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EXECUTIVE SUMMARY

The increasing adoption of engineering designs based on modeling and simulation necessitates
assessment of credibility of the numerical results. Uncertainty quantification (UQ) has thus
become a major thrust area in the field of computational sciences, especially when applied in
engineering research and development. UQ is often considered at the intersection of
multidisciplinary domains such as statistics, probability theory, computer sciences, and
engineering, which necessitates expertise in these domains collectively. Although there are a
number of different software tools where UQ methods have been implemented and offer users to
perform UQ analysis in a structured way, the expertise required to use these software toolkits
effectively is no less than the expertise required to understand the methods.

To enable an easier adoption of UQ methodologies, a graphical workflow based software has
been developed at the U.S. Department of Energy’s (DOE) National Energy Technology
Laboratory (NETL) as part of the ongoing Verification, Validation and Uncertainty
Quantification (VVUQ) initiatives. Nodeworks (https://mfix.netl.doe.gov/nodeworks) is an open-
source toolset written in Python. It was developed for enabling users to tackle challenging tasks
like non-intrusive UQ analysis, optimization, or supervised machine learning through visually
constructed workflows. Nodeworks utilizes the existing optimization and UQ libraries in
Python’s ecosystem such as SciPy, SALIb, Scikit-Learn, etc., and embeds them in specialized
nodes. Users can perform non-intrusive UQ analysis or optimization through the connection of
available analysis nodes or user-defined custom nodes to construct a workflow.

The study presented in this report was aimed to demonstrate UQ analysis performed not only
with Nodeworks, but also two other well-established UQ software tools from the U.S. DOE’s
National Laboratories (PSUADE from Lawrence Livermore National Laboratory and DAKOTA
from Sandia National Laboratory). It is important to emphasize that the motivation of this study
was not to determine the best UQ software, but to verify if the global sensitivity analyses from
the end-to-end workflow in Nodeworks are consistent with the results of other two UQ software.
The components of Nodeworks from Python’s ecosystem have been tested as standalone
libraries. However, an assessment study for the complete workflow targeting a specific UQ
analysis has not been performed for Nodeworks. Hence, this study is expected to serve as an
equivalent of solution verification for Nodeworks using other established UQ tools as reference
solution. For this purpose, three distinct flow configurations (i.e., settling bed, bubbling
fluidized, and circulating fluidized bed) have been used as representative multiphase flow
problems of interest. The results of the systematic simulation campaigns performed in an earlier
study using the particle-in-cell (PIC) approach in the Multiphase Flow with Interphase
eXchanges (MFiX) suite of solvers (i.e., MFiX-PIC) was utilized. The same set of tabulated
results was provided as input to the different UQ software for global sensitivity analysis. Results
for the three cases indicate that based on the Sobol’ Sensitivity Indices method the order of
importance ranking determined by Nodeworks for the Sobol’ Total Sensitivity Indices is
consistent with PSUADE and DAKOTA in each case for the five model parameters considered.
The input files for Nodeworks for the three cases are also shared through NETL ’s Gitlab
repository for the reader interested in reproducibility and further analysis (See Section 1.2).
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1. INTRODUCTION

1.1 MOTIVATION

Uncertainty quantification (UQ) is increasingly becoming a critical component of simulation-
based engineering, where the credibility of the model predictions needs to be assessed with
established methods, such as forward propagation of input uncertainties or global sensitivity
analysis. Non-intrusive UQ techniques where the application software, such as a finite-volume
discretization based fluid flow model, is treated as a black box and random drawing-based
samples from model results are utilized to perform the analysis has been of particular interest
(Geletal., 2013a,b). These non-intrusive techniques allow for the use of existing and
commercial software where significant development would be required to utilize intrusive UQ
techniques. To support these types of analyses, various UQ software tools have been developed
and are available both under commercial and open-source licensing.

The work presented here focuses on global sensitivity analysis methodology as part of the
ongoing UQ efforts at the U.S. Department of Energy’s (DOE) National Energy Technology
Laboratory (NETL), and comparison of the sensitivity analysis results obtained from multiple
UQ software tools (Nodeworks, PSUADE, and DAKOTA). The same dataset generated from the
simulation campaign using the PIC (particle-in-cell) solver in the open-source software suite
Multiphase Flow with Interphase eXchanges (MFiX) was provided as input to each UQ toolkit.
Three distinct problems covering different flow regimes typically encountered were investigated:
gravitational particle settling, fluidization, and a circulating fluidized bed.

In an earlier study by Vaidheeswaran et al. (2021) the sensitivities of five MFiX-PIC model
parameters were analyzed through global sensitivity analysis using Nodeworks. This current
work aims to establish a direct comparison of the sensitivity analysis results obtained from two
additional UQ software packages (PSUADE and DAKOTA) by providing the same input deck to
all three UQ packages and seeing if the same input variable ranking of importance is achieved. It
is important to note that the aim is not to compare the capabilities of the UQ software to identify
which one is the best, but to provide some sort of a solution verification process for Nodeworks
by comparing against other established UQ capabilities, which have gone through their own
verification processes. This study will serve as the documentation that demonstrates Nodeworks’
several features are working as intended.

1.2 OUTLINE

This report is part of activities designed to document verification, validation, and uncertainty
quantification studies for MFiX-PIC (NETL, 2021). However, the focus is primarily assessing
the UQ capabilities of Nodeworks (NETL, 2020a,b; Weber etal., 2020), utilizing the results
generated from MFiX-PIC simulations. Although Nodeworks can be operated as an independent
tool, its tight integration with the MFiX suite of solvers enables users to perform various tasks
with complicated workflows, such creating simulation campaigns with a statistical design of
experiments, sensitivity analysis, or optimization. The layout of this report is arranged to help the
reader, with the first section providing a brief background of the UQ software utilized (Section
2). Then a high-level overview of the three demonstration cases selected for the sensitivity
analysis comparison is provided in Section 3. Some details on the surrogate models constructed
to be utilized during sensitivity analysis in lieu of the actual MFiX-PIC simulations are presented
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in Section 4. Finally, the comparison of the sensitivity results obtained from three UQ toolkits
for the three distinct demonstration cases are presented in Section 5.

Several UQ methods and UQ software toolkits were used in the analysis presented in this report.
Associated files for Nodeworks are also shared through NETL’s Gitlab for the reader who is
interested in reproducing the findings provided that same software setup is employed. However,
it is important to note that the intent of this report does not include teaching the reader the
theoretical underpinnings of statistical analysis as it relates to surrogate model construction or
sensitivity analysis, nor how to use associated software. In each of the relevant sections,
additional referencesare provided to direct the user to more comprehensive guidance, if

required.
Workflow for the Global Sensitivity Analysis Employed in this Study

The workflow outlined below was followed to perform the Sobol’ Sensitivity Indices based
global sensitivity analysis presented in this study.

1. ldentify the model parametersto be investigated for sensitivity analysis, and determine the
lower and upper bounds for each of these parameters to be used.

2. Plan a simulation campaign with the aid of statistical design of experiments principles that
will enable the construction of a data-fitted surrogate model. The surrogate model should
adequately characterize the relationship between model parameters considered as input and
the response variables (a.k.a. quantities of interest (Qol) or output). This step is crucial
when the simulations are expensive or time consuming to perform as the sensitivity
analysis process requires thousands of function evaluations of the Qol to be performed
cheaply.

3. Post-process the simulation campaign results and compile an American Standard Code for
Information Interchange (ASCII) based file as a tabulated dataset consisting of the design
of experiments for the model parameters and the corresponding Qols fromthe simulation
campaign results. This should be prepared in Comma Separated Values (CSV) or plain
ASCII format for importing into UQ software easily.

4. Utilize UQ software (Nodeworks, PSUADE, and DAKOTA) to import the datasets and
perform the global sensitivity analysis employing Sobol’ Sensitivity Indices method,
which is classified under variance decomposition methods (Sobol’, 2001, Trucano etal.,
2006). Note that the surrogate model constructed is used to perform the evaluations of the
Qol required for Sobol” Sensitivity Indices computations, in lieu of actual MFiX-PIC
simulations for each instance. Hence, the performance of the surrogate model to accurately
represent the parameter space needs to be carefully assessed prior to the optimization step
with measures such as adjusted R2 or cross-validation error assessment. Doing so ensures
the error introduced by the surrogate is minimized.

5. Plot and compare the computed Sobol’ Total Sensitivity Indices from Nodeworks,
PSUADE, and DAKOTA for the corresponding Qol in each case considered. Itis
important to note that the same simulation campaign based dataset was provided as input
to all UQ software.
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This report also includes a separate data management and repository section (Appendix A).
There, the user is given information necessary to replicate the global sensitivity analysis
described for Nodeworks only as the objective of this study was to conduct a solution
verification study for Nodeworks. For example, results in this report rely on specific versionsand
libraries of Nodeworks, Python, PSUADE, and DAKOTA. If the user trying to reproduce the
data in this work does not apply the same versions of the employed software and pathway to
solution, it should not be surprising if exact results are not replicated especially due to
randomness involved in the use of particular data sampling techniques (like Latin Hypercube).

