 
based surrogate model constructed with this dataset. After the review of the hyperparameters, 

Refit Model(s) button is clicked to initiate the process of surrogate mode construction for each 
of the selected methods, which may take some time and progress as shown in the title bar of the 
RSM node as green bar moving from left to right. After successful completion of the surrogate 

model fitting, the columns for MSE, SSE, R2, L_inf, L_1, and L_2 will be populated with the 
computed corresponding metrics. The user can sort from lowest value to highest value by 
clicking the desired column header (e.g., Figure 12 shows surrogate models sorted from lowest 

value to highest for MSE column). A more visual comparison of the fitted surrogate models can 
be achieved through the Compare tab, which shows the comparison in terms of bar chart using 
the selected metric to rank from lowest to highest. For example, Figure 12 (right) shows 
comparison based on MSE metric. Details on evaluation of the surrogate model quality (e.g., 

performing a rigorous evaluation of the quality of the surrogate model constructed with cross-
validation error assessment can be found in Nodeworks user manual and tutorials (NETL, 
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2020a,b). It is important to emphasize that if the analysis is reproduced using the files in 
Appendix A.1, there may be slightly different results than those shown in Figure 12 (left). This is 
due to the randomness involved in cross-validation assessment used in calculating the error 

metrics like MSE, SSE, R2, etc. 

 

 

Figure 12: (Left) Quality assessment metrics displayed for the tested different surrogate 
models under Model tab. (Right) Visual comparison of the surrogate model quality assessment 

metric under Compare tab. 

 

Once the user determines the best fitted surrogate model, it can be set under Model terminal port 
at the bottom right of RSM node for use in the  analysis nodes downstream by connecting this 

terminal port to the next node such as Sensitivity Analysis node. 

Comparison of the Surrogate Model Results for the Same Evaluation Points  

Since surrogate models are designed to be abstract, allowing them to represent arbitrary 
responses, differences in implementation, hyper parameters, and even randomness can affect th e 

resulting model. This makes it particularly hard to compare surrogate models across different 
software packages. However, since all the downstream analysis (such as global sensitivity study) 
relies on the surrogate model, it is important to understand the differences. 

To illustrate the differences between UQ software employed, a study with 10 new sample points 
was carried out. The objective was to provide new unseen 10 sample points to all three UQ 
toolkits and perform evaluations of the QoI using the surrogate models constructed with each. 

Figure 13 shows the scatter plot matrix for the five model input parameters with 110 samples of 
the original simulation campaign (shown as black filled circles) and the new 10 samples used for  
comparing the surrogate model results (shown as red filled circles). The new 10 samples were 
generated with Latin Hypercube sampling method employing DAKOTA within the same lower 

and upper bounds of the model parameters. Instead of DAKOTA, PSUADE, or Nodeworks 
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could also have been used. The same set of samples were provided as input for surrogate model 
evaluations. 

 

 

Figure 13: Scatter matrix plot showing the original simulation campaign (110 samples shown 
in black filled circles) and the new 10 samples (red filled circles) used for comparing the 

surrogate model results from PSUADE, DAKOTA, and Nodeworks. 

 

To begin comparing the UQ tools, a simple cubic polynomial based surrogate model was fit with 
all three UQ libraries and evaluated with the 10 new samples. Specifically, for Nodeworks, the 

samples and response were normalized between 0 and 1, and the linear regressor was used with a 
tolerance of 1e-4. Figure 14 compares the evaluated 10 new samples between the three tools 
results in 0 % error, out to 8 decimal places. This provides validation that all three tools are 
reading the sample points, fitting surrogate models, and evaluating the surrogate models 

identically. 
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Figure 14: Comparison of quadratic polynomial based surrogate model computed for Case 1 

QoI (y2:Location of filling shock) for the 10 new samples. 

 

The same process was also performed with a GPM based surrogate model, which allows for 
many more degrees of freedom. It is currently unknown what specific Gaussian Process 

implementations are used in both DAKOTA and PSUADE. As a result, even with the same 
sample points, it is highly likely that the three UQ packages will produce different surrogate 
models due to differences in the implementations, pre-processing, and selection of 
hyperparameters. 

