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1 I INTRODUCTION

Abstract

In-silico screening of novel biofuel molecules based on chemical and fuel properties

is a critical first step in the biofuel evaluation process due to the significant volumes

of samples required for experimental testing, the destructive nature of engine tests,

and the costs associated with bench-scale synthesis of novel fuels. Machine learning

structure-property models are limited by training sets of few existing measurements

and high dimensionality, leading to poor predictive performance. Feature selection

has been shown to improve machine learning models, but correlation-based feature

selection fails to provide scientific insight into the underlying mechanisms that deter-

mine structure-property relationships. In this study, we investigate the impact that

causal-based feature selection might have on improving model predictions while

also helping to identify key molecular substructures for optimizing chemical and

fuel properties. We found that causal-based feature selection performed better than

alternative filtration methods for predicting one of three fuel properties, and that a

structural causal model provides valuable scientific insights into the relationships

between molecular substructures, chemical properties, and fuel properties.
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Evaluating candidates for commercial biofuels can often be an expensive process that requires significant bench-scale chem-

ical synthesis and destructive testing of samples. Ultimately, promising biofuel candidates may be ruled out due to poor fuel

property performance, environmental toxicity, or the inability to cost-effectively scale up production. For these reasons, in-silico

screening of molecules is an essential first step to save both time and money. Chemical kinetic models and quantum chemical

simulations are based on known physical principles and provide accurate predictions for some fuel properties, but are com-

putationally expensive, often taking thousands of computation hours to generate predictions for a single molecule. Machine

Learning (ML) models can quickly generate predictions, but are limited by existing measurements, with numerous structural

properties for each compound, resulting in short, high-dimensional datasets. Training ML models on these datasets often results

in inaccurate predictions, however with tempered expectations, predictions generated by models with reduced errors can still be

leveraged for in-silico screening.

While there are many fuel properties that are important to evaluate novel biofuel candidates, properties related to autoignition

tendencies are often the most challenging to predict due to autoignition dependencies on complex combustion kinetics. Research

Octane Number (RON) and Motor Octane Number (MON) are two autoignition properties developed in the early 20th century
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that are still used today to evaluate the antiknock performance of a fuel mixture. Automobile drivers are likely familiar with

the Anti-Knock Index (AKI), often described as the octane rating, which is displayed on the pump at fueling stations and is

determined by
RON + MON

AKI = (1)
2

However, many recent studies [[F have determined that modern spark ignition (SI) engines are better served by an antiknock

rating called Octane Index (01), given by

OI = RON — K * (RON — MON), (2)

where K refers to an engine-specific constant that depends on the pressure and temperature of unburned fuel in the cylinder. The

octane index utilizes K to map RON and MON values to engines that operate at conditions not accurately described by the AKI.

These studies show that for many modern engine architectures with negative K values, high Octane Sensitivity (OS), given by

OS = RON — MON, (3)

is an important feature to avoid engine knock. The OI still requires the determination of both the RON and MON of the fuel

according to ASTM methods, which generally requires more than a liter for each fuel candidate. In this context, it is clear that

RON and OS are important fuel properties to be able to predict in-silico.

BiocompoundML VAI1 is a suite of binary classification models developed by Sandia National Laboratories for predicting fuel

properties such as RON, MON, and OS. These models are capable of accurately predicting whether a molecule will have high/low

RON, MON, or OS, but fail to provide concrete values necessary for confidently screening molecules. BiocompoundML is

trained on a dataset that encodes molecular structure into an mx f binary matrix, D, such that Du represents the presence or

absence of feature j in molecule i. Due to the infinite number of possible permutations that atoms can be arranged, this dataset

is extremely sparse and contains thousands of molecular signatures and fingerprints. As shown in FIGURE Il I these molecular

descriptors range in specificity from any single carbon bond to very specific substructures.
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FIGURE 1 Examples of molecular descriptors. A refers to any aliphatic (non-aromatic) carbon and X refers to any connection.

Feature selection has been shown to improve the accuracy, speed, and robustness of machine learning models 131, and feature

selection methods generally fall into one of three categories — filters, wrappers, and embedded methods. Filters select the most

appropriate features prior to training of the models, while wrappers involve iterative feature subset selection and model training
until the model error approaches a minimum An example of an embedded method is the multilayer perceptron, where feature

selection is built into the ML model architecture itself. Because filter methods are applied prior to training, they are generally less

computationally expensive than either wrappers or embedded feature selection methods, and are independent of the predictive

model architecture. Additionally, due to the size limitations of our datasets, wrapper and embedded methods would likely result

in overfitting, whereas filters could improve the robustness of our models to new data. Even the simplest correlation-based filter

methods have been shown to perform comparably to wrapper methods [4]. For these reasons, this study will focus on different

filter-based feature selection methods.

Filter-based feature selection generally involves methods of ranking feature importance, which are generally dependent on

how correlated a given feature is to the metric being predicted. This provides insight into how certain features may be related

but does not provide any insight into the underlying mechanisms that determine how the feature is related (i.e. correlation vs

causation). Knowing which features cause the fuel property to go up or down in addition to which features are associated with
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the fuel property could potentially improve both the accuracy and the interpretability of ML models. The scientific insights

generated from causal discovery in existing data could also drive future fuel selection and design decisions.

