
 

  
 

 
 

 

 

 

 
 

Multi-Junction Solar Cells Paving the Way for Super High-Efficiency 

Masafumi Yamaguchi 1, Frank Dimroth2, John Geisz3, and Nicholas J. Ekins-Daukes4 

1Toyota Technological Institute, Nagoya 468-8511, Japan 
2Fraunhofer Institute for Solar Energy Systems ISE, Freiburg 79110, Germany 
3National Renewable Energy Laboratory, Golden, Colorado 80401, USA 
4University of New South Wales, Sydney 2052, Australia  

In order to realize a clean energy society by using renewable energies, high-
performance solar cells are very attractive. The development of high-performance solar 
cells offers a promising pathway toward achieving high power per unit cost for many 
applications. As state-of-the-art of single-junction solar cells are approaching the 
Shockley-Queisser limit of 32-33%, an important strategy to raise the efficiency of 
solar cells further is stacking solar cell materials with different bandgaps to absorb 
different colors of the solar spectrum. The III-V semiconductor materials provide a 
relatively convenient system for fabricating multi-junction solar cells providing 
semiconductor materials that effectively span the solar spectrum as demonstrated by 
world record efficiencies (39.2% under 1-sun and 47.1% under concentration) for 6-
junction solar cells. This success has inspired attempts to achieve the same with 
other materials like the perovskites for which lower manufacturing costs may be 
achieved. Recently, Si MJ solar cells such as III-V/Si, II-VI/Si, chalcopyrite/Si and 
perovskite/Si have become popular and are getting closer to economic 
competitiveness. 
Here, we discuss perspectives of MJ solar cells from the viewpoint of efficiency and 
low-cost potential based on scientific and technological arguments and possible 
market applications. In addition, this article provides a brief overview of recent 
developments with respect to III-V MJ solar cells, III-V/Si, II-VI/Si, Perovskite/Si 
tandem solar cells and some new ideas including so-called 3rd generation concepts. 
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I. INTRODUCTION 
The development of high-performance solar cells offers a promising pathway toward 
achieving high power per unit cost for many applications. Various single-junction solar 
cells have been developed and efficiencies of 29.1%, 26.7%, 23.4%, 22.1% and 21.6% 
(small area efficiency of 25.2%) have been demonstrated1 with GaAs, Si, CIGSe, CdTe 
and perovskite solar cells, respectively. However, single-junction solar cells may be 
capable of attaining AM1.5 efficiencies of up to 30-32% as shown in Fig. 12. That is, 
state-of-the-art of single-junction solar cells are approaching the Shockley-Queisser limit3. 
An important strategy to raise the efficiency of solar cells is stacking solar cell materials 
with different bandgaps to absorb different colors of the solar spectrum. This so-called 
‘multi-junction (MJ),4,5 approach can reduce the thermalization loss due a high-energy 
photon absorbed by a small-bandgap material, and below-bandgap loss due to a low-
energy photon of insufficient energy to excite an electron in a high-bandgap material as 
shown in Fig. 26. Figure 3 shows the principle of wide photoresponse using MJ solar cells 
for the case of a triple-junction solar cell7. Solar cells with different bandgaps are stacked 
one on top of the other so that the solar cell facing the sun has the largest bandgap (in this 
example, this is the GaInP top solar cell with bandgap energy Eg of 1.8-1.9 eV). This top 
solar cell absorbs all the photons at and above its bandgap energy and transmits the less 
energetic photons to the solar cells below. The next solar cell in the stack (here the GaAs 
middle solar cell with Eg of 1.42 eV) absorbs all the transmitted photons with energies 
equal to or greater than its bandgap energy, and transmits the rest downward in the stack 
(in this example, to the Ge bottom solar cell with Eg of 0.67 eV). Of all the so-called third 
generation solar cell strategies8, only MJ designs have been successful to surpass the 
detailed-balance limit of single-junction solar cells. Such successful achievements are 
thought to be due to longtime R&D since late 70s, bandgap engineering including lattice 
matching, high quality epitaxial growth and so forth. 

The operating principles of MJ solar cells were suggested by Jackson9 as long ago as 
1955, and they have been investigated since 196010. This concept was most successfully 
implemented in III–V compound semiconductor solar cells, since a compound 
semiconductor has a good range of lattice parameters and bandgaps to choose from. High 
efficiencies of 32.8%1 under 1-sun and 35.5%11 under concentration with 2-junction solar 
cells, 37.9%12 under 1-sun and 44.4%12 under concentration with 3-junction solar cells, 
46.1%13 under concentration with 4-juncton solar cell, 38.8%14 under 1-sun with 5-
junction solar cell, 39.2%15 under 1-sun and 47.1%15 under concentration with 6-junction 
solar cells have been demonstrated as shown in Fig. 4. Figure 4 shows the chronological 
improvement in conversion efficiency7,16 of concentrator MJ and one-sun MJ solar cells 
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in comparison with those of crystalline Si, GaAs, CIGS and perovskite single-junction 
solar cells. 

Recently, Si based tandem solar cells16 such as III-V/Si17,18, II-VI/Si19, 
chalcopyrite/Si20, CZTS/Si21 and perovskite/Si22 tandem solar cells are expected to play 
a more important role as high-efficiency, low-cost solar cells move closer to industrial 
manufacturing. In addition, there are other approaches such as perovskite/perovskite23, 
III-V/CIGSe24, perovskite/CIGSe25 MJ solar cells which are still at a lower technology 
readiness level but may become very attractive candidates for photovoltaic energy 
conversion in the future. 

Here, we discuss perspectives of MJ solar cells from the viewpoint of efficiency and 
low-cost potential based on scientific and technological arguments and possible market 
applications. In addition, this article provides a brief overview of recent developments 
with respect to III-V MJ solar cells, III-V/Si, II-VI/Si, Perovskite/Si tandem solar cells 
and some new ideas including so-called 3rd generation concepts8. 