Nodeworks uses scikit-learn for most of the surrogate models including Gaussian process. The 
scikit-learn documentation specifically references that the implementation is based on Algorithm 

2.1 in Rasmussen et al. (2006). This allows users to prescribe kernels (also called “covariance 
functions”) that are optimized during the fitting process. These kernels can drastically effect the 
resulting surrogate model. Nodeworks provides several default kernels as well as exposes other 
model parameters such as alpha (noise level in the targets). 

Figure 15 shows a comparison of the QoI computed with the surrogate models constructed by 
DAKOTA, PSUADE, and Nodeworks for the 10 evaluation samples shown in Figure 13, which 

were highlighted with red filled circles. The maximum difference between PSUADE and 
DAKOTA based surrogate model results was 0.48 % and minimum difference was -0.33 %. A 
similar comparison was performed between PSUADE and Nodeworks based surrogate model 
results with the default settings, which shows 6.71 % and -21.28 % as the maximum and 

minimum difference, respectively. Nodeworks results are shown as two separate categories, i.e. 
untuned (labeled as “Nodeworks”) and tuned (labeled as “Nodeworks Tuned”). Additional 
details about the tuning process are provided in the next section. 
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Figure 15: Comparison of results obtained for Case 1 QoI (y2:Location of filling shock) with 
the 10 evaluation samples from the Gaussian process surrogate model results from PSUADE, 

DAKOTA, and Nodeworks. 

 

Hyperparameter Tuning in Nodeworks to Improve the Surrogate Model  

Since some surrogate models, like the Gaussian process, have many options and 
hyperparameters, it is important to tune these so that the resulting response surface accurately 

characterizes the variability observed in the underlying data. For the Gaussian process in 
Nodeworks, the alpha parameter significantly affects the “smoothness” of the surface. The alpha 
value is added to the diagonal of the kernel matrix during fitting. 

To optimize this alpha parameter, a series of alpha values were picked. At each value, the 
surrogate model was repeatedly fit 100 times and tested with a randomly drawn 10 % of the 
samples. This cross validation tests how well the surrogate model predicts the response values in-

between the sample points. The MSE and the R-Squared (R2) value at each alpha can then be 
compared, Figure 16. The smallest mean squared error was at an alpha of 0.05. At alpha values 

less than 0.001, the MSE is larger, suggesting over-fitting. Comparing this hand-tuned 
Nodeworks based surrogate model to the PSUADE model results in a maximum difference of 7.9 
% and a minimum difference of -12.87 % compared to the untuned Nodeworks results, which 
reduces the under prediction in Nodeworks’ surrogate model predictions nearly to half compared 

to PSUADE.  
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Figure 16: MSE of cross-validation at different alpha values. 

 

Case 2: Fluidization 

This case has three QoIs, which necessitated the construction of three distinct surrogate models 

for each QoI in UQ software. The same input, i.e., simulation campaign dataset consisting of the 
results from 110 samples of five model parameter settings and three QoIs were provided in a 
tabulated format. 

An identical surrogate modeling process as described in Case 1 was followed here to construct 
the three Gausian process surrogate models need for further evaluations in Nodeworks. For 
brevity, a detailed description of the process is skipped. For further information and a copy of the 

Nodeworks workflow, see the gitlab repository mentioned in Section 1.2.  

Comparison of the Surrogate Model Results for Same Evaluation Points  

Similar to Case 1, 10 new sample points were generated to test and compare the trained surrogate 
models from the three packages. 

For QoI#1: y1:dP2, all three packages predict similar response values, which is shown in Figure 
17. The maximum difference between PSUADE and DAKOTA based surrogate model results 
was 0.42 % and minimum difference was -0.3 %. Similar comparison was performed between 

PSUADE and Nodeworks based surrogate model results with the default settings, which shows 
3.38 % and -4.41 % as the maximum and minimum difference, respectively. The tuned 
Nodeworks surrogate model with an alpha of 1e-2 shows almost the same 3.38 % and -4.41 % 
maximum and minimum difference compared to PSUADE. 
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Figure 17: Comparison of results obtained for Case 2 QoI #1 (y1:dP2) with the 10 evaluation 

samples from the surrogate model results from PSUADE, DAKOTA, and Nodeworks. 