However, the user should expect to see consistent results, provided their solution process is
similarly sound.

Note: The results presented in this document and shared through Gitlab were based on MFiX-
PIC version 20.1 simulations. The authors have become aware of a bug in the MFiX-
PIC solver that affects the results from simulation campaigns presented. As the
objective of this work was to demonstrate and compare the sensitivity analysis with
PSUADE, DAKOTA, and Nodeworks for any given input dataset (i.e., simulation
campaign inputs and quantities of interest), no further revisions were implemented.
However, the readers are warned about the potential differences should the reader use
MFiX-PIC other than version 20.1 to replicate the simulation campaigns.

The files used in the analyses performed with Nodeworks are available within NETL’s Gitlab
environment, which is accessible through the following URL:

https://mfix.netl.doe.gov/gitlab/quality-assurance/pic-sensitivity-study.git

The repository is publicly accessible at the time of the writing of this report.

The purpose of the repository is two-fold: to have the information necessary to fully replicate
this study, and to provide the reader with a baseline to begin their own exploration of global
sensitivity analysis utilizing a surrogate model constructed from a systemically designed
simulation campaign. Note, however, that there is a clear expectation that a person accessing this
repository has pre-existing knowledge of howto use the Nodeworks software, which is the
primary focus of this study. For other software used as comparison for Nodeworks, the reader is
advised to review the respective websites and user manuals of the relevant UQ software.
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2. OVERVIEW OF THE UQ SOFTWARE USED

Three open-source UQ software tools were employed in this study: Nodeworks (NETL, 2020a,b,
Weber etal., 2020), PSUADE (Tong, 2010; Tong, 2020), and DAKOTA (Adams, 2008, Adams
etal., 2009). Although all three UQ software tools have nearly the same non-intrusive UQ
analysis options available, there are some differences in terms of implementation of the UQ
methods and also additional advanced UQ features, such as Bayesian Calibration, multifidelity
surrogate models, etc. Table 1 aims to provide a high level overview of similarities and
differences between these three UQ software tools under three UQ analysis capabilities. Hence,
it is nota comprehensive comparison.

2.1 NODEWORKS

Nodeworks, developed at NETL, is an open-source graphical programming interface library and
workflow framework where users can add, delete, and connect nodesto create customized visual
workflows (NETL, 2020a,b; Weber et al., 2020). Nodes perform prescribed operations on data
whose results are then passed to other nodes using connections (or edges). The library was
specifically developed in the Python programming language to remain flexible, portable, and
take advantage of all the libraries available in the Python ecosystem. It can support a wide
variety of applications and contains several collections of default nodes to assist deployment of
commonly used workflows quickly, even for novice users. Users can also create and add custom
nodes for specific applications. This work leverages a collection of nodes known as the
Surrogate Modeling and Analysis Toolset, which was developed to implement workflows that
construct and use data-fitted surrogate models or response surfaces. The Surrogate Modeling and
Analysis Toolset provides access to specialized nodes including optimization, sensitivity
analysis, and forward propagation of uncertainty.

Additionally, Nodeworks is directly embedded into MFiX’s graphical user interface (GUI), thus
allowing Nodeworks to create MFiX input decks with parametrically varying inputs directly.
This allows for simple setup and management of simulation campaigns. Similarly, Nodeworks
can be employed by other modeling software to create workflows with ease.

2.2 PSUADE

PSUADE is an open-source UQ software toolkit developed at the Lawrence Livermore National
Laboratory by Dr. Charles Tong (Tong, 2010) and released under GNU Lesser General Public
License (LGPL) since 2007. The name of the software, PSUADE, comes from the acronym for
Problem Solving Environment for Uncertainty Analysis and Design Exploration. The program
supports a variety of non-intrusive UQ analysis methods where the simulation application can be
treated as “black-box” code. Subsequently, many UQ analysis tasks can be performed by
sampling the black-box directly or through a data-fitted surrogate model constructed fromthe
computational model. The software offers a diverse range of sampling methods to enable users to
perform simulation campaigns with the objective of constructing an adequate data-fitted
surrogate model (a.k.a. response surface model, meta-model). The user can perform both basic
uncertainty analysis such as forward propagation of uncertainties and more complex analysis like
mixed aleatory-epistemic uncertainty analysis. PSUADE has a built-in statistical calibration
capability (i.e., Bayesian calibration with Markov Chain Monte Carlo (MCMC)). However,
deterministic calibration requires user-defined supporting code to incorporate residual
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evaluations. PSUADE is written in C++ and operates primarily as a command line based
software, which may be an impediment to new users. Additional details on the capabilities of
PSUADE can be found in https://computing.linl.gov/projects/psuade/software (Tong, 2020).

2.3 DAKOTA

DAKOTA is an open-source software toolkit developed at the Sandia National Laboratory and
distributed under LGPL (Adams, 2008, Adams et al., 2009). The acronym DAKOTA stands for
Design Analysis Kit for Optimization and Terascale Applications. This general-purpose software
toolkit is used to perform systems analysis and design on high performance computers.
DAKOTA includes algorithms for design optimization, uncertainty quantification, parameter
estimation, design of experiments, and sensitivity analysis, as well as a range of parallel
computing and simulation interfacing services. These capabilities may be used independently or
as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty.

24  COMPARISON OF UQ ANALYSIS CAPABILITIES

It is difficult to make a direct comparison between the three UQ software. There have been
several studies that attempted to identify the key features of available UQ software under several
dimensions, such as Simpson et al. (2008) which presented a table showing the available
capabilities for metamodeling and optimization in the commercially available software. Another
study by the U.S. DOE’s Pacific Northwest National Laboratory (Lin etal., 2012) aimed to
survey the available UQ methods and then carried out a systematic evaluation of these methods
implemented in ten UQ software identified, which included PSUADE and DAKOTA.

In the current study, Nodeworks version 20.2.0, PSUADE version 2.0, and DAKOTA version
6.13 were employed.

For additional information on the theoretical foundations and usage of these UQ software, the
reader is referred to the resources in the references section for each software (NETL, 2020;
Weber etal., 2020; Tong, 2010; Tong, 2020; Adams, 2008; Adams et al., 2009, 2015; Adams
and Hough, 2012).
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Table 1: Comparison of Features Implemented in Nodeworks, PSUADE, and DAKOT A under
Several UQ Capabilities

| | Nodeworks | PSUADE DAKOTA
Sampling Methods
Factorial, Central Factorial, Central
(i) Classical Design of Factorial, Central cletgelel it clettellel, e
. . . Composite Design, Box- | Composite Design, Box-
Experiments Composite Design
Benhken Benhken

Latin Hypercube,
Monte-Carlo,
Orthogonal arrays

Latin Hypercube, Monte- | Latin Hypercube, quasi-

(ii) Space Filling Designs Carlo MC, Orthogonal arrays

Polynomial Regression,
Gaussian Process Model
(GPM), Radial Basis
Functions (RBF),
Data-fitted Surrogate Models| multilayer perceptron,
supportvector machine,
decisionstree, random
forest, gradientboosting,
MARS, PyTorch

Polynomial Regression, | Polynomial Regression,
Kriging, GPM, RBF Kriging, GPM, RBF

Sobol’ Sensitivity Indices,
Morris One-At-A-Time
(MOAT), Fourier Sobol’ Sensitivity
Amplitude Sensitivity Test | Indices, MOAT
(FAST), Delta Moment-
Independent Measure

Sobol’ Sensitivity
Indices, MOAT via
PSUADE interface

Sensitivity Analysis Methods
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3. DEMONSTRATION CASES

3.1 OVERVIEW OF DEMONSTRATION CASES CONSIDERED

This report is part of series of studies on sensitivity analysis and calibration of MFiX-PIC that
aims to utilize three industrial applicationsthat span a wide range of flow regimes that is
typically encountered. In particular, the studies/cases are particle settling, a fluidized bed, and a
circulating fluidized bed..

3.2 CASE 1: GRAVITATIONAL PARTICLE SETTLING

The problem of particles settling under gravity in a dense medium has an analytical solution.
This means that a well-controlled experiment would give exactly the same result as a hand
calculation. From a calibration standpoint, this implies that there is no worry of added
experimental error when evaluating any hypothetical physical set-up. Any hand-calculation for
the solution is the truth. This indicates that the question of error movesentirely to the surrogate
model generated from the simulation campaign.

The setup, borrowed from Vaidheeswaran et.al. (2020b), is described in Figure 1. The
computational domain considered is 0.02 m (x-direction) x0.02 m (z-direction) x1 m (y-
direction). Uniform grid sizes of 4 mm were used in the x- and z- directions, while a grid size of
2 mm was used in the y-direction. The duration of each simulationwas 1 s, and a constant time-
step size of 5e-4 s was used.