II. SCIENTIFIC CONSIDERATION 
The fundamental processes in photovoltaic power conversion are shown in Figure 5, 
incident sunlight of energy above the semiconductor bandgap can be absorbed (1) and 
excess energy dissipated as a thermalization loss (3); photons below the bandgap energy 
can pass through the solar cell unabsorbed (2). Excess radiative recombination proceeds 
due to the presence of photogenerated carriers (4). At forward operating voltages, the 
free energy of the carriers is determined by the quasi-Fermi level separation which defines 
the solar cell voltage at the electrical contacts to the solar cell, V=µe-µh. 

The breakdown between power generated by the solar cell and these losses is 
illustrated in Figure 26. For a single-junction solar cell, the two largest losses are the 
thermalization and below-Eg losses, both of which are significantly mitigated with the 
addition of semiconductor junctions with different bandgap energies in a MJ device. This 
is because a larger portion of the solar spectrum is then absorbed close to the bandgap of 
one of the semiconductors and therefore experiences less thermalization of carriers. All 
other fundamental losses *increase with increased number of semiconductor junctions 
and are discussed in detail elsewhere3. We note that all three remaining losses 

* Note that resistance losses are not regarded as fundamental losses, though they are 
unavoidable in practical devices and in fact benefit from lower currents which are typically 
achieved with more junctions. 
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fundamentally depend on solar cell temperature and can therefore be reduced by operating 
the solar cell at a lower temperature: 

The so-called ‘Boltzmann loss’ is an entropic loss associated with the increase in the 
occupancy of optical modes on re-emission of light that results in a voltage loss. 
Practically it can be recovered in two ways, conventionally by increasing the solar 
concentration on the solar cell, or equivalently, restricting the radiative emission from the 
cell. Dividing up the solar spectrum between an increasing number of junctions results 
in emission at multiple wavelengths and hence a larger Boltzmann loss. The loss can be 
mitigated by paying attention to the geometrical optical arrangement, for example through 
solar concentration or angular restriction of radiative recombination. 

The Carnot loss arises from establishing carriers at finite temperature in a band and 
hence rises as further junctions establish additional bands occupied by photogenerated 
carriers. The loss cannot be recovered except in very unusual circumstances where the 
PV cell is operated at low temperature. 

The Emission loss is unavoidable in a conventional solar cell owing to the 
reciprocity26 between absorption and emission encapsulated by Kirchoff’s law of 
radiation. The detailed balance limit3 considers only this unavoidable radiative 
recombination loss through thermodynamic arguments. The external radiative efficiency 
(ERE) describes how closely a subcell comes to this thermodynamic limit as all other 
non-radiative recombination is considered potentially avoidable. In an optimally 
configured MJ solar cell, the emissive loss is small, but in a series connected tandem solar 
cell where current flow is constrained by one sub-cell, there can be significant transfer of 
energy down the tandem absorber stack. This is known as radiative coupling and 
discussed in more detail below. An extreme case of radiative coupling arises if the 
reciprocity between absorption and emission is lifted, potentially using magneto-optical 
materials27, that allows the efficiency of an infinite tandem stack (asymptotes to 86.8%) 
to be raised to the Landsberg efficiency of 93.5%. At the Landsberg limit, each of the 
component junctions operates arbitrarily close to Voc and electrical power delivered from 
the solar cell infinitesimally slowly28. 

To achieve efficient operation, the photogeneration rates in a series connected solar 
cell should be closely matched. While the choice of bandgap and hence absorption 
threshold for the component junctions plays a primary role, the sub-cell photogeneration 
can be optimized by adjusting the thickness of the junctions such that an overperforming 
sub-cell can allow some light to pass unabsorbed into an underlying junction29. This 
approach works well for static solar spectra (such as AM0) but for the terrestrial spectrum, 
the spectral irradiance varies throughout the day and between seasons with noticeable 
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effects on system performance30. If the semiconductor material is radiatively efficient, 
sub-cells with excessive photogeneration will radiate the excess into lower lying junctions, 
with a small fraction of this escaping from the top of the solar cell. Radiative dominated 
behaviour has been observed in III-V solar cells31 and some perovskite materials32, even 
appearing as a measurement artefact in MJ devices33,34. Since radiative coupling transfers 
energy down the MJ stack, the effect can mitigate the effects of spectral mismatch under 
blue-rich spectral conditions35 as well as offering some freedom in tolerable absorber 
bandgap configuration36 in particular enabling efficient operation of higher-gap top solar 
cells in a silicon based tandem37. 

III. BRIEF OVERVIEW 
3.1. III-V MJ 
III-V semiconductor materials have many advantages for high-efficiency solar cells in 
general and MJ solar cell in particular. III-V semiconductors consist of elements from the 
group III (Al,Ga,In) and V (N,P,As,Sb) columns in the periodic table arranged in a zinc-
blend (or wurtzite) crystal structure. The highest single-junction efficiency has 
consistently remained a GaAs solar cell due to its bandgap match to the solar spectrum 
and its high ERE as shown in Fig. 1. ERE is expressed by eq. (1) and the solar cells with 
the higher ERE value show the less of non-radiative recombination loss. III-V alloys 
(hereafter III-Vs) cover a wide bandgap range from 2.4 eV down to almost 0.0 eV as 
shown in Fig. 6, with III-N alloys covering much higher bandgaps38 (not shown). 

Many of the III-Vs can be grown as single-crystal layers on single-crystal substrates 
(e.g. GaAs, InP, Ge etc.) using liquid phase epitaxy (LPE), molecular beam epitaxy 
(MBE), organometallic vapor phase epitaxy (OMVPE), and hydride vapor phase epitaxy 
(HVPE) techniques. Many III-Vs can be doped both n-type and p-type over a wide density 
range and are direct-gap for nearly complete thin-film absorption. They can have high 
mobilities, relatively long lifetimes, and low interface recombination when higher 
bandgap alloys are used for heterojunction passivation (i.e. window and back-surface-
field layers) that result in diffusion lengths longer39 than the required single-pass 
absorption thicknesses. Thus, light trapping techniques often used in silicon photovoltiacs 
have not been much required for III-V materials. The primary disadvantage of III-V solar 
cells is their sensitivity to defects that act as deep non-radiative recombination sites, such 
as dislocations, impurities, and phase boundaries, but they also have a relatively low 
density if intrinsic native defects. While III-Vs can be grown with a high degree of crystal 
perfection that avoids the problems of defects, it can only presently be done at a relatively 
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high cost that results in the other primary disadvantage of III-V solar cells. Due to the 
high cost of III-V solar cells fabrication, they have been used in applications that leverage 
the efficiency advantage on the balance of system costs, such as space, concentrator, and 
other area or weight constrained applications. Concentrator applications have also been 
intimately tied to III-V MJ development because of the logarithmic increase in voltage 
with concentration for each junction. 