 

For QoI#2: y2:dP3, all three packages also predict similar response values, as shown in Figure 
18. The maximum difference between PSUADE and DAKOTA based surrogate model results 

was 0.19 % and minimum difference was -0.1 %. Similar comparison was performed between 
PSUADE and Nodeworks based surrogate model results with the default settings, which shows 
7.54 % and -2.32 % as the maximum and minimum difference, respectively. The tuned 
Nodeworks surrogate model with an alpha of 1e-2 gets closer to PSUADE with a 3.56 % and -

1.75 % maximum and minimum difference, respectively. 

 

Figure 18: Comparison of results obtained for Case 2 QoI #2 (y2:dP3) the 10 evaluation 

samples from the surrogate model results from PSUADE, DAKOTA, and Nodeworks. 
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For the sake of brevity, the comparison for the last QoI is not shown. 

Case 3: Circulating Fluidized Bed 

This case has three QoIs. Hence, three distinct surrogate models for each QoI were constructed 

in the UQ software. The same input, i.e., simulation campaign dataset consisting of results from 
110 samples of five model parameter settings and three QoIs were provided in a tabulated 
format. 

An identical surrogate modeling process as described in Case 1 was followed here to construct 
the three Gaussian process surrogate models need for further evaluations in Nodeworks. For 
brevity, a detailed description of the process is skipped. For further information and a copy of the 

Nodeworks workflow, see the gitlab repository mentioned in Section 1.2.  

Comparison of the Surrogate Model Results for Same Evaluation Points  

Once again, 10 new sample points were generated to test and compare the trained surrogate 
models from the three packages. 

For QoI#1: Interface height in standpipe, the three packages predict varying response values, as 
shown in Figure 19. The maximum difference between PSUADE and DAKOTA based surrogate 

model results was 75.93 % and minimum difference was -14.24 %. Similar comparison was 
performed between PSUADE and Nodeworks based surrogate model results with the default 
settings, which shows 201.29 % and -21.07 % as the maximum and minimum difference, 
respectively. The tuned Nodeworks surrogate model with an alpha of 1e-2 shows almost the 

same 198.45 % and -22.04 % maximum and minimum difference compared to PSUADE. 

 

 

Figure 19: Comparison of results obtained for Case 3 QoI #1 (interface height in standpipe) 

with the 10 evaluation samples from the surrogate model results from PSUADE, DAKOTA, 

and Nodeworks. 
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For QoI#2: Pressure drop across riser, the three packages predict similar response values, as 
shown in Figure 20. The maximum difference between PSUADE and DAKOTA based surrogate 
model results was 0.74 % and minimum difference was -1.13 %. Similar comparison was 

performed between PSUADE and Nodeworks based surrogate model results with the default 
settings, which shows 21.35 % and -10.29 % as the maximum and minimum difference, 
respectively. The tuned Nodeworks surrogate model with an alpha of 1e-2 gets closer to 
PSUADE with 15.03 % and -3.09 % maximum and minimum difference. 

 

 

Figure 20: Comparison of results obtained for Case 3 QoI #2 (pressure drop across riser) with 
the 10 evaluation samples from the surrogate model results from PSUADE, DAKOTA, and 

Nodeworks. 

 

For QoI#3: Pressure drop across standpipe, the three packages predict similar response values, as 

shown in Figure 21. The maximum difference between PSUADE and DAKOTA based surrogate 
model results was 1.6 % and minimum difference was -1.26 %. Similar comparison was 
performed between PSUADE and Nodeworks based surrogate model results with the default 
settings, which shows 22.39 % and -6.39 % as the maximum and minimum difference, 

respectively. The tuned Nodeworks surrogate model with an alpha of 1e-2 moves further away 
from PSUADE with 24.17 % and -6.23 % maximum and minimum difference. 
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Figure 21: Comparison of results obtained for Case 3 QoI #3 (pressure drop across standpipe) 
with the 10 evaluation samples from the surrogate model results from PSUADE, DAKOTA, 

and Nodeworks. 
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5. SENSITIVITYANALYSIS RESULTS 

5.1 SENSITIVITY ANALYSIS METHOD: SOBOL’ SENSITIVITY INDICES 

Sensitivity analysis is one uncertainty quantification technique employed to address the 

important question: “Which input parameters have the most influence on the QoI?” The insight 
gained from sensitivity analysis can be critical. For example, it plays a key role during 
calibration, particularly when the number of input parameters exceeds three. The technique 
quantitatively determines the most influential parameters for each QoI, and can be used to focus 

the attention of experimentalists, especially when resources are limited.  