Once the simulation begins, two concentration (kinematic) shocks evolve. The first originates
from the top of particle bed and corresponds to settling, while the other originates from the
bottom and corresponds to filling. The location of the filling shock (y2) is the quantity of interest
(Qol) considered in this study. Its analytical solution is given by:

€€ U — Es0€q0 Uy
UZ(IL) = —t ( — * 2 0)
1)

where €; andt are volume fraction of solids-phase and gas-phase at close packing. €s0 and €s0 are
initial volume fractions. % and uro represent relative velocities calculated using close packing and
initial conditions, respectively. The filling shock propagates upward when a lower region is fully
packed by solids. Properly predicting the filling shock may correspond well with other
simulations where solids concentration is high and particle motion is relatively slow. Previously,
Vaidheeswaran et al. (2020b) used this case to compare results from MFiX-PIC, MFiX-TFM
(two-fluid model), and MFiX-DEM (discrete element method) simulations as shown in Figure 2.
Plots compare time evolution of concentration fronts fromthe three models with the analytical
solution when€so = 0.15,

The location of settling shock (y1) is another Qol post-processed from the simulations. This
shock propagates in the direction of gravity, and corresponds to the transition between
homogeneously distributed solids with concentration€so and a dilute region where¢s = 0. The
analytical solution for y1 is given by,
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yi(t) = xo — t (egotiro) (2)

Average void fraction at the first cell location (y3) is the final Qol post-processed from
simulations. However, both y1 and ys are not considered in the current study. Using Equation 1, a
standalone dataset was generated at 21 different x1 settings where x1 is equivalent to€so, the
initial solids concentration. Note that it is this dataset, consisting of 21 samples, that is used in
lieu of experimental data required for deterministic calibration.

g=0 g=0
| |
v v

€ = &g &s = &s0
—
£ = &

t=0 t>0

Figure 1: Schematic of particles settling in a dense medium.
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Figure 2: Comparison of time evolution of shock fronts obtained using uncalibrated MFiX-
DEM, MFiX-PIC,and MFiX-TFM simulations with the analytical solution.
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3.3 CASE 2: FLUIDIZATION

The case of bubbling fluidization corresponds to the study of VVaidheeswaran et al. (2020a) and
Vaidheeswaran and Rowan (2020). Glass particles having density and Sauter mean diameter of
2510 kg/m3and 332 um classified under Group B based on Geldart’s criterion (Geldart, 1973)
were used. Three different geometries and five different flow conditions were analyzed, and one
particular setting was selected for the current study as shown in Figure 3. The internal diameter
of the cylinder is 6.35 cm. Several measurement ports are located along the axis to measure
differential pressure, of which AP2 =P1-P2, AP3 = P2—-P3,and AP4= P3 - Psare used as Qols (y1,
y2,and ys3, respectively). y1 and y; are useful in understanding the sensitivity of model parameters
under dense flow conditions while at higher velocities compared to the settling case. y3 contains
the transition between dense and dilute regions where particles constantly engage and disengage,
and it remains to be determined if the existing closure models in PIC are capable of handling
such transitions. Figure 4 shows instantaneous snapshots of bed expansion at different U/U py,
where the red line indicates the height determined by the image processing technique used in
Vaidheeswaranetal. (2020a).

The computational domain consists of a single cylinder, whose bottom end is a mass inflow
boundary, where a value of U =0.234 m/s is specified corresponding to U/U ,y=2.97. A pressure
outflow boundary condition is used at the top, while the walls are treated as no-slip boundaries.
Glass particles are filled up to a height of 15.24 cm having a solids packing fraction of 0.6. A
uniform grid 3.33 mm x3.33 mm x3.33 mm is used, and the simulations are run for a total
duration of 50 s using a variable time step with a maximum value of 5E-4 s.

P, H, = 86.26 cm

AP,
H,=15.24 cm

AP P; Hs = 11.11 cm
3 P, H, = 6.03 cm

AP, P, H, =0.56 cm

H=0cm

L, —
D=6.35¢cm

Figure 3: Schematic of Case 2 setup showing the computational domain and location of
pressure ports.
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2.5U, 3.0U, 3.5U, 4.0U, 4.5U,

H,: 251.4mm H,: 274.0mm H,: 2749mm

Figure 4: Instantaneous snapshots from fluidization experiments showing bed expansion for
different U/Us(Vaidheeswaranetal.,2020).

3.4  CASE 3: CIRCULATING FLUIDIZED BED

The setup of Xu etal. (2018) is used for analyzing the sensitivity of MFiX-PIC model
parameters in a circulating fluidized bed (CFB). Figure 5 shows the schematic of the CFB
configuration and Figure 6 shows comparison between experiments and numerical simulations
using MFiX-DEM as reported by Xu etal. (2018). The CFB unit contained 350 g of high-density
polyethylene (HDPE) particles having a Sauter mean diameter of 871 um and a density of 863
kg/ms3 (grouped under Geldart B classification). Primary air was injected into the systemusing
the flow controller FTC180 located below the riser. Move air was supplied using FTC135 and
FTC115 at the top and bottom of the CFB return leg after the standpipe. The Qols used in this
study were interface height, pressure drop across riser, and pressure drop across standpipe (y1, y2,
and ys, respectively). In a sense, the dynamics in the standpipe are comparable to Case 1, where
the particles motion is relatively slow. The move air flow past the standpipe ensures particles do
not stagnate. Multiphase dynamics at the bottom of riser are comparable to the bubbling
fluidized bed albeit at much higher air superficial velocity. The solids concentration is less
compared to dense portionsin Case 2.

The geometry and boundary conditions used in the simulation campaign were identical to the
study of Xu etal. (2018). The grid size was setto 5 mm in all the directions. Flow rates from
mass flow controllers FTC180, FTC135, and FTC115 used in this study were 300, 7, and 2.5
standard liter per minute (SLPM), respectively. Mass inflow boundary condition was specified at
the bottom of the riser having a uniformvelocity of 2.46 m/s. The computational fluid dynamics
(CFD) calculations were performed over a duration of 45 s using a variable time step, with the
maximum value setat 5e-4 s.

11
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Figure 5: Schematic of Case 3 setup showing the location of mass flow controllers.

Figure 6: Snapshot of the experimental setup (left)and MFiX-DEM simulation (right) (Xu et
al.,2018).
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4. SURROGATE MODELS CONSTRUCTED

The non-intrusive uncertainty quantification method, such as the Sobol’ Sensitivity Indices based
global sensitivity analysis employed in this study, requires Monte Carlo simulations to be
performed by randomly drawing different settings for each of the input parameters within their
prescribed range and then computing the Qol for each sample. Although MFiX-PIC is
substantially faster in time-to-solution when compared to the other MFiX suite solvers like
MFiX-DEM or MFiX-TFM, performing Monte Carlo simulations by directly running MFiX-PIC
at each new sample setting is not practical. Instead, a simulation campaign was systematically
designed, using space filling techniques to have coverage for samples within each input
parameter’s lower and upper bounds. The sampling simulations in the campaign are carried out
independently on a high-performance computing cluster. Then the simulation campaign results
are compiled and utilized to construct a data-fitted surrogate model (a.k.a. response surface or
meta-model) to characterize the relationship between the input parameters and Qols (a.k.a.
response variables) as reliably as possible. For additional detailed information on this important
step, refer to Gel etal. (2013a, 2016).

Prior to presenting the Sobol’ Sensitivity Indices based sensitivity analysis results, this section
presents details on the simulation campaigns used to construct the surrogate models for each Qol
in the three representative cases considered. It is important to note that, in non-intrusive UQ
analysis surrogate model construction is one of the most time consuming and critical step as the
quality of the constructed surrogate model directly affects the remaining UQ analysis.