In his book, Causality [L11], Judea Pearl differentiates between statistical association and causation by introducing the concept

of causal assumptions. Causal assumptions take advantage of a priori knowledge in order to build a structural causal model

(SCM) of the relationships between each variable (i.e. which variable is the cause and which is the effect). If a priori knowledge

about the direction of causal relationships is unknown, it is possible to identify the causal direction by comparing the dependence

between the predictive residuals and each variable [M]. The relationship between two variables x —> y is causal if given

otherwise identical samples, a change in x always results in a quantifiable change in y. The amount that changing x results in a

change in y is the causal effect, and the direction of the causal relationship is determined by the causal assumption that x y.

One method to visualize a SCM is to generate a Bayesian causal network [LIIL LIM of treatments (features) and outcomes (fuel

properties). For an example of a causal Bayesian network representing the current pandemic, see FIGURE where the nodes

represent variables and the edges represent causal relationships. Public health officials are currently very concerned about what

causes COVID-19 deaths and how they can be prevented. According to public data from the European CDC [L5], COVID-

19 deaths are 95% positively correlated with the total number of COVID-19 tests. Nevertheless, public health officials are not

advocating for a decrease in testing in order to prevent further death. That is because officials understand that the COVID-19

deaths are actually fairly unrelated to the number of tests, and the relationship is definitely not directly causal. In fact, it can be

argued that increasing the amount of testing can influence public perception of the virus and therefore change social behaviors

that actually reduce the spread of COVID-19, a fundamental cause for the prevalence of COVID-19 illness, and as a result,

COVID-19 deaths. Instead of advocating for a reduction in testing, health officials recommend measures to reduce the spread of

the virus such as social distancing and the use of face masks to reduce aerosol transmission between individuals. Our hypothesis

is that by understanding the causal relationships between molecular properties and fuel properties, we could train our models

based on features that are directly causal in order to improve both accuracy and robustness.

2 I METHODS
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FIGURE 2 Bayesian network example for COVID-19.

2.1 I Digital Encoding of Molecular Structure

The dataset, D, used in this study consists of information from three major sources such that

D = [P, M, C]. (4)
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where P and M refer to molecular descriptors that were generated using the Pharmaceutical Data Exploratory Laboratory

(PaDEL-Descriptor) [/E] and MolSig Stereo Signature Molecular Descriptor [2] packages. PaDEL checks for the presence or
absence of 1875 types of descriptors and 12 types of fingerprints in the molecule, whereas MolSig generates a graph-based rep-

resentation of the molecule at varying heights. The PaDEL descriptors were encoded into the binary matrix P, where the value

P,./ refers to the presence (1) or absence (0) of the descriptor j in molecule i. The MolSig descriptors were similarly encoded in

M, but instead of binary representations, M,j refers to the number of occurrences of descriptor j in molecule i. The final com-

ponent, C, refers to chemical properties for each molecule pulled from PubChem [6], such as melting point or rotatable bond

count.

2.2 I Methods of Ranking Feature Importance

2.2.1 Correlation Coefficient

The most obvious way to rank features is to prioritize features that correlate with the fuel property being predicted. The three

most common correlation coefficients are the Pearson, Spearman, and Kendall correlation coefficients. The Pearson correlation

coefficient Pxy between two variables X and Y is defined as

cov(X,Y) E[(X — pix)(Y — ity)]
Pxy =  (5)

cxay axcy
where cov(X,Y) is the covariance between X and Y, and o-x, o-y, yx, and yy are the standard deviations and means of X and

Y, respectively. The Spearman correlation coefficient, r„ differs from the Pearson correlation coefficient in that it compares the

rankings, rg, between features rather than the linear relationship between the values themselves, and is given by the equation

rs = Prgx,rgy • (6)

The Spearman correlation is robust to outliers and independent of the linearity between the variables, making it more suitable

than the Pearson correlation for ordinal data. The Kendall correlation coefficient, like the Spearman correlation, is also a rank-

order correlation method, but rather than taking the Pearson correlation of rankings of X and Y, the Kendall correlation r is

given by
c — d c — d

=  (n2) n(n-1)

2

(7)

where n is the number of observations and c and d are the number of concordant and discordant pairs between X and Y. Given

the ranking pairs (xi, y,), (x j, ...(x„, yn) where i < j, a pair is considered to be concordant if both x, > x j and yi > y1 or both

x, < x j and y, < yj. The pair is considered to be discordant if either x, > x j and y, < yj or x, < x j and y, > yj. The Kendall

correlation coefficient can also be written as
2

— x.dsgn(y, — (8)= sgn(xi
n(n— 1) i<j

where sgn refers to the sign function

if x < 0

sgn(x) =

{-1,

0, if x = 0 (9)

1, if x > 0

The Kendall correlation coefficient tends to be more conservative than its Spearman counterpart, making it even more robust to

outliers and having better p-values for smaller datasets. Due to the ordinal nature of the PaDEL molecular descriptor data and

the limited size of our dataset, we opted to use the Kendall rank-order correlation to measure correlation between descriptors

and fuel properties.

2.2.2 Mutual Information

Mutual information, I, represents the statistical dependence between two variables and is calculated by

px,y(x, 31)
= px,y(x,y)log  

y x Px(x)py(y))
(10)

where px ,y is the joint probability mass function of X and Y, and px and py are the marginal probability mass functions of

X and Y. Intuitively, the