From the beginning of MJ solar cell research, III-V alloys have been the material of 
choice due to the advantages listed above. In addition, the wide range of bandgaps 
appropriate for solar collection at the same lattice constant, as shown in Fig. 6, has 
provided many avenues for creating defect-free monolithic MJ configurations. Several of 
the III-V MJ strategies with their achieved efficiencies are summarized in Fig. 6 and 
mentioned briefly in the following paragraph. 

Initially, multi-terminal structures were considered40,41, but since low-resistance 
tunnel junction interconnects consisting of heavily doped wide-bandgap materials. have 
been demonstrated in III-V materials42,43, series-connected MJ solar cells have dominated. 
Such two-terminal devices facilitate the integration of the solar cells into modules and the 
connection to inverters. Target bandgap combinations for series-connected MJ solar cell 
have been calculated for specific spectra assuming detailed-balance44,45 and more realistic 
ERE limitations46. Recently, wafer bonding13, transparent conductive oxide layer 
insertion47 and mechanical stacking17 for MJ solar cell formation have been demonstrated. 

The first III-V MJ strategy considered was the easily lattice-matched AlGaAs/GaAs 
structure48-50, but difficulties with defects associated with oxygen incorporation into 
AlGaAs restricted progress51. The surprising stability52 and quality of epitaxially-grown 
GaInP lattice-matched to GaAs finally resulted in the GaInP/GaAs solar cell with an 
efficiency of 29.5%53 to exceed the theoretical potential of any single-junction solar cell. 
Spontaneous ordering in GaInP material also resulted in adjustable bandgaps for the same 
alloy composition54. The use of Ge substrates was primarily introduced to GaInP/GaAs 
solar cells for the mechanical and cost advantages over GaAs substrates, but the 
serendipitous introduction of a diffuse Ge junction also resulted in a slight voltage 
increase without much added cost or complexity. This GaInP/GaAs/Ge three junction (3J) 
solar cells has remained the standard for space and concentrator applications to this day. 
Improvements on this 3J solar cell revolved around replacing the low-Eg Ge junction with 
a higher-Eg III-V junction. Dilute nitride GaInNAs(Sb) that is lattice-matched to GaAs 
was a very promising 1.0 eV candidate55, but sufficient quality was not obtained over 
many years with industry standard OMVPE growth. Using (arguably) more expensive 
MBE growth, excellent concentrator 3J solar cells with a dilute nitride bottom junction56 
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have been demonstrated57. While high densities of threading dislocations (TDD) are 
detrimental to III-V quality58, metamorphic growth (which allows the mismatched strain 
to be relaxed slowly in compositionally step graded buffer layers) has allowed high-
quality lattice-mismatched InGaAs junctions to be grown with TDD~1x106 cm-2 on GaAs 
substrates. The inverted metamorphic multi-junction (IMM) strategy59 that grows the low 

, four62,63 bandgap InGaAs junctions last has been demonstrated with three60,61 , and six 
junction15 III-V solar cells with extremely high efficiencies. A natural consequence of the 
IMM strategy is the removal of the substrate, which has advantages for cost with potential 
substrate reuse, light-weight, and flexible solar cells64,65, and back surface reflectors for 
photon recycling31,66. The dislocations in mismatched InGaAs could alternatively be 
isolated from the high-quality top junctions by bifacial growth67 or through the use of 
strain-balanced GaAsP/InGaAs bi-layers68. The upright, metamorphic growth of lattice-
mismatched top junctions on an active Ge junction (UMM) has also been demonstrated 
with high efficiency69,70. Interestingly, very different 3J bandgap combinations used in 
the 3J IMM60 and 3J UMM69 resulted in very similar efficiencies as a result of the 
absorption gaps in the terrestrial spectra46. More recently also 5-junction UMM solar cells 
were developed and used in concentrator photovoltaics71. Even higher quality low-
bandgap junctions have been obtained by separately growing lattice-matched junctions 
on InP and wafer bonding with junctions grown on GaAs substrates for a 4J concentrator13 

and 5J one-sun solar cell14. Space solar cells with AM0 efficiencies > 32% are available 
as 4J UMM and 5J IMM structures. 

Ga1-xInxN alloys (that have been successful for light emitting devices using low-In 
content) have also been suggested for MJ solar cell materials because the alloy 
theoretically covers the full bandgap range38. Some high bandgap GaInN solar cells have 
been demonstrated72, but the fabrication of the high-In GaInN alloys to capture the 
infrared portion of the solar spectrum has remained challenging. High-In GaInN alloys 
suffers from polarization charge73, contact inversion layers74, phase decomposition75, and 
large lattice mismatch76. 

3.2. III-V Si Tandem 
Silicon is a material which combines multiple benefits. It is earth abundant, almost 30% 
of the Earth’s crust is formed from silicon. It can be purified to extremely high levels 
(typically less than 0.001% impurities in solar cell material) and grown into mono- or 
multi-crystalline ingots which are then diced and processed to solar cell devices absorbing 
sunlight between 300 to 1200 nm. The bandgap is close to ideal for a single-junction solar 
cell and has resulted in hero devices with up to 26.7 % conversion efficiency77. 
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Mechanical strength and stability are further advantages and the cost of silicon solar cells 
has come down 82%* † just between 2010 and 2020 mainly due to increased mass 
manufacturing and economies of scale. Fully processed devices are sold at approximately 
0.12 US$/Watt‡ or 27 US$/m2 at an average solar-electric conversion efficiency of 22.5% 
AM1.5g. This is less than the price for many building materials like floor tiles. One could 
argue that the perfect solar cell material is already found but some limitations may still 
be overcome. Being an indirect semiconductor, silicon requires a certain thickness 
(typically 150 µm) to absorb sunlight, manufacturing processes are energy intensive and 
the conversion efficiency of a silicon single-junction solar cells is fundamentally limited 
to 29.5% by Auger-recombination78,79. Auger recombination describes the three carrier 
energy transfer from a photogenerated carrier to an electron in the conduction band, and 
therefore becomes even more important at high concentration. This fundamental intrinsic 
recombination process determines the charge carrier lifetimes of ultra-pure silicon, 
different to direct semiconductors like GaAs or GaInP which are limited by radiative 
recombination. 