4.1 SIMULATION CAMPAIGNS DESIGNED TO CONSTRUCT SURROGATE
MODELS

Case 1: Particle Settling

An Optimal Latin Hypercube (OLH) sampling method implemented in Nodeworks was used to
generate a sampling campaign for five MFiX-PIC input parameters. The first five were modeling
parameters specific to MFiX-PIC, accessible to the user through keywords. These included: 61 :
Pressure linear scale factor (Po); 62 : Volume fraction exponential scale factor (f); 63 :Statistical

Weight (W)y); 64: Void fraction at maximal close packing(F;); and 6s : Solids slip velocity scale
factor (). In the remainder of this report, abbreviated versions of the input parameter names
have been used due to font issues in plotting software. Table 2 offers these abbreviations along
with lower and upper bound values used for each model parameter in the simulation campaign.
For example, anywheretl:P_0ortl or Thetal appears in this report, it is equivalent to
01:Pressure linear scale factor (Po). Itis noted that actual bounds generated at the end of Latin
Hypercube sample generation are shown, which might be slightly different than the initially
targeted bounds due to the randomness of the Latin Hypercube method (e.g., targeted upper
bound for (Po) was 20.0, but actual samples generated show a maximum value of 19.99).
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Table 2: List of Input Parameter Abbreviations, Descriptions, Lower, and Upper Bounds
Values Considered in the Simulation Campaign for Case 1

Symbol Description | Min. \YEVE
B10rtl:P_0 Pressurelinear scale factor, (Po) 1.04 19.99
6,ort2:beta Volume fraction exponential scale factor, (8) 1.01 4,99
6 or t3:StatWeight Statistical Weight, (W) 3.04 7.96
Oiortd.ep_g* Void fraction at maximal close packinééz) 0.35 0.49
05 or t5:VelfacCoeff Solids slip velocity scale factor, (a) 0.5 0.99

The initial Qols extracted from the simulation campaign were y1:Location of Settling Shock;
y2:Location of Filling Shock; and y3:Void fraction in the first cell nearest to the bottom of the
experimental vessel. y1 corresponds to the transition between dilute region of the settling bed and
€9=1. It was of interest to determine the sensitivity of PIC parameters in regions having
intermediate to dense solids concentration. Hence, y1 was not considered in this study although
MFiX-PIC computations were performed and the results were post-processed to compile this
Qol. Also, ys has a single value (0.40) for all values of¢so, and it is not a suitable candidate for
sensitivity analysis or calibration. y2:Location of Filling Shock alone was considered as the Qol
in Case 1. Note that in the remainder of this report, abbreviated versions of this Qol name might
have been used such as y2:LocSettling corresponding to y2 :Location of Filling Front or Shock
due to fontissues in plotting software.
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Figure 7: Scatter matrix plot of all input parameters and Qols employed in simulation
campaign for Case 1 using OLH design based 110 samples of simulations.
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Figure 7 shows a scatter matrix plot of all input parameters and Qols. This type of plot can be
used to make a quick visual assessment of obvious correlations. For example, Figure 7 indicates
that there appears to be a positive correlation between 64 : Void fraction at maximal close

packing(ﬂj) and y3:Void fraction in the first cell nearest to the bottom of the experimental vessel;
this evaluation is based on examining the block representing (t4 v. y3) as an independent graph
and observing clustering of the samples to indicate an apparent positive correlation between the
variables. Likewise, similar linear correlations, but inversely, can be seen in the block for t3v.
y2.

Refer to Appendix A.1for the ASCII based dataset compiled at the end of the simulation
campaign for Case 1 with 110 samplesfor the five input parameters and the three Qols shown in
Figure 7.

Case 2: Fluidization

Similar to the sampling method employed in Case 1, OLH method based sampling was
employed for generating the simulation campaign for Case 2, which had the same five MFiX-
PIC input parameters (61,02,63,604,085), but with different lower and upper bounds for some of
these input parameters as shown in Table 3. For example, 61:Po range was between 1.04 and
19.99 for Case 1, whereas the new upper bound for Case 2 was set as 99.83.

Figure 8 shows a scatter matrix plot of all input parameters and Qols for Case 2, similar to that
presented for Case 1 in Figure 7. The scatter plot matrix is useful to qualitatively identify the

apparent correlated parameters such as 64:Void fraction at maximal close packing@) with the
four Qols (y1: APz, y2: APz, y3: AP4) and y4: (APs). The results for the first three Qols are used
in this analysis. The fourth Qol, y4: APs is neglected because it is the difference in pressure
between ports P1and P4 in Figure 1, and is the sum of the other Qols (APs =AP2 + APz + AP4).

Table 3: List of Input Parameter Abbreviations, Descriptions, Lower, and Upper Bounds
Values Considered in the Simulation Campaign for Case 2

Description
G10rtl:P_0O Pressurelinear scalefactor, (Po) 1.05 99.83
6,ort2:beta Volume fraction exponential scale factor, (8) 2.01 4,97
65 or t3:StatWeight Statistical Weight, (W,) 10.61 99.78
O,ortd.ep_g* Void fraction at maximal close packingﬁéz) 0.4 0.49
65 or t5:VelfacCoeff Solids slip velocity scale factor, (o) 0.85 0.98
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Figure 8: Scatter matrix plot of all input parameters and Qols employed in simulation
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campaign for Case 2 using OLH design based 110 samples of simulations.

Refer to Appendix A.2 for the ASCII based dataset compiled at the end of the simulation
campaign for Case 2 with 110 samplesfor five input parameters and four Qols shown in Figure

8.

Case 3: Circulating Fluidized Bed

The same sampling method employed for the previous caseswas used to construct the simulation
campaign for Case 3 with 110 samplesfor the same 5 MFiX-PIC input parameters but some with
different lower and upper bounds as shown in Table 4. The results for three Qols were post-
processed from the simulation campaign results: (i) Interface height in standpipe
(v1:h_standpipe), (ii) Pressure drop across riser(y2:dP_riser), (iii) Pressure drop across standpipe

(v3:dP_standpipe).
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Table 4: List of Input Parameter Abbreviations, Descriptions, Lower, and Upper Bounds
Values Considered in the Simulation Campaign for Case 3

Symbol Description | Min. \YEVE
B10rtl:P_0 Pressurelinear scale factor, (Po) 1.0 250
6,ort2:beta Volume fraction exponential scale factor, (8) 2.0 5.0
6 or t3:StatWeight Statistical Weight, (W) 10.32 206.34
Oiortd.ep_g* Void fraction at maximal close packinééz) 0.35 0.5
05 or t5:VelfacCoeff Solids slip velocity scale factor, (a) 0.85 0.98

Figure 9 shows the scatter matrix plot of all input parameters and Qols considered for Case 3.
The scatter matrix plot for this case does not show any particularly apparent correlations between
input parameters and Qols.
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Figure 9: Scatter matrix plot of all input parameters and Qols employed in simulation
campaign for Case 3 using OLH design base (110samples).

The reader is referred to Appendix A.3 for the ASCII based dataset compiled at the end of the
simulation campaign for Case 3 with 110 samples for 5 input parameters and 3 Qols shown in
Figure 9.
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4.2 SURROGATE MODEL CONSTRUCTION

After the simulation campaign results are post-processed, a tabulated dataset is compiled for each
case to be provided as ASCII file based input to the three UQ libraries. To perform Sobol’
Sensitivity Indices based global sensitivity analysis, a data-fitted surrogate model is constructed
in lieu of the actual MFiX-PIC simulations for evaluating the Qols at different settings of the five
MFiX-PIC model input parameters. It is important to note that, the surrogate models are
constructed to adequately characterize the relationship between input parameters and Qols for
the range of parameters. In other words, the constructed surrogate model is valid for the lower
and upper bounds of each of the five MFiX-PIC model parameters determined when designing
the simulation campaign to avoid running a new simulation each time. Hence, quality and
adequacy of the surrogate model is important and needs to be adequately assessed. For a detailed
discussion related to surrogate model construction, including adequacy assessments and error
minimization, refer to Gel etal. (2013a,b, 2016, 2021).

As surrogate models are numerous and vary in formand function, for the purposes of this study a
data-fitted surrogate model based on Gaussian Process Model (GPM) (Williams and Rasmussen,
2006) was determined to adequately characterize the relationship between the Qols and input
parameters for all three UQ programs with the same tabulated simulation campaign results
provided as input. Itis noted that if individually evaluated for the best data fitted surrogate model
within each UQ software, one might be able to identify another surrogate model to be a better fit
than GPM due to some differences in implementation of the surrogate model method. For
example, radial basis function based surrogate model appeared to be giving slightly better fits for
the Qol in Case2 when using Nodeworks. However, to establish a common comparison basis, the
same surrogate model type, i.e., GPM was used across the board, although some implementation
differences mightyield to slight variations.

In the remainder of this section, the GPM based surrogate models constructed with Nodeworks is
presented for each of the three cases, whereas for PSUADE and DAKOTA based surrogate
models only the results are used directly for comparison basis as the scope of this study is not
aimed to show how to construct a surrogate model with PSUADE and DAKOTA.