The sensitivity analysis results in this report (Figures 22-28) were obtained using the Sobol’ 

Sensitivity Indices based global sensitivity method, which is preferred for cases with non-linear 
response behavior. Sobol’ Sensitivity Indices method can generate multiple indices such as Total 
Sensitivity Indices, First Order Sensitivity Indices, and Second Order Sensitivity Indices. In the 
current study, only Sobol’ Total Sensitivity Indices were considered as they are more informative 

for the overall importance ranking. The data-fitted surrogate model was used to perform function 
evaluations for obtaining QoIs while calculating Sobol’ Total Sensitivity Indices. The reader is 
referred to Sobol’ (2001) and Iooss and Lemaître (2015) for additional information on the 
methodology and Gel et al. (2013a,b) for a demonstration with multiphase flow simulations. 

Additionally, a detailed sensitivity analysis study performed for the problems of interest with 
Nodeworks software can be found in Vaidheeswaran et al. (2021). 

5.2 CASE 1: GRAVITATIONAL PARTICLE SETTLING 

Global sensitivity analysis was performed using Sobol’ Total Sensitivity Indices method, which 

is a variance decomposition based methodology implemented in all three UQ software 
considered. A previous sensitivity study was carried out in Nodeworks only (Vaidheeswaran  et 
al., 2021). The current results might differ from the earlier results in (Vaidheeswaran et al., 2021) 
due to differences in the choice of surrogate model. Furthermore, a comparison between Sobol’ 

Total Sensitivity Indices from Nodeworks, DAKOTA and PSUADE are shown which was not 
present in the earlier study. 

Figure 22 shows the Sobol’ Total Sensitivity Indices results, which assess the most influential 

parameters on the QoI, y2:Location of Filling Shock. It is important to note that Total Indices 
take into account both main effects and their interaction effects on the QoI. Five different bars 
are shown for the results obtained from three different UQ software. For DAKOTA, in addition 
to the GPM based data-fitted surrogate model, Polynomial Chaos Expansion (PCE) based 
surrogate model is shown with “DAKOTA (PCE)” legend. Also results from Nodeworks are 

shown under two separate legends, first one shows the sensitivity indices obtained with GPM 
based surrogate models without any tuning using the default settings for GPM. The second one 
with the legend label of “Nodeworks (GPM Tuned)” shows the sensitivity indices obtained by 
employing a tuned GPM based data-fitted surrogate model. It is important to remember that the 

surrogate model plays a crucial role as it replaces the actual simulation code when performing 
the QoI evaluations required as part of the variance decomposition method employed (i.e. Sobol’ 
Sensitivity Indices). 
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For the 110 sample simulation campaign results, t3:StatWeight appears to have the most 
pronounced effect on y2:Location of Filling Shock, followed by t5:VelFacCoeff. The remaining 
parameters appear to exhibit substantially lower influence on the variability observed for QoI. 
Error bars shown in Nodeworks and PSUADE results are the confidence interval associated with 

10000 and 100 sample bootstrapping for each parameter, respectively. 

The differences observed in the magnitude of the Sobol’ Total Indices can be attributed to the 

implementation differences of surrogate model (i.e., GPM) between three UQ sof tware and the 
random drawings performed during the variance decomposition method based global sensitivity 
calculations. However, when the Sobol’ Total Indices from each UQ software are individually 
considered, the results show that Nodeworks demonstrated the same ranking order (i.e., most 

influential parameters in their importance order: (Rank1) t3:StatWeight, (Rank2) 

t5:VelFacCoeff, (Rank 3) t4:ep_g∗, (Rank 4) t2:beta, and (Rank 5) t1:P0) with PSUADE and 
DAKOTA based results. 