The fundamental efficiency limit of silicon single-junction solar cells can be 
overcome by MJ devices as described above and such solar cells may still benefit from 
using silicon as the bottom junction and substrate material. This is attractive because most 
thin-film absorbers need a support as they are too thin to be self-sustained. And silicon 
with 1.1 eV bandgap is close to the optimum for dual-junction and triple-junction devices. 
The ideal bandgap energy for one additional absorber above Si is 1.7 eV and 2.0/1.5 eV 
in the case of two absorbers. The exact bandgaps depend on several factors such as 
transparency of the upper layers and the long-wavelength response of the silicon bottom 
solar cell. In fact, this has turned out to be one of the challenges in manufacturing tandem 
solar cells on silicon. The light-trapping features have to move from the front side to the 
rear of the wafer to allow the deposition of planar thin-film absorbers at the front80-82. 
This can be done by implementing a pyramid texture83, spheres84, or nanostructure 
gratings85 on the back side of the silicon wafer to increase the light path through the 
silicon and therefore enhancing absorption close to the indirect bandgap. 

The most successful examples for Si-based tandem solar cells in terms of conversion 
efficiency are combinations of III-V compounds with Si (see example in Figure 7 right). 
GaAsP/Si tandem solar cells have reached AM1.5g conversion efficiencies of 23.4% 

*† Solar costs have fallen 82% since 2010, https://www.pv-magazine.com/2020/06/03/solar-costs-

have-fallen-82-since-2010/ 
‡ Prices according to http://pvinsights.com/ (27.4.2021) 
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(monolithic, 2-terminals)86,87, GaAs/Si up to 32.8 % (4-terminal)17, 
GaInP/Ga(In)As(P)/Si up to 35.9 % (2-terminal 88,89, and 4-terminal17). Some groups are 
growing the III-V layers directly on silicon which is a challenge due to the large difference 
in lattice constant of 3-4% and thermal expansion coefficient. Other groups have used 
wafer-bonding or gluing to make the connection, followed by a removal of the growth 
substrate. Of course, the latter can only be economically attractive if the growth substrate 
is removed with high yield and reused for further growth of III-V layers90. Direct growth 
of the III-V absorbers onto the silicon using methods like metal-organic vapor phase 
epitaxy is challenging in terms of reaching low enough defect densities for highest 
efficiency devices but continuous progress is made in the field of metamorphic III-V 
growth on silicon91,92. With further research this problem may be solved in the near future, 
making III-V direct growth the method of choice for realizing tandem solar cells on 
silicon which combine high performance, reliability and which can be manufactured at 
competitive costs. 

3.3 Other MJ Architectures: 
The ideal attribute for a MJ sub-cell material is one whose absorption threshold can be 
tuned over the solar spectrum, is stable, non-toxic, efficient and can be integrated into a 
tandem stack at low cost. Integration of sub-cells poses a particularly awkward challenge 
since sub-cells that can perform well in isolation can become impaired when integrated 
with additional sub-cells, either via impurity diffusion and/or excessive thermal budget. 
Mechanically stacking separate sub-cells in a multi-terminal device is one means by 
which incompatibilities can be overcome and serves as a useful proof of concept. For 
brevity we survey here only two terminal tandem solar cells fabricated from at least one 
novel material. 

Metal halide perovskite materials are strong, direct-gap semiconductors with optical 
absorption, typically extinguishing sunlight in a layer of 200-400nm thick. Their 
absorption threshold can be tuned over a wide wavelength range owing to the wide range 
of alloy combinations with a ABX3 structure; where A is an organic amine cation, B the 
metal cation and X the halide anion. Typical choices for A are methylammonium iodide, 
formaimdimium iodide Cs, B is commonly Pb and/or Sn and X is a halide, typically I 
and/or Br resulting in compounds such as FA0.75Cs0.25Pb(I0.8Br0.2)3 a popular material for 
the top solar cell of a tandem. These materials offer a tantalizing and unprecedented range 
of photovoltaic solar cell absorber material combinations that can be prepared both via 
solution processing or vapour deposition93. Several permutations of perovskite tandem 
have been attempted94 and in particular the material system offers a range of opportunities 
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for achieving wide-gap absorbers that are well suited for many tandem solar cell 
applications95. 

3.3.1. Perovskite/Silicon tandems 
The versatility of the perovskite material has made it a popular choice for a silicon tandem 
architecture as a top solar cell with potentially facile preparation illustrated in Figure 
7(left). In this popular and fast-moving field, the aim is to establish a stable, wide-gap 
perovskite material95,96 that is compatible with a suitable silicon bottom solar cell97. One 
of the outstanding challenges is to improve the voltage of the wide-gap perovskite top 
cell95. 

A 29.2% perovskite / silicon tandem solar cell was achieved by spin-coating a 1.68eV 
perovskite material onto a n-type heterojunction silicon solar cell with a textured rear-
side only. Interconnection between the silicon and perovskite material was achieved using 
transparent, conducting metal oxide ITO layer rather than a tunnel junction47. The 
device was stable under testing, retaining 95% of its initial efficiency after 300 hours of 
operation. An announcement of a 29.5% tandem solar cell was also recently made but 
no technical details are available at the time of writing§. A double textured perovskite / 
n-type heterojunction silicon tandem solar cell achieved a 25.2% power conversion 
efficiency where perovskite precursors were co-evaporated to form a conformal film over 
the textured silicon surface and interconnected using a nanocrystalline silicon tunnel 
junction98. A similar result, 25.7% has also been achieved using a solution processed 
perovskite absorber and metal-oxide interconnection layer99. 