Nodeworks Based Surrogate Model for Case 1: Particle Settling

Figure 10 shows the workflow created to construct a surrogate model (a.k.a. response surface
model) with Nodeworks. First, the Response Surface Model (RSM) node under Surrogate
Modeling and Analysis nodes are added to a blank worksheet. Also, Parallel Coordinates Plot
under matplotlib nodes option is added and connected to RSM node as shown in the figure by
selecting “list” option in the Matrix Response port. The latter node is used to qualitatively
visualize the simulation campaign dataset (i.e., 110 samples are shown as individual lines that
pass through the six vertical axis corresponding to the five input parametersand one Qol) once it
is imported into RSM node. The simulation campaign dataset, which is saved in CSV format, is
imported through “Data” tab and selecting Importbutton. If the data is imported successfully, it
is displayed in tabular format with parameter labels along the first line as shown in Figure 10. In
the same figure, the Parallel Coordinates Plot node shown on the right side is displaying the
dataset where each vertical column corresponds to one of the imported input parameters or Qol
(usually the last column on right). This plot is helpful to identify outlier results qualitatively as
such outliers could degrade the quality of the surrogate model constructed significantly and may

18



Sensitivity Analysis of MFiX-PICParameters using Nodeworks, PSUADE, and DAKOTA

need to be investigated prior to better understand if they are non-physical results due to lack of
convergence, meshing issues, or some other issue.

For additional information on how to construct a surrogate model within Nodeworks refer to
(NETL, 2020; Weber, 2017, 2018).
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Figure 10: Nodes required for the Nodeworks workflow to construct a surrogate model after
importing the simulation campaign datasetfor Qol #2 (110samples) into RSM node.

Figures 11-13 focusonly on the RSM node shown in the above figure and demonstrate the pre-
processing and model fitting steps, which are achieved through “Preprocessing” and “Model”
tabs within the node, respectively. After the simulation campaign dataset is imported, a pre-
processing step needs to be performed to scale the 110 samples of the five input parameters in
the dataset to be between 0 and 1. Figure 11 shows the screenshot for the “Preprocessing” tab
and selection of scale option to have all input parameters scaled to be between 0 and 1 values
rather than their actual range. Some of the surrogate model methods have been determined to
work better with scaled input parameters when constructing surrogate models.
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Figure 11: Scaling of the input parametersunder Preprocessing tab of the RSM node.

Figure 12 (left) shows the surrogate model construction phase where the user selects the different
types of surrogate models to be tested by clicking the checkmark in the left most column labeled
fit to indicate which surrogate model methods to be included and constructed to identify the best
data-fitted surrogate model for the given dataset. As shown in the figure, the following surrogate
model methods have been selected and various quality metrics like Mean Squared Error (MSE),
Sum of Squared estimate of Errors (SSE), R?,etc., have been computed: (i) decision tree, (ii)
radial basis function, (iii) Gaussian Process Model (a.k.a. GPM), (iv) gradient boosting, (v)
random forest, (vi) polynomial, and (vii) support vector machine. After selection of the surrogate
model options, the user may want to review each method to see if the default settings for the
various parameters or hyperparameters used are satisfactory. For example, in Figure 12 (left) the
hyperparameters for a GPM are shown when gaussian process line is clicked and highlighted.
As discussed later, the value of alpha setting plays an important role for the quality of the GPM
based surrogate model constructed with this dataset. After the review of the hyperparameters,
Refit Model(s) button is clicked to initiate the process of surrogate mode construction for each
of the selected methods, which may take some time and progressas shown in the title bar of the
RSM node as green bar moving from left to right. After successful completion of the surrogate
model fitting, the columns for MSE, SSE, R?, L_inf, L_1, and L_2 will be populated with the
computed corresponding metrics. The user can sort from lowest value to highest value by
clicking the desired column header (e.g., Figure 12 shows surrogate models sorted from lowest
value to highest for MSE column). A more visual comparison of the fitted surrogate models can
be achieved through the Comparetab, which shows the comparison in terms of bar chart using
the selected metric to rank from lowest to highest. For example, Figure 12 (right) shows
comparison based on MSE metric. Details on evaluation of the surrogate model quality (e.qg.,
performing a rigorous evaluation of the quality of the surrogate model constructed with cross-
validation error assessment can be found in Nodeworks user manual and tutorials (NETL,
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2020a,b). Itis important to emphasize that if the analysis is reproduced using the files in
Appendix A.1, there may be slightly different results than those shown in Figure 12 (left). This is
due to the randomness involved in cross-validation assessment used in calculating the error
metrics like MSE, SSE, Rz?, etc.
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Figure 12: (Left) Quality assessment metrics displayed for the tested different surrogate
models under Model tab. (Right) Visual comparison of the surrogate model quality assessment
metric under Compare tab.

Once the user determines the best fitted surrogate model, it can be set under Model terminal port
at the bottom right of RSM node for use in the analysis nodes downstream by connecting this
terminal port to the next node such as Sensitivity Analysis node.

Comparison of the Surrogate Model Results for the Same Evaluation Points

Since surrogate models are designed to be abstract, allowing them to represent arbitrary
responses, differencesin implementation, hyper parameters, and even randomness can affect the
resulting model. This makes it particularly hard to compare surrogate models across different
software packages. However, since all the downstream analysis (such as global sensitivity study)
relies on the surrogate model, itis important to understand the differences.

To illustrate the differences between UQ software employed, a study with 10 new sample points
was carried out. The objective was to provide new unseen 10 sample points to all three UQ
toolkits and perform evaluations of the Qol using the surrogate models constructed with each.
Figure 13 shows the scatter plot matrix for the five model input parameters with 110 samples of
the original simulation campaign (shown as black filled circles) and the new 10 samples used for
comparing the surrogate model results (shown as red filled circles). The new 10 samples were
generated with Latin Hypercube sampling method employing DAKOTA within the same lower
and upper bounds of the model parameters. Instead of DAKOTA, PSUADE, or Nodeworks
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could also have been used. The same set of samples were provided as input for surrogate model
evaluations.

e
S 33 ‘y. o".
& 3
3 }.c.-,..;-
5 20 ° v
=, a \7.'?:" :\’ ? S
BT 1048 "."cgf: .r“ f.
] 5 % ‘. .‘ ‘
: <,
7 o 4@3“- ﬁ)[r\.
= o O."’ %-‘ %
\.0

5 03 .. \.. s
8 o9 ‘
8- 8? 9% ﬁ
R ;4"\\. P E ,&
BTE -;.,-.' ‘8 ‘%@l‘. " ‘Io %‘
S X $
R LS LRI ‘;s NI g. 1;’(._ &, }
X 005 Bt S fJ’s e A

0 5 10 15 5 10 15  0.36 0.42 0.48 05 0.7 0.9

t1:P_0 t2:beta t3:StatWeight t4d:ep_g* t5:VelfacCoeff

Figure 13: Scatter matrix plot showing the original simulation campaign (110samples shown
in black filled circles) and the new 10 samples (red filled circles) used for comparing the

surrogatemodel results fromPSUADE, DAKOTA, and Nodeworks.

To begin comparing the UQ tools, a simple cubic polynomial based surrogate model was fit with
all three UQ libraries and evaluated with the 10 new samples. Specifically, for Nodeworks, the
samples and response were normalized between 0 and 1, and the linear regressor was used with a
tolerance of 1e-4. Figure 14 compares the evaluated 10 new samples between the three tools
results in 0 % error, out to 8 decimal places. This provides validation that all three tools are
reading the sample points, fitting surrogate models, and evaluating the surrogate models
identically.
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Figure 14: Comparison of quadratic polynomial based surrogate model computed for Case 1
Qol (y2:Location of fillingshock) for the 10 new samples.

The same process was also performed with a GPM based surrogate model, which allows for
many more degrees of freedom. It is currently unknown what specific Gaussian Process
implementations are used in both DAKOTA and PSUADE. As a result, even with the same
sample points, itis highly likely that the three UQ packages will produce different surrogate
models due to differences in the implementations, pre-processing, and selection of
hyperparameters.

Nodeworks uses scikit-learn for most of the surrogate models including Gaussian process. The
scikit-learn documentation specifically references that the implementation is based on Algorithm
2.1 in Rasmussen etal. (2006). This allows users to prescribe kernels (also called “covariance
functions”) that are optimized during the fitting process. These kernels can drastically effect the
resulting surrogate model. Nodeworks provides several default kernels as well as exposes other
model parameters such as alpha (noise level in the targets).

Figure 15 shows a comparison of the Qol computed with the surrogate models constructed by
DAKOTA, PSUADE, and Nodeworks for the 10 evaluation samples shown in Figure 13, which
were highlighted with red filled circles. The maximum difference between PSUADE and
DAKOTA based surrogate model results was 0.48 % and minimum difference was -0.33%. A
similar comparison was performed between PSUADE and Nodeworks based surrogate model
results with the default settings, which shows 6.71 % and -21.28 % as the maximum and
minimum difference, respectively. Nodeworks results are shown as two separate categories, i.e.
untuned (labeled as “Nodeworks”) and tuned (labeled as “Nodeworks Tuned”). Additional
details about the tuning process are provided in the next section.
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Figure 15: Comparison of results obtained for Case 1 Qol (y2:Location of filling shock) with
the 10 evaluation samples from the Gaussian process surrogate model results from PSUADE,

DAKOTA, and Nodeworks.