 

 

Figure 22: Comparison of Sobol’ Total Indices for global sensitivity analysis results from 

Nodeworks, PSUADE, and DAKOTA with the same input deck provided for Case 1 QoI #1. 

 

5.3 CASE 2: BUBBLING FLUIDIZED BED 

Similar to the previous case, Sobol’ Sensitivity Indices based global sensitivity analysis was 
performed using the 110 samples of the simulation campaign results obtained for the parameters 

listed in Table 3. As presented earlier, this case has three QoIs. Hence, Sobol’ Sensitivity Indices 
analysis was performed for each QoI separately utilizing the data-fitted surrogate model 
constructed for each. 

Figure 23 shows the Sobol’ Total Sensitivity Indices results to assess the most influential 

parameters on the first QoI, y1 : ∆P2. Sensitivity analysis results show t4:ep_g∗ to be distinctively 
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the most influential and dominant input parameter on y1 : ∆P2. The error bar show the confidence 
interval associated with 100 sample bootstrapping for each parameter. 

Confidence intervals do not show significant variability for any Sobol’ Index estimated. 

 

 

Figure 23: Comparison of Sobol’ Total Indices for y1 : ∆P2 based on the results from 

Nodeworks, PSUADE, and DAKOTA with the same input deck provided for Case 2 QoI # 1. 

 

The same importance ranking is observed for the second QoI, y2 : ∆P3 as shown in Figure 24. 

 

Figure 24: Comparison of Sobol’ Total Indices for y2 : ∆P3 based on the results from 

Nodeworks, PSUADE, and DAKOTA with the same input deck provided for Case 2 QoI # 2. 
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Figure 25 shows the Sobol’ Total Indices for the third QoI, y3 : ∆P4. Although t4:ep_g∗ appears 
to be the most influential similar to the previous two QoIs, the second ranking parameter appears 
to have changed from t5:VelFacCoeff to t2:beta, immediately followed by t1:P0 as the third 

most influential parameter, which is different than the findings for the previous two QoIs. y3 : 
∆P4 as it includes a combination of dense bed and freeboard. Parcels transitioning between these 
regions are influenced by parameters besides just the void fraction at maximum packing. 
Significant sensitivities were observed to t1 and t2, though the exact reason is not known. 

 

 

Figure 25: Comparison of Sobol’ Total Indices for y3 : ∆P4 based on the results from 

Nodeworks, PSUADE, and DAKOTA with the same input deck provided for Case 2 QoI # 3. 

 

For all three QoIs, Nodeworks results show consistent order of importance ranking compared to 
DAKOTA and PSUADE. 

5.4 CASE 3: CIRCULATING FLUIDIZED BED 

Figure 26 shows the Sobol’ Total Sensitivity Indices results for the first QoI in Case 3, i.e., 

y1:Interface height in standpipe. The most influential parameter is identified as t3:StatWeight, 
which is followed by t5:VelFacCoeff and t4:ep_g∗ as the second and third, respectively. 
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Figure 26: Comparison of Sobol’ Total Indices for Case 3 QoI # 1 (y1: Interface height in 
standpipe) based on the results from Nodeworks, PSUADE, and DAKOTA with the same 

input deck provided. 

 

Figure 27 shows the Sobol’ Total Indices for the second QoI, y2:Pressure drop across riser. For 
this QoI, the most influential input parameter was identified as t3:StatWeight. t4:ep_g∗ and 

t5:VelFacCoeff were identified as the second and third most influential parameters, respective ly. 

 

 

Figure 27: Comparison of Sobol’ Total Indices for Case 3 QoI # 2 (y2: Pressure drop across 

riser) based on the results from Nodeworks, PSUADE, and DAKOTA with the same input 

deck provided. 
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Figure 28 shows the Sobol’ Total Indices for the second QoI, y3:Pressure drop across standpipe. 

 

 

Figure 28: Comparison of Sobol’ Total Indices for Case 3 QoI # 3 (y3: Pressure drop across 
standpipe) based on the results from Nodeworks, PSUADE, and DAKOTA with the same 

input deck provided. 