3.3.2. Perovskite/CIGS tandems 
Copper Indium Gallium Selenide (CIGS) solar cells can also provide a convenient and 
commercially mature low-gap solar cell with strong absorption that with certain alloy 
fractions, deliver lower energy band-edge than silicon. The thin absorber enables thin, 
flexible solar cells to be made100 and wide-gap perovskite materials offer an opportunity 
to augment the efficiency in a tandem configuration. Generally the film roughness of 
CIGS has complicated the fabrication of efficient tandem devices. The first reported 
Perovskite/CIGS tandem solar cell used a thick PEDOT:PSS layer achieving an 
efficiency of 10.9%101, later the CIGS was polished to yield a smooth surface and a much 
higher efficiency 22.4%102. More recently, self-assembled monolayers have been 

§ https://www.pv-tech.org/news/oxford-pv-pushes-tandem-shj-perovskite-cell-conversion-

efficiency-to-record-29.52 
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shown to form an effective interfacial layer between the perovskite and rough CIGS 
material resulting in a tandem efficiency of 24.2%103,104. 

3.3.3. Perovskite/Perovskite tandems 
Absorption thresholds as low as 1.2eV can be achieved using mixed Pb-Sn perovskite 
materials105 offering the opportunity for a perovskite/perovskite tandem solar cell. A 
24.8% 1.77eV/1.22eV perovskite tandem solar cell has been achieved by paying 
particular attention to Sn oxidation and a low-optical loss tunnel junction that employed 
an ALD deposited SnO2 layer interlayer between solar cells106. 

3.3.4. Organic tandems 
The principle challenge for fabricating organic solar cells has been to find molecular 
absorber materials that operate efficiently in the infrared wavelength range107. A 1.72eV 
PBDB-T:F-M/ 1.26eV PTB7-Th:O6T-4F:PCBM device achieved an efficiency of 
17.3%108. In comparison to the perovskite/perovskite tandem solar cell above, the 
principal loss in this organic tandem device is the low solar cell voltages obtained for 
each sub-cell, in addition to marginally impaired EQE and solar cell fill factor. 

3.3.5. Chalcopyrite tandems 
Fully inorganic thin-film tandems can be made using chalcopyrite materials, the well-
established CIGS solar cell material is one alloy combination from a large array of the 
penternary Cu(In1-xGax)(SySe(1-y))2 material system that can span 1eV-2.43eV109. A 
mechanical stack composed of a 1.48eV CdTe / 0.95eV CuInS2 double junction achieved 
an efficiency of 15.3%110. A 1.68eV CuGaSe2 / 1.1eV CuInGaSe2 mechanically stacked 
device achieved an efficiency of 8.5%111 while a 1.89eV GaInP/ 1.42eV GaAs / 1.20eV 
CIGSe mechanically stacked tandem has achieved 24.2%112. Combining CIGS films into 
a monolithic tandem structure has proven difficult, owing to the complexity of forming 
the second junction without impairing the performance of the first. Alloying with Ag 
has provided a new dimension to tackle this problem since Ag alloys not only have 
marginally higher bandgaps, their lower melting point temperature helps reduce the 
thermal budget for forming the tandem solar cell and reduces compositional disorder113. 
Monolithic tandem efficiencies remain low (~3%)114 but the potential to exceed 25% with 
this approach exists if the difficulties associated with sub-cell integration can be 
overcome115. Monolithic chalcopyrite tandem devices on silicon have been attempted, a 
1.65eV Cu2ZnSnS4 (CZTS) / 1.1eV Si tandem achieved an efficiency of 3.5%, likely 
limited by incomplete sulfurization and inadvertent silicon solar cell degradation116. 
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Higher efficiencies have been obtained for a 1.8 eV CdZnTe/ 1.1 eV Si tandem device 
that achieved 17 %117. 

3.3.6. Antimony Chalcogenide tandems : Antimony selenosulfide Sb2(S,Se)3 forms 1D 
ribbons118 and by varying the Se/S atomic ratio offers an adjustable absorption threshold 
from 1.7eV to 1.1eV. To date a 10 % efficient single-junction solar cell has been 
demonstrated119 and a proof-of-concept 1.74eV Sb2S / 1.22eV SbSe achieved an 
efficiency of 7.9 %120. 

3.3.7. Organic-Silicon tandems: Organic absorber materials are well suited for 
absorbing visible wavelengths and can therefore form the high bandgap junction in a 
hybrid organic-silicon device. A dye sensitized solar cell was partnered with a silicon 
solar cell to form a 1.8eV dye / 1.1eV Si mechanical stack tandem cell with an efficiency 
of 14.7%121. The convention for interconnection of a tandem solar cell is a series 
connected stack, but this is only one means by which multiple absorbers can be arranged, 
several other permutations are possible in a combination of series and/or parallel 
connection122. Specifically the combination of a wide-gap solar cell in parallel with two 
lower gap solar cells has the merit of lower sensitivity to variation in the incident solar 
spectrum123 has been demonstrated as a so-called ‘voltage matched’ tandem whereby a 
pentacene layer absorbs photons at energies above 1.8eV that undergo singlet fission to 
produce two electron hole pairs124. A fully parallel singlet fission device has also been 
demonstrated125 in addition to a conventional series connected tandem126.. 