Hyperparameter Tuning in Nodeworks to Improve the Surrogate Model

Since some surrogate models, like the Gaussian process, have many options and
hyperparameters, it is important to tune these so that the resulting response surface accurately
characterizes the variability observed in the underlying data. For the Gaussian processin
Nodeworks, the alpha parameter significantly affects the “smoothness” of the surface. The alpha
value is added to the diagonal of the kernel matrix during fitting.

To optimize this alpha parameter, a series of alpha values were picked. At each value, the
surrogate model was repeatedly fit 100 times and tested with a randomly drawn 10 % of the
samples. This cross validation tests how well the surrogate model predicts the response values in-
between the sample points. The MSE and the R-Squared (R?) value at each alpha can then be
compared, Figure 16. The smallest mean squared error was at an alpha of 0.05. Atalpha values
less than 0.001, the MSE is larger, suggesting over-fitting. Comparing this hand-tuned
Nodeworks based surrogate model to the PSUADE model results in a maximum difference of 7.9
% and a minimum difference of -12.87 % compared to the untuned Nodeworks results, which
reduces the under prediction in Nodeworks’ surrogate model predictions nearly to half compared
to PSUADE.
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Figure 16: MSE of cross-validation at differentalphavalues.

Case 2: Fluidization

This case has three Qols, which necessitated the construction of three distinct surrogate models
foreach Qol in UQ software. The same input, i.e., simulation campaign dataset consisting of the
results from 110 samples of five model parameter settings and three Qols were provided in a
tabulated format.

An identical surrogate modeling process as described in Case 1 was followed here to construct
the three Gausian process surrogate models need for further evaluations in Nodeworks. For
brevity, a detailed description of the process is skipped. For further information and a copy of the
Nodeworks workflow, see the gitlab repository mentioned in Section 1.2.

Comparison of the Surrogate Model Results for Same Evaluation Points

Similar to Case 1, 10 new sample points were generated to test and compare the trained surrogate
models from the three packages.

For Qol#1:y1:dP2, all three packages predict similar response values, which is shown in Figure
17. The maximum difference between PSUADE and DAKOTA based surrogate model results
was 0.42 % and minimum difference was -0.3 %. Similar comparison was performed between
PSUADE and Nodeworks based surrogate model results with the default settings, which shows
3.38 % and -4.41 % as the maximum and minimum difference, respectively. The tuned
Nodeworks surrogate model with an alpha of 1e-2 showsalmost the same 3.38 % and -4.41 %
maximum and minimum difference compared to PSUADE.
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Case 2 Qol # 1: y1:dP2
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Figure 17: Comparison of results obtained for Case 2 Qol #1 (y1:dP2) with the 10 evaluation
samples from the surrogate model results fromPSUADE, DAKOTA, and Nodeworks.

For Qol#2:y2:dP3, all three packages also predict similar response values, as shown in Figure
18. The maximum difference between PSUADE and DAKOTA based surrogate model results
was 0.19 % and minimum difference was -0.1 %. Similar comparison was performed between
PSUADE and Nodeworks based surrogate model results with the default settings, which shows
7.54 % and -2.32 % as the maximum and minimum difference, respectively. The tuned
Nodeworks surrogate model with an alpha of 1e-2 gets closer to PSUADE with a 3.56 % and -
1.75 % maximum and minimum difference, respectively.

Case 2 Qol #2:y2:dP3
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Figure 18: Comparison of results obtained for Case 2 Qol #2 (y2:dP3) the 10 evaluation
samples from the surrogate model results fromPSUADE, DAKOTA, and Nodeworks.
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For the sake of brevity, the comparison for the last Qol is not shown.
Case 3: Circulating Fluidized Bed

This case has three Qols. Hence, three distinct surrogate models for each Qol were constructed
in the UQ software. The same input, i.e., simulation campaign dataset consisting of results from
110 samples of five model parameter settings and three Qolswere provided in a tabulated
format.

An identical surrogate modeling process as described in Case 1 was followed here to construct
the three Gaussian process surrogate models need for further evaluations in Nodeworks. For
brevity, a detailed description of the process is skipped. For further information and a copy of the
Nodeworks workflow, see the gitlab repository mentioned in Section 1.2.

Comparison of the Surrogate Model Results for Same Evaluation Points

Once again, 10 new sample points were generated to test and compare the trained surrogate
models from the three packages.

For Qol#1: Interface height in standpipe, the three packages predict varying response values, as
shown in Figure 19. The maximum difference between PSUADE and DAKOTA based surrogate
model results was 75.93 % and minimum difference was -14.24 %. Similar comparison was
performed between PSUADE and Nodeworks based surrogate model results with the default
settings, which shows 201.29 % and -21.07 % as the maximum and minimum difference,
respectively. The tuned Nodeworks surrogate model with an alpha of 1e-2 shows almost the
same 198.45 % and -22.04 % maximum and minimum difference compared to PSUADE.
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Figure 19: Comparison of results obtained for Case 3 Qol #1 (interface height in standpipe)
with the 10 evaluation samples from the surrogate model results from PSUADE, DAKOTA,
and Nodeworks.
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For Qol#2: Pressure drop across riser, the three packages predict similar response values, as
shown in Figure 20. The maximum difference between PSUADE and DAKOTA based surrogate
model results was 0.74 % and minimum difference was -1.13 %. Similar comparison was
performed between PSUADE and Nodeworks based surrogate model results with the default
settings, which shows 21.35 % and -10.29 % as the maximum and minimum difference,
respectively. The tuned Nodeworks surrogate model with an alpha of 1e-2 gets closer to
PSUADE with 15.03 % and -3.09 % maximum and minimum difference.
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Figure 20: Comparison of results obtained for Case3 Qol #2 (pressuredrop across riser) with
the 10 evaluation samples from the surrogate model results from PSUADE, DAKOTA, and
Nodeworks.

For Qol#3: Pressure drop across standpipe, the three packages predict similar response values, as
shown in Figure 21. The maximum difference between PSUADE and DAKOTA based surrogate
model results was 1.6 % and minimum difference was -1.26 %. Similar comparison was
performed between PSUADE and Nodeworks based surrogate model results with the default
settings, which shows 22.39 % and -6.39 % as the maximum and minimum difference,
respectively. The tuned Nodeworks surrogate model with an alpha of 1e-2 moves further away
from PSUADE with 24.17 % and -6.23 % maximum and minimum difference.
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Case 3 Qol # 3: Pressure drop across

standpipe
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Figure 21: Comparisonof results obtained for Case 3 Qol #3 (pressure drop across standpipe)
with the 10 evaluation samples from the surrogate model results from PSUADE, DAKOTA,

and Nodeworks.
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5. SENSITIVITYANALYSIS RESULTS

5.1 SENSITIVITY ANALYSIS METHOD: SOBOL’ SENSITIVITY INDICES

Sensitivity analysis is one uncertainty quantification technique employed to address the
important question: “Which input parameters have the most influence on the Qol?” The insight
gained from sensitivity analysis can be critical. For example, it plays a key role during
calibration, particularly when the number of input parameters exceeds three. The technique
quantitatively determines the most influential parameters for each Qol, and can be used to focus
the attention of experimentalists, especially when resources are limited.

The sensitivity analysis results in this report (Figures 22-28) were obtained using the Sobol’
Sensitivity Indices based global sensitivity method, which is preferred for cases with non-linear
response behavior. Sobol’ Sensitivity Indices method can generate multiple indices such as Total
Sensitivity Indices, First Order Sensitivity Indices, and Second Order Sensitivity Indices. In the
current study, only Sobol’ Total Sensitivity Indices were considered as they are more informative
for the overall importance ranking. The data-fitted surrogate model was used to perform function
evaluations for obtaining Qols while calculating Sobol” Total Sensitivity Indices. The reader is
referred to Sobol’ (2001) and looss and Lemaitre (2015) for additional information on the
methodology and Gel etal. (2013a,b) for a demonstration with multiphase flow simulations.
Additionally, a detailed sensitivity analysis study performed for the problems of interest with
Nodeworks software can be found in Vaidheeswaranetal. (2021).

5.2 CASE 1: GRAVITATIONAL PARTICLE SETTLING

Global sensitivity analysis was performed using Sobol” Total Sensitivity Indices method, which
is a variance decomposition based methodology implemented in all three UQ software
considered. A previous sensitivity study was carried out in Nodeworks only (Vaidheeswaran et
al., 2021). The current results might differ from the earlier results in (Vaidheeswaran et al., 2021)
due to differencesin the choice of surrogate model. Furthermore, a comparison between Sobol’
Total Sensitivity Indices from Nodeworks, DAKOTA and PSUADE are shown which was not
present in the earlier study.