 

For all three QoIs, Nodeworks results show consistent order of importance ranking compared to 

DAKOTA and PSUADE. 
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6. CONCLUSIONS 

The work presented in this report was motivated by the need to assess if the UQ capabilities 
offered through Nodeworks operated as intended for a complete end-to-end UQ analysis 

workflow. Nodeworks consists of different Python libraries specialized on various aspects of the 
UQ analysis tasks, which come as standalone packages. The assessment was performed as a 
solution verification by comparing against the results of global sensitivity analysis obtained with 
the two other well-established UQ software, PSUADE and DAKOTA. It is important to 

emphasize that the objective was not to identify the best UQ software for a given analysis task 
but to compare the results from Nodeworks with the other two to assess if consistent results can 
be achieved when the same input, which was constructed from the simulation campaign results , 
is provided to all to perform the same UQ analysis. 

Three distinct multiphase flow problems of interest were selected to carry out the same 
comparison. First case was a gravitational settling bed configuration, which was a unique 

problem as it also offered an analytical solution to perform precise error analysis to compare 
MFiX-PIC simulation results. Second and third cases were a laboratory scale bubbling fluidized 
bed configuration and laboratory scale circulating fluidized bed setup, respectively. 

An initial comparison of the surrogate model construction in the three UQ software was 
performed for all cases. To construct a surrogate model, the results from the MFiX-PIC 
simulation campaign with 110 sampling locations (based on Latin Hypercube sampling) were 

used. The aim was to use the surrogate model to cheaply calculate the QoIs for the prescribed 
range of the selected input parameters, which is utilized during UQ analysis. Ten unseen 
sampling locations were then used to compare the predictions from surrogate models of the th ree 
UQ software. The predicted values were exactly the same (up to eight decimal places) while 

using a third-order polynomial based surrogate model. When GPM was used, notable differences 
were present, which were minimized by hyperparameter tuning in Nodeworks, though not 
completely eliminated. This may be attributed to differences in the implementation of GPMs in 
the UQ software tools used in this study. 

This was followed by a global sensitivity analysis. Specifically, Sobol’ Sensitivity Indices 
method was employed in each UQ software for verification of importance ranking. QoIs from 

simulation campaigns of three different cases were provided as input to the three UQ tools . GPM 
based surrogate models were constructed for each case (and each QoI). Subsequently, Sobol’ 
Total Sensitivity Indices were estimated. Depending on flow physics, the ranking among MFiX-
PIC model parameters changed. However, the importance ranking from Nodeworks was 

consistent with PSUADE and DAKOTA results. Even though this exercise used GPM primarily, 
the same level of consistency could be expected for the other types of surrogate models. It must 
be reiterated that the effort was aimed at assessing whether the same importance ranking can be 
obtained from Nodeworks by establishing a solution verification-based approach rather than an 

exhaustive study that aims to determine which UQ software is best for the analysis performed.  
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APPENDIX 

The purpose of this Appendix is to provide information necessary for the reader to reproduce the 
results presented in this report for Nodeworks. There is expectation that the reader already has 
software access, as well as the necessary skill to work within and analyze results from associated 
software. The input files for PSUADE and DAKOTA were not included in the Gitlab repository 

as the primary objective of the appendix was to enable the reader to replicate the analysis 
presented with Nodeworks. 

The files discussed in this section are available through NETL’s Gitlab repository under the 
following URL: 

https://mfix.netl.doe.gov/gitlab/quality-assurance/pic-sensitivity-study.git 

The repository is publicly accessible at the time of the writing of this report.  

Registered users can clone the repository for all PIC Sensitivity Study related studies with the 
following git clone command from a Linux console terminal, then navigate to the folder where 

Sensitivity Analysis related files reside: 

 

 

 

For those who use a GUI based Git client, users can point to https://mfix.netl.doe.gov/gitlab/ 
quality-assurance/pic-sensitivity-study.git and clone the repository to their local system. 

All files were tested on MacOS and Windows and are expected to be compatible with other 
operating system environments. If problems occur, the reader is encouraged to report them to the 

lead author via e-mail at aike@alpemi.com. Any other suggestions to improve the quality of the 
presented files and instructions in the appendix will be appreciated. For the corrections of errors 
discovered after the publication of this report, please visit the Errata folder in the Gitlab 
repository. 