All the results reported in section 3.3 are derived from small area cells, most smaller than 
1cm2. For all these approaches to achieve their practical potential, high efficiency will 
need to be maintained over large areas. III-V multi-junction solar cells are manufactured 
on 6” wafers and subsequently interconnected in series to form a module. The promise 
of thin-film tandem cells to which all but the silicon based tandems aspire, is to expand 
the substrate size significantly, ideally coating an entire sheet of module glass. One of 
the few tandem technologies that achieved this on a manufacturable scale was the 
micromorph tandem from Oerlikon, where an amorphous silicon a-Si / microcrystalline 
silicon µc-Si tandem configuration was manufactured over an area of 1.4m2 delivering an 
initial 11 % module efficiency. The micromorph technology was rendered obsolete 
when the costs of the more efficient c-Si modules dropped significantly below that of the 
micromorph tandem. 
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IV. PERSPECTIVE 
4.1. Efficiency Improvement and Cost Reduction Potential of MJ Solar Cells 
4.1.1 High efficiency potential of MJ solar cells 
Analysis of the performance of MJ solar cells has been carried out by several 
researchers.127-135. Figure 8 shows the calculated efficiency potential of MJ solar cells 
under 1-sun and concentration conditions as a function of number of junctions reported 
by some groups134,135. As shown in Fig. 8, increasing the number of junctions, that is, 
increasing the number of sub-cells in MJ solar cells is effective to increase conversion 
efficiency of these solar cells. Single-junction and 3-junction solar cells have potential 
efficiencies of more than 50% and 60% under 1-sun illumination in the ideal detail-
balance limit, respectively. However, only 80% and 85% of ideal efficiencies are pointed 
out to be achievable in practical devices134. Figure 9 shows calculated efficiencies of III-
V compound MJ solar cells under 1-sun conditions as a function of the number of 
junctions and external radiative efficiency (ERE) in comparison with efficiency data (best 
laboratory efficiencies) reported in references11-15,136. Ideal efficiencies of MJ solar cells 
can be calculated by estimating the short-circuit current density of sub-cells from the 
standard solar spectrum, by considering only radiative recombination loss (0.26V loss for 
Si and 0.28V loss for GaAs compared to Eg/q: Eg is the bandgap energies of sub-cells, q 
is the electronic charge)137 in sub-cells and resistance loss (only 1%) and the similar 
potential efficiencies of MJ solar cells with reported values134,135 can be estimated. In the 
more realistic case, the combination of sub-cells is often selected by considering lattice 
matching of sub-cell lattice constants and ease of sub-cell material growth. Mismatching 
of short-circuit current densities of sub-cells by considering bandgap energy and layer 
thickness of sub-cells, non-radiative recombination and resistance losses are further 
considered. In the case of MJ tandem solar cells, we define average ERE (EREave) by 
using average open-circuit voltage Voc loss: 

Σ(Voc,n – Voc,rad,n)/n = (kT/q)ln(EREave), (1) 
where Voc is the measured open-circuit voltage, Voc:rad is the radiative open-circuit voltage, 
n is the number of junctions, k is the Boltzmann constant and T is the absolute temperature. 
The resistance loss of a solar cell is estimated solely from the measured fill factor. In Fig. 
9, best efficiencies11-15,136 of III-V compound MJ solar cells are also plotted. 2, 3, 4, 5 and 
6-junction solar cells have potential efficiencies of 36.6%, 44.0%, 48.8%, 50.4% and 
51.4%, respectively, as shown in Fig. 9. Table 1 shows major losses, their origins of III-
V compound MJ solar cells and key technologies for improving efficiency. As shown in 
Table 1, further development of MJ solar cells is necessary in order to realize optimum 
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efficiencies. 
Other MJ solar cells composed of II-VI, chalcopyrite, kesterite compound and 

perovskite solar cells are thought to have the similar potential as III-V compound MJ solar 
cells. In order to realize high efficiency MJ solar cells using these materials, reducing 
non-radiative recombination and resistance losses by learning from progress in III-V 
compound MJ solar cells is necessary. 

4.1.2. Cost analysis of MJ solar cells 
The allowable cost per unit area of solar cell modules depends strongly on module 
efficiency138,139. For example, a 30%- efficient solar cell costing 3.5 times as much as a 
15%-efficient solar cell of the same area will yield equivalent overall photovoltaic system 
costs138 due to the balance of system costs. Therefore high-efficiency solar cells will have 
a substantial economic advantage over low-efficiency solar cells providing the cost of 
fabricating them is low enough. Additionally, efficiency improves the environmental 
impact of photovoltaic modules as less material is needed. For space applications, high-
efficiency solar cells have significant payload advantages. Although the III-V MJ solar 
cells have demonstrated an extremely high conversion efficiency with up to 39.2%15, 
further cost reduction is still necessary to access terrestrial photovoltaic markets. 

Figure 10 shows a comparison of expected module costs as a function of module 
production volume for III-V tandem cells with/without high-speed deposition, III-V/Si 
tandem devices, and concentrators, reported by the authors139 and cost analytical results 
for rapid deposition (HVPE; Hydride Vapor Phase Epitaxy)140 and Si tandem17 reported 
by NREL. Therefore, ways for module cost reduction are reduction in film thickness, a 
high growth rate of the III-V layers, reuse of substrates, concentration of light, use of Si 
as substrate material and bottom cell, and an increase in module production volume as 
shown in Fig. 10. The results suggest that there are ways to realize costs of less than $1/W 
for III-V compound MJ solar cell modules by scaling up production volume to 100 
MW/year with a high-speed growth method, or with Si-based tandem solar cells. Many 
of these technologies are current fields of research. 

Cost analysis of perovskite and perovskite/Si tandem solar cells has been 
reported141,142. About $0.5/W, comparable with crystalline Si and CdTe solar cell modules, 
was estimated as a manufacturing cost of perovskite and perovskite/Si tandem solar cells. 
One highly uncertain aspect of the module cost for tandem solar cells is the level of 
encapsulation that will be required to maintain tolerable module performance over the 
working lifetime, usually 20 years. For a silicon tandem, the underlying silicon cell 
degradation is generally low (less than 0.5%/year) with standard encapsulation methods 
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but it is not known what level of encapsulation will be required to deliver long-term 
efficient operation from perovskite on silicon tandem solar cells. What has been 
established is that the degradation rate of the top cell should be below 0.9%/year for a 
silicon tandem to remain financially viable143. 

4.2. Perspective for MJ Solar Cells 
Of all the so-called third generation solar cell strategies8, only MJ designs have been 
successful to surpass the detailed-balance limit of single-junction solar cells. Table 2 
shows potential efficiencies of 3rd generation solar cells8.141-143. Demonstrated efficiencies 
of III-V MJ solar cells at one-sun are nearing 40% and under concentration are 
approaching 50%. Most of the physics are understood, but sophisticated engineering and 
high-quality materials are absolutely required. While low-cost solar cell materials are 
desirable for tandems solar cells, only high-voltage junctions, as quantified by the 
ERE26,147, with well-chosen bandgaps matched to the application spectra are useful to 
surpass the efficiency of single-junction silicon. Quantification of spectral efficiency145 

is a convenient metric to judge how to choose tandem partners, and more comprehensive 
multi-junction models are also available149. The challenge for low-cost tandem materials 
is to bring the best together in a way that preserves the high-quality junctions. This is 
already achieved in high efficiency III-V multi-junction devices but here lower 
processing costs are needed without compromising on required quality for flat-plate areas. 
Alternatively, renewed development of robust and economical terrestrial concentrator 
systems could result in high demand for the most efficient multi-junction solar cells 
possible. The continued development of multi-junction solar strategies through multiple 
pathways and a sufficiently large market is likely to bring the technology closer to the 
economics of single-junction silicon and to provide clean, economical, and efficient 
energy especially for area constrained applications. 

4.3. Perspective for Si-based Tandem Solar Cells 
It can be expected that silicon-based tandem solar cells will receive further growing 
attention by the photovoltaic industry as efficiencies for single-junction solar cells reach 
a plateau and many of the opportunities for cost reduction have already been implemented. 
Innovation will most likely come from more efficient devices and it has already been 
shown that Si-based tandem solar cells can reach nearly 36% conversion efficiency in 2-
or 4-terminal configuration. This proves that Si-based tandem cells can get close to the 
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best triple-junction solar cells ever reported in literature and radiative efficiency limits 
are even as high as 45.2%, 49.6%, 52.2% for 2-junction, 3-junction and 4-junction cells 
150 leaving sufficient room for further development. Using combinations of silicon and 
III-V materials allows the PV industry to keep many established processes which have 
already been scaled to large volumes. But at the same time new processes must be 
implemented and scientists will continue to have different opinions on which technologies 
are favorable for silicon based tandem solar cells. The market will accept all those 
solutions which provide sufficiently high efficiencies combined with economically 
attractive production processes. We believe that III-V/Silicon tandem solar cells must 
have a significant efficiency advantage compared to conventional silicon single-junction 
devices because they will be more expensive in the beginning. The exact efficiency 
number for market entry may be debatable but probably it is on the order of 30% 
(AM1.5g) or more. Cost will come down with market size as indicated in Figure 10 but 
for this to materialize, entry markets must be found. An example is electric cars where 
the high performance of the solar cells directly translates into longer driving distances 
before re-charging of the battery. Such conveniences often convince companies and 
customers to pay a premium price. 
The simplest solution to realize a III-V/silicon tandem solar cell is a 2-terminal device 
where the GaAsP top cell is grown directly onto a silicon bottom junction. The silicon 
junction may be formed by diffusion or implantation of P, GaP serves as front surface 
field and the rear side may be formed by a combination of a SiOx passivation with a 
nanostructured grating for light diffraction. Aluminum can be sputtered and point contacts 
formed by laser firing. Such a device would fulfill the requirements of manufacturability 
and low cost but the performance is today still falling behind a good silicon single-
junction solar cell. This may certainly change in the next coming years as defects in the 
III-V epitaxial layers are better controlled and issues with the GaP passivation to silicon 
solved. But it may also be necessary to develop more complex device architectures 
implementing III-V layer transfer from a GaAs substrate, tunnel oxide passivation for 
silicon, 4-terminal architectures or additional junctions. Some of these approaches already 
reached up to 36% efficiency but suffer in terms of manufacturability and cost. Finding 
the path towards a III-V/silicon tandem product will remain subject to continued 
discussion in coming years. But we can be confident that once performance and cost are 
shown to be economically attractive, nothing will stop this technology from growing to 
large scales. Reliability should be comparable to silicon solar cells and there seems to be 
no restriction to scale manufacturing to the GW level. 
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V. CONCLUSION 
In order to realize a society based on renewable energy, solar cells with highest efficiency 
are very attractive because they reduce the required system area and need for materials. 
As single-junction solar cells are limited to 30-32% conversion efficiency under 1-sun, 
MJ or tandem solar cells are expected to contribute to higher performances. The concept 
of MJ solar cells was first and most successfully implemented using III–V compound 
semiconductors and such products have already become the standard technology in space. 
III-V MJ solar cells need to further improve their conversion efficiency and reduce their 
cost to achieve widespread terrestrial deployment. At the same time perovskite materials 
have appeared as an alternative solution to form MJ devices but here reliability, module 
integration and large volume manufacturing are still subject of current research and 
development. 

In this paper, we provide perspectives for MJ solar cells from the viewpoints of 
efficiency and low-cost potential based on scientific and technological arguments and 
possible market applications. 2, 3, 4, 5 and 6-junction solar cells have potential 
efficiencies of 36.6%, 44.0%, 48.8%, 50.4% and 51.4% under 1-sun, respectively. For 
realizing higher efficiency MJ solar cells, we showed the importance of improving 
external radiative efficiency of the solar cell materials or in other words improving 
material quality, decreasing defect density in the bulk and at interfaces. Further 
decreasing resistance losses and applying light management for better absorption or 
photon recycling are important features to accomplish. There is a wide range of 
technological options under development which will lead to further efficiency 
improvement in the future where most developments target III-V MJ solar cells, III-V/Si, 
II-VI/Si, Perovskite/Si tandem solar cells. The potential for < 1 $/W MJ solar cell modules 
exists for III-V based devices if new technologies such as high-speed deposition, Si-based 
tandem solar cells or the use of concentration are matured and realized with sufficient 
efficiency and manufacturability. Once the technology meets some terrestrial markets, 
cost reduction will happen, driven by the increase in production volumes. This is well 
know from the history of the silicon photovoltaic industry. So the main question is how 
to approach and enter terrestrial markets with volumes on the order of several hundred 
MW/year. Besides, the III-Vs, other materials may have advantages in terms of 
production cost and they can enter the field of multi-junction technology quickly once the 
materials show high external radiative efficiency and reliability. II-VI/Si, chalcopyrite/Si 
and especially perovskite/Si tandem solar cells are developing quickly and are expected 
to play an important role as high-efficiency and low-cost solar cells in the future. As ideal 
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bandgap combinations for highest efficiency MJ solar cells are often found in lattice-
mismatched systems, efficiency improvements by reduction in bulk recombination based 
on further understanding of non-radiative recombination are necessary. Reduction in 
surface and interface recombination, efficient optical coupling and low loss electrical 
interconnection of sub-cells, and effective photon recycling of bottom solar cell are also 
key elements for high-efficiency MJ solar cells. At this point nobody can predict which 
concept will be most successful, but we believe clearly that at least one multi-junction 
solar cell technology with efficiency beyond the limits of silicon will appear as a major 
player in the photovoltaic market. The question is only which materials will take the lead, 
and when this will happen. 