Figure 22 shows the Sobol’ Total Sensitivity Indices results, which assess the most influential
parameters on the Qol, yz:Location of Filling Shock. It is important to note that Total Indices
take into account both main effects and their interaction effects onthe Qol. Five different bars
are shown for the results obtained from three different UQ software. For DAKOTA, in addition
to the GPM based data-fitted surrogate model, Polynomial Chaos Expansion (PCE) based
surrogate model is shown with “DAKOTA (PCE)” legend. Also results from Nodeworks are
shown under two separate legends, first one shows the sensitivity indices obtained with GPM
based surrogate models without any tuning using the default settings for GPM. The second one
with the legend label of “Nodeworks (GPM Tuned)” shows the sensitivity indices obtained by
employing a tuned GPM based data-fitted surrogate model. It is important to remember that the
surrogate model plays a crucial role as it replaces the actual simulation code when performing
the Qol evaluations required as part of the variance decomposition method employed (i.e. Sobol’
Sensitivity Indices).
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For the 110 sample simulation campaign results, ¢t3:StatWeight appears to have the most
pronounced effect on yz:Location of Filling Shock, followed by t5:VelFacCoeff. The remaining
parameters appear to exhibit substantially lower influence on the variability observed for Qol.
Error bars shown in Nodeworks and PSUADE results are the confidence interval associated with
10000 and 100 sample bootstrapping for each parameter, respectively.

The differences observed in the magnitude of the Sobol’ Total Indices can be attributed to the
implementation differences of surrogate model (i.e., GPM) between three UQ sof tware and the
random drawings performed during the variance decomposition method based global sensitivity
calculations. However, when the Sobol’ Total Indices from each UQ software are individually
considered, the results show that Nodeworks demonstrated the same ranking order (i.e., most
influential parameters in their importance order: (Rank1) t3:StatWeight, (Rank2)
t5:VelFacCoeff, (Rank 3) t4:ep_g*, (Rank 4) t2:beta, and (Rank 5) t1:Po) with PSUADE and
DAKOTA based results.

Comparison of Sobol' Total Indices from Sensitivity Analysis
Case 1 Qol # 2: y2:FillLoc
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Figure 22: Comparison of Sobol’ Total Indices for global sensitivity analysis results from
Nodeworks, PSUADE, and DAKOTAwith the same input deck provided for Case 1 Qol #1.

5.3 CASE 2: BUBBLING FLUIDIZED BED

Similar to the previous case, Sobol” Sensitivity Indices based global sensitivity analysis was
performed using the 110 samples of the simulation campaign results obtained for the parameters
listed in Table 3. As presented earlier, this case has three Qols. Hence, Sobol’ Sensitivity Indices
analysis was performed for each Qol separately utilizing the data-fitted surrogate model
constructed for each.

Figure 23 shows the Sobol’ Total Sensitivity Indices results to assess the most influential
parameters on the first Qol, y1 : AP2. Sensitivity analysis results show t4:ep_g*to be distinctively
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the most influential and dominant input parameter on y1 : AP2. The error bar show the confidence
interval associated with 100 sample bootstrapping for each parameter.

Confidence intervals do not show significant variability for any Sobol’ Index estimated.
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Figure 23: Comparison of Sobol’ Total Indices for y; : AP, based on the results from
Nodeworks, PSUADE, and DAKOT A with the same inputdeck provided for Case 2 Qol #1.

The same importance ranking is observed for the second Qol, y2 : APz as shown in Figure 24.
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Figure 24: Comparison of Sebol’ Total Indices for y, : AP; based on the results from
Nodeworks, PSUADE, and DAKOT A with the same inputdeck provided for Case 2 Qol #2.
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Figure 25 shows the Sobol’ Total Indices for the third Qol, y3: APs. Although t4:ep_g+*appears
to be the most influential similar to the previous two Qols, the second ranking_parameter appears
to have changed from t5:VelFacCoeff to t2:beta, immediately followed by t1:Po as the third
most influential parameter, which is different than the findings for the previous two Qols. y3:
AP, as it includes a combination of dense bed and freeboard. Parcels transitioning between these
regions are influenced by parameters besides just the void fraction at maximum packing.
Significant sensitivities were observed to t1 and t2, though the exact reason is not known.
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Figure 25: Comparison of Sebol’ Total Indices for yz : AP4 based on the results from
Nodeworks, PSUADE, and DAKOTAwith the same inputdeck provided for Case 2 Qol # 3.

For all three Qols, Nodeworks results show consistent order of importance ranking compared to
DAKOTA and PSUADE.

5.4  CASE 3: CIRCULATING FLUIDIZED BED

Figure 26 shows the Sobol’ Total Sensitivity Indices results for the first Qol in Case 3, i.e.,
yi:Interface heightin standpipe. The most influential parameter is identified as ¢3:StatWeight,
which is followed by t5:VelFacCoeff and t4:ep_g=*as the second and third, respectively.
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Comparison of Sobol' Total Indices from Sensitivity Analysis
Case 3 Qol # 1: Interface height in standpipe
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Figure 26: Comparison of Sobol’ Total Indices for Case 3 Qol # 1 (y1: Interface height in

standpipe) based on the results from Nodeworks, PSUADE, and DAKOTA with the same
input deck provided.

Figure 27 shows the Sobol’ Total Indices for the second Qol, y2:Pressure drop across riser. For
this Qol, the most influential input parameter was identified as ¢3:StatWeight. t4:ep_g* and
t5:VelFacCoeff were identified as the second and third most influential parameters, respectively.

Comparison of Sobol' Total Indices from Sensitivity Analysis
Case 3 Qol # 2: Pressure drop across riser
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Figure 27: Comparison of Sobol’ Total Indices for Case 3 Qol # 2 (y2: Pressure drop across
riser) based on the results from Nodeworks, PSUADE, and DAKOT A with the same input

deck provided.
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Figure 28 shows the Sobol’ Total Indices for the second Qol, y3:Pressure drop across standpipe.

Comparison of Sobol' Total Indices from Sensitivity Analysis
Case 3 Qol # 3: Pressure drop across standpipe
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Figure 28: Comparison of Sobol’ Total Indices for Case 3 Qol # 3 (y3: Pressure drop across
standpipe) based on the results from Nodeworks, PSUADE, and DAKOTA with the same

input deck provided.

For all three Qols, Nodeworks results show consistent order of importance ranking compared to
DAKOTA and PSUADE.
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6. CONCLUSIONS

The work presented in this report was motivated by the need to assess if the UQ capabilities
offered through Nodeworks operated as intended for a complete end-to-end UQ analysis
workflow. Nodeworks consists of different Python libraries specialized on various aspects of the
UQ analysis tasks, which come as standalone packages. The assessment was performed as a
solution verification by comparing against the results of global sensitivity analysis obtained with
the two other well-established UQ software, PSUADE and DAKOTA. It is important to
emphasize that the objective was not to identify the best UQ software for a given analysis task
but to compare the results from Nodeworks with the other two to assess if consistent results can
be achieved when the same input, which was constructed from the simulation campaign results,
is provided to all to perform the same UQ analysis.

Three distinct multiphase flow problems of interest were selected to carry out the same
comparison. First case was a gravitational settling bed configuration, which was a unique
problem as it also offered an analytical solution to perform precise error analysis to compare
MFiX-PIC simulation results. Second and third cases were a laboratory scale bubbling fluidized
bed configuration and laboratory scale circulating fluidized bed setup, respectively.

An initial comparison of the surrogate model construction in the three UQ software was
performed for all cases. To construct a surrogate model, the results from the MFiX-PIC
simulation campaign with 110 sampling locations (based on Latin Hypercube sampling) were
used. The aim was to use the surrogate model to cheaply calculate the Qols for the prescribed
range of the selected input parameters, which is utilized during UQ analysis. Ten unseen
sampling locations were then used to compare the predictions from surrogate models of the three
UQ software. The predicted values were exactly the same (up to eight decimal places) while
using a third-order polynomial based surrogate model. When GPM was used, notable differences
were present, which were minimized by hyperparameter tuning in Nodeworks, though not
completely eliminated. This may be attributed to differencesin the implementation of GPMs in
the UQ software tools used in this study.

This was followed by a global sensitivity analysis. Specifically, Sobol’ Sensitivity Indices
method was employed in each UQ software for verification of importance ranking. Qols from
simulation campaigns of three different cases were provided as input to the three UQ tools. GPM
based surrogate models were constructed for each case (and each Qol). Subsequently, Sobol’
Total Sensitivity Indices were estimated. Depending on flow physics, the rankingamong MFiX -
PIC model parameters changed. However, the importance ranking from Nodeworks was
consistent with PSUADE and DAKOTA results. Even though this exercise used GPM primarily,
the same level of consistency could be expected for the other types of surrogate models. It must
be reiterated that the effort was aimed at assessing whether the same importance ranking can be
obtained from Nodeworks by establishing a solution verification-based approach rather than an
exhaustive study that aims to determine which UQ software is best for the analysis performed.
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APPENDIX

The purpose of this Appendix is to provide information necessary for the reader to reproduce the
results presented in this report for Nodeworks. There is expectation that the reader already has
software access, as well as the necessary skill to work within and analyze results from associated
software. The input files for PSUADE and DAKOTA were not included in the Gitlab repository
as the primary objective of the appendix was to enable the reader to replicate the analysis
presented with Nodeworks.