SIMULATION CAMPAIGN DATASETS 

The results presented in this document and shared through Gitlab were based on MFiX-PIC 

version 20.1 simulations. The authors have become aware of a bug in MFiX-PIC solver that 

affects the results from simulation campaigns presented. As mentioned earlier, the objective of 

this work was to demonstrate and compare the sensitivity analysis with PSUADE, DAKOTA, 

and Nodeworks for any given input dataset (i.e., simulation campaign inputs and quantities of 

interest). Hence, no further revisions were implemented; however, the readers are warned 

about the potential differences should the reader use MFiX-PIC other than version 20.1 is to 

repeat the simulation campaigns. 

The datafiles presented in this section are based on the compilation of the Optimal Latin 
Hypercube sampling-based design of experiments constructed for the five MFiX-PIC modeling 
input parameters in Comma Separated Values (CSV) formatted ASCII text files. The same set of 

input parameters (i.e., θ1 : Pressure linear scale factor (P0); θ2 : Volume fraction exponential 

scale factor (β); θ3 :Statistical Weight (Wp); θ4 : Void fraction at maximal close packing ; and 

1> git clone https://mfix.netl.doe.gov/gitlab/quality−assurance/pic−sensitivity−study.git  
2> cd pic−sensitivity−study/ 

about:blank
about:blank
about:blank
about:blank


Sensitivity Analysis of MFiX-PIC Parameters using Nodeworks, PSUADE, and DAKOTA 

A-2 

θ5 : Solids slip velocity scale factor (α)) were used for each case but the lower and upper bounds 
were different for some of these parameters as shown in Tables 2, 3, and 4. 

A.1 CASE 1: PARTICLE SETTLING 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case1_ParticleSettling” folder: 

C1_Fine_8July2020.csv : CSV formatted input dataset compiled including the results of the 

simulation campaign which contains five model input parameter settings and corresponding 
responses from MFiX-PIC simulations for the 110 sampling simulations. The QoIs are (i) 

y1:Location of Settling Shock; (ii) y2:Location of Filling Shock; (iii) y3:Void fraction in the first 
cell nearest to the bottom of the experimental vessel. 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case1_ParticleSettling/Nodeworks” folder: 

EvalPt_wGPM_psuade_compare.nc : Nodeworks worksheet file, which contains all the nodes 

with the imported dataset to perform the construction of the surrogate model, sensitivity analysis 
using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples used to 
compare the surrogate model predictions. The worksheet also demonstrates the case for untuned 

and hyperparameter tuned versions of the same workflow. A screenshot of the workflow 
constructed with this file is shown in Figure A1. The top two nodes in the figure (i.e., Response 
Surface Quad and Sensitivity Analysis node on the right) are for the surrogate model employing 
quadratic polynomial regression, and the resulting global sensitivity analysis ranking based on 

the quadratic regression surrogate model. The next three nodes shown (i.e., Response Surface, 
Sensitivity Analysis, and Parallel Coordinates Plot) are based on the Gaussian Process Model 
(GPM) based surrogate-model fitted and the sensitivity analysis results obtained from the 
untuned surrogate model. The Parallel Coordinates Plot on the right shows a visualization of the 

all of the simulation campaign datasets including both input parameters and QoI (i.e., 
y2=Location of Filling). The remaining Response Surface and Sensitivity Analysis nodes, which 
are labeled as Response Surface Tuned and Sensitivity Analysis Tuned, respectively are based on 
the hyperparameter tuned Gaussian Process Model surrogate model results. The other peripheral 

nodes are utilized to perform evaluations for the 10 unseen samples both by untuned and tuned 
surrogate models (i.e., Emulator nodes at the bottom), also output to file. The interested reader 
can review the worksheet and re-use its components for their own similar tasks. 