DATA AVAILABILITY 
The data that support the findings of this study are available from the corresponding 
author upon reasonable request. 
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Table 1. Major losses, their origins of III-V compound MJ solar cells and key 
technologies for improving efficiency. (Reproduced with permission from Ref. 2 [Wiley], 
[2015]). 

Losses Origins Technologies for improving 

Bulk recombination 
loss 

Non radiative 
recombination centers 
(impurities, dislocations, 
other defects) 

High quality epitaxial growth 
Reducing thermal stress 
Reduction in density of defects 

Surface 
recombination loss 

Surface states 

Surface passivation 
Heterointerface layer 
Double hetero structure (sandwitched 
with higher bandgap barrier layer) 

Interface 
Recombination loss 

Interface states 
Lattice mismatching 
defects 

Lattice matching 
Inverted epitaxial growth 
Back surface field layer 
Double hetero structure 

Voltage loss 
Non radiative 
recombination 
Shunt resistance 

Reduction in density of defects 
Thin absorber layers 

Resistance loss 

Series resistance 
Shunt resistance 
Loss of sub-cell 
interconnection 

Reduction in contact resistance 
Reduction in leakage current, 
Surface, interface passivation 
Reduction in sub-cell interconnection 
loss 

Optical loss 
Reflection loss 
Insufficient absorption 

Anti-reflection coating, texture 
Back reflector, Photon recycling 

Insufficient-energy 
photon loss 

Spectral mismatching Selection of sub-cell materials 
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Table 2. Potential 1-sun AM1.5g efficiencies of 3rd generation solar cells. 
Concept Potential 

Efficiency 
Achieved Efficiency 

Hot carrier solar cells 68% 11.1% @50,000-suns [ref. 144] 
Tandem (Multi-junction）solar 
cells (n→∞) 

68% 39.2% (n=6) [ref.15] 
47.1% @143-suns (n=6) [ref.15] 

Thermophotovoltaic solar cells 54% 29.1% at emitter temperature of 
1207 ℃ [ref.145] 

Tandem solar cells (n=3) 49% 37.9% [ref.12] 
44.4% @300-suns [ref.12] 

Impurity band solar cells 
(Quantum dot solar cells) 

48% 18.7% [ref.146] 

Tandem solar cells (n=2) 43% 32.8% [ref.1] 
35.5% @38-suns [ref.1] 

Single-junction solar cells 31% 29.1% [ref.1] 
30.5% @258-suns [ref.1] 
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Figure captions 

FIG.1. Calculated and obtained efficiencies of single-junction single-crystalline and 
polycrystalline solar cells. ERE shows external radiation efficiency expressed by eq. (1) 
and the solar cells with the higher ERE value show the less of non-radiative 
recombination loss. Efficiency values of cells with an area of 1cm2 or larger area was 
plotted in the figure. (Reproduced with permission from Ref. 2 [Wiley], [2015] and 
updated.). 

FIG. 2. Loss processes and power out in an unconstrained, MJ device under one sun 
illumination (6000K Blackbody) are shown. All incident solar radiation is accounted for. 
Optimal bandgaps are used in each case. All mechanisms are shown to be dependent on 
the number of junctions. (Adapted with permission from Ref.6 [Wiley], [2011]). 

FIG. 3. Principle of wide photoresponse by using a MJ solar cell, for the case of an GaInP 
/GaAs/Ge triple-junction solar cell. (Adapted with permission from Ref. 7 [Toyota Tech. 
Inst.], [2020]). 

FIG. 4. Chronological improvements in conversion efficiencies of concentrator MJ and 
MJ solar cells in comparison with those of crystalline Si, GaAs, CIGS and perovskite 
single-junction solar cells. (Reproduced with permission from Ref. 7 [Toyota Tech. Inst.], 
[2020] and updated.). 

FIG. 5. Fundamental processes in an ideal solar cell : Schematic of a single-junction solar 
cell of bandgap Eg showing four fundamental processes: (1) absorption of light above the 
bandgap energy (Eg), (2) transmission of light below the bandgap energy, (3) 
thermalisation of excess energy, (4) radiative recombination. 

FIG. 6 Bandgap vs lattice-constant of III-V semiconductor alloys. Various MJ solar cell 
combinations are also shown with demonstrated AM1.5 global one-sun and AM1.5 direct 
concentrator efficiencies. Most successful III-V MJ solar cell designs use GaAs and 
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GaInP junctions. 

FIG. 7. Examples for the layer structure of a perovskite/Si dual-junction solar cell 
structure with pyramids on the rear (left) and a GaInP/GaAs/Si triple-junction solar cell 
which uses a nanostrucured resists grating as diffusor on the back (right). 
FIG. 8 Calculated efficiencies of MJ solar cells under 1-sun and concentration conditions 
as a function of number of junctions. Calculated efficiency values are taken from ref.134 
and 135. 

FIG. 9. Calculated efficiencies of III-V compound MJ solar cells under 1-sun conditions 
as a function of number of junctions and external radiative efficiency (ERE) in 
comparison with efficiency data (best laboratory efficiencies) reported in references. 

FIG. 10. A comparison of module cost as a function of module production volume for III-
V tandem, high-speed deposition, Si tandem, and concentrator, reported by the authors 
and cost analytical results for rapid deposition (HVPE; Hydride Vapor Phase Epitaxy) and 
Si tandem reported by NREL. (Reproduced with permission from Ref. 139 [Elsevier], 
[1994] and updated.). 
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