The files discussed in this section are available through NETL’s Gitlab repository under the
following URL.:

https://mfix.netl.doe.gov/gitlab/quality-assurance/pic-sensitivity-study.git
The repository is publicly accessible at the time of the writing of this report.

Registered users can clone the repository for all PIC Sensitivity Study related studies with the
following git clone command from a Linux console terminal, then navigate to the folder where
Sensitivity Analysis related files reside:

1> git clone https://mfix.netl.doe.gov/gitlab/quality-assurance/pic-sensitivity-study.git
2> cd pic-sensitivity-study/

For those who use a GUI based Git client, users can point to https://mfix.netl.doe.gov/gitlab/
quality-assurance/pic-sensitivity-study.git and clone the repository to their local system.

All files were tested on MacOS and Windows and are expected to be compatible with other
operating system environments. If problems occur, the reader is encouraged to report them to the
lead author via e-mail at aike@alpemi.com. Any other suggestions to improve the quality of the
presented files and instructions in the appendix will be appreciated. For the corrections of errors
discovered after the publication of this report, please visit the Erratafolder in the Gitlab
repository.

SIMULATION CAMPAIGN DATASETS

The results presented in this document and shared through Gitlab were based on MFiX-PIC
version 20.1 simulations. The authors have become aware of a bug in MFiX-PIC solver that
affects the results from simulation campaigns presented. As mentioned earlier, the objective of
this work was to demonstrate and compare the sensitivity analysis with PSUADE, DAKOTA,
and Nodeworks for any given input dataset (i.e., simulation campaign inputs and quantities of
interest). Hence, no further revisions were implemented; however, the readers are warned
about the potential differences should the reader use MFiX-PIC other than version 20.1 is to
repeat the simulation campaigns.

The datafiles presented in this section are based on the compilation of the Optimal Latin
Hypercube sampling-based design of experiments constructed for the five MFiX-PIC modeling
input parameters in Comma Separated Values (CSV) formatted ASCII text files. The same set of
input parameters (i.e., 61 : Pressure linear scale factor (Po); 82 : Volume fraction exponential

scale factor (f5); 65 :Statistical Weight (W)); 64 : Void fraction at maximal close packing(fz) ;and
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05 : Solids slip velocity scale factor (a)) were used for each case but the lower and upper bounds
were different for some of these parameters as shown in Tables 2, 3, and 4.

Al CASE 1: PARTICLESETTLING

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Casel_ParticleSettling” folder:

C1_Fine_8July2020.csv : CSV formatted input dataset compiled including the results of the
simulation campaign which contains five model input parameter settings and corresponding
responses from MFiX-PIC simulations for the 110 sampling simulations. The Qols are (i)
y1:Location of Settling Shock; (ii) y2:Location of Filling Shock; (iii) y3:Void fraction in the first
cell nearest to the bottom of the experimental vessel.

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Casel_ParticleSettling/Nodeworks” folder:

EvalPt_ wGPM_psuade_compare.nc: Nodeworks worksheet file, which contains all the nodes
with the imported dataset to perform the construction of the surrogate model, sensitivity analysis
using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples used to
compare the surrogate model predictions. The worksheet also demonstrates the case for untuned
and hyperparameter tuned versions of the same workflow. A screenshot of the workflow
constructed with this file is shown in Figure Al. The top two nodes in the figure (i.e., Response
Surface Quad and Sensitivity Analysis node on the right) are for the surrogate model employing
quadratic polynomial regression, and the resulting global sensitivity analysis ranking based on
the quadratic regression surrogate model. The next three nodes shown (i.e., Response Surface,
Sensitivity Analysis, and Parallel Coordinates Plot) are based on the Gaussian Process Model
(GPM) based surrogate-model fitted and the sensitivity analysis results obtained from the
untuned surrogate model. The Parallel Coordinates Plot on the right shows a visualization of the
all of the simulation campaign datasets including both input parameters and Qol (i.e.,
y2=Location of Filling). The remaining Response Surface and Sensitivity Analysis nodes, which
are labeled as Response Surface Tuned and Sensitivity Analysis Tuned, respectively are based on
the hyperparameter tuned Gaussian Process Model surrogate model results. The other peripheral
nodes are utilized to perform evaluations for the 10 unseen samples both by untuned and tuned
surrogate models (i.e., Emulator nodes at the bottom), also output to file. The interested reader
can review the worksheet and re-use its components for their own similar tasks.
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Figure Al: Screenshot of the Nodeworks workflowsaved in EvalPt wGPM_psuade_com-pare.nc.
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Screenshot_C1_SA_y2FillLoc.png : The screenshot image of the workflow shown in Figure A1,
which can be reviewed in Nodeworks by the reader by loading the
EvalPt_wGPM_psuade_compare.ncworksheet file in the same folder.

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Casel ParticleSettling/VerificationRuns” folder: C1_10new_samples.csv: The CSV
formatted file for the 10 unseen sample points used as input to assess the Gaussian Process
Model based surrogate model predictions and compare with respect to PSUADE an DAKOTA
evaluations for the same set of input samples.

A.2 CASE 2: FLUIDIZATION

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Case2_Fluidization” folder:

C2_RSM_8May2020.csv : CSV formatted input dataset compiled including the results of the
simulation campaign which contains five model input parameter settings and corresponding
responses from MFiX-PIC simulations for the 110 sampling simulations. The Qols are (i) y1:
AP2; (it) y2: AP3; (iil) y3 : APs; (iv) y4 : APs. Note that the last Qol (y4) was not considered in
the analysis presented in this study.

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Case2_Fluidization/Nodeworks” folder:

C2_SA_y1dP2.nc: Nodeworks worksheet file for the first Qol (y1:dP2), which contains all the
nodes with the imported dataset to perform the construction of the surrogate model, sensitivity
analysis using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples
used to compare the surrogate model predictions.

C2_SA_y2dP3.nc: Nodeworks worksheet file for the second Qol (y2:dP3), which contains all the
nodes with the imported dataset to perform the construction of the surrogate model, sensitivity
analysis using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples
used to compare the surrogate model predictions.

C2_SA_y3dP4.nc : Nodeworks worksheet file for the third Qol (y3:dP4), which contains all the
nodes with the imported dataset to perform the construction of the surrogate model, sensitivity
analysis using Sobol’ Total Sensitivity Indices and the additional evaluations of the 10 samples
used to compare the surrogate model predictions.

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Case2_Fluidization/Verification Runs” folder:

C2_10new_samples.csv : The CSV formatted file for the 10 unseen sample points used as input
to assess the Gaussian Process Model based surrogate model predictionsand compare with
respect to PSUADE an DAKOTA evaluations for the same set of input samples.

A3 CASE3:CFB

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Case3_CFB” folder:
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C3_SA_Final.csv : CSV formatted input dataset compiled including the results of the simulation
campaign which contains five model input parameter settings and corresponding responses from
MFiX-PIC simulations for the 110 sampling simulations. The Qols are (i) Interface heightin
standpipe (y1:h_standpipe), (ii) Pressure drop across riser (y2:dP_riser), and (iii) Pressure drop
across standpipe (y3:dP_standpipe).

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Case3_CFB/Nodeworks” folder:

C3_SA_yl.nc: Nodeworks worksheet file for the first Qol (y1: Interface height in standpipe),
which contains all the nodes with the imported dataset to perform the construction of the
surrogate model, sensitivity analysis using Sobol” Total Sensitivity Indices, and the additional
evaluations of the 10 samplesused to compare the surrogate model predictions.

C2_SA_y2.nc: Nodeworks worksheet file for the second Qol (y2: Pressure drop across riser),
which contains all the nodes with the imported dataset to perform the construction of the
surrogate model, sensitivity analysis using Sobol’ Total Sensitivity Indices, and the additional
evaluations of the 10 samplesused to compare the surrogate model predictions.

C3_SA_y3.nc: Nodeworks worksheet file for the third Qol (y3: Pressure drop across standpipe),
which contains all the nodes with the imported dataset to perform the construction of the
surrogate model, sensitivity analysis using Sobol” Total Sensitivity Indices and the additional
evaluations of the 10 samplesused to compare the surrogate model predictions.

List of the file used with hyperlinks to the repository under “Simulation Campaign
Datasets/Case3_CFB/Verification Runs” folder:

C3_10new_samples.csv : The CSV formatted file for the 10 unseen sample points used as input
to assess the Gaussian Process Model based surrogate model predictionsand compare with
respectto PSUADE an DAKOTA evaluations for the same set of input samples.
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