 

about:blank
about:blank


Sensitivity Analysis of MFiX-PIC Parameters using Nodeworks, PSUADE, and DAKOTA 

A-3 

 

Figure A1: Screenshot of the Nodeworks workflow saved in EvalPt_wGPM_psuade_com-pare.nc. 
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Screenshot_C1_SA_y2FillLoc.png : The screenshot image of the workflow shown in Figure A1, 

which can be reviewed in Nodeworks by the reader by loading the 

EvalPt_wGPM_psuade_compare.nc worksheet file in the same folder. 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case1_ParticleSettling/VerificationRuns” folder: C1_10new_samples.csv : The CSV 

formatted file for the 10 unseen sample points used as input to assess the Gaussian Process 
Model based surrogate model predictions and compare with respect to PSUADE an DAKOTA 
evaluations for the same set of input samples. 

A.2 CASE 2: FLUIDIZATION 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case2_Fluidization” folder: 

C2_RSM_8May2020.csv : CSV formatted input dataset compiled including the results of the 

simulation campaign which contains five model input parameter settings and corresponding 

responses from MFiX-PIC simulations for the 110 sampling simulations. The QoIs  are (i) y1 : 
∆P2; (ii) y2 : ∆P3; (iii) y3 : ∆P4; (iv) y4 : ∆P5. Note that the last QoI (y4) was not considered in 
the analysis presented in this study. 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case2_Fluidization/Nodeworks” folder: 

C2_SA_y1dP2.nc : Nodeworks worksheet file for the first QoI (y1:dP2), which contains all the 

nodes with the imported dataset to perform the construction of the surrogate model, sensitivity 
analysis using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples 

used to compare the surrogate model predictions. 

C2_SA_y2dP3.nc : Nodeworks worksheet file for the second QoI (y2:dP3), which contains all the 

nodes with the imported dataset to perform the construction of the surrogate model, sensitivity 

analysis using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples 
used to compare the surrogate model predictions. 

C2_SA_y3dP4.nc : Nodeworks worksheet file for the third QoI (y3:dP4), which contains all the 

nodes with the imported dataset to perform the construction of the surrogate model, sensitivity 
analysis using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples 
used to compare the surrogate model predictions. 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case2_Fluidization/Verification Runs” folder: 

C2_10new_samples.csv : The CSV formatted file for the 10 unseen sample points used as input 

to assess the Gaussian Process Model based surrogate model predictions and compare with 
respect to PSUADE an DAKOTA evaluations for the same set of input samples.  

A.3 CASE 3: CFB 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case3_CFB” folder: 
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C3_SA_Final.csv : CSV formatted input dataset compiled including the results of the simulation 

campaign which contains five model input parameter settings and corresponding responses from 

MFiX-PIC simulations for the 110 sampling simulations. The QoIs are (i) Interface height in 
standpipe (y1:h_standpipe), (ii) Pressure drop across riser (y2:dP_riser), and (iii) Pressure drop 
across standpipe (y3:dP_standpipe). 

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case3_CFB/Nodeworks” folder: 

C3_SA_y1.nc : Nodeworks worksheet file for the first QoI (y1: Interface height in standpipe), 

which contains all the nodes with the imported dataset to perform the construction of the 
surrogate model, sensitivity analysis using Sobol’ Total Sensitivity Indices, and the additional 

evaluations of the 10 samples used to compare the surrogate model predictions.  

C2_SA_y2.nc : Nodeworks worksheet file for the second QoI (y2: Pressure drop across riser), 

which contains all the nodes with the imported dataset to perform the construction of the 

surrogate model, sensitivity analysis using Sobol’ Total Sensitivity Indices, and the additional 

evaluations of the 10 samples used to compare the surrogate model predictions. 

C3_SA_y3.nc : Nodeworks worksheet file for the third QoI (y3: Pressure drop across standpipe), 

which contains all the nodes with the imported dataset to perform the construction of the 
surrogate model, sensitivity analysis using Sobol’ Total Sensitivity Indices and the additional 
evaluations of the 10 samples used to compare the surrogate model predictions.  

List of the file used with hyperlinks to the repository under “Simulation Campaign 

Datasets/Case3_CFB/Verification Runs” folder: 

C3_10new_samples.csv : The CSV formatted file for the 10 unseen sample points used as input 

to assess the Gaussian Process Model based surrogate model predictions and compare with 
respect to PSUADE an DAKOTA evaluations for the same set of input samples.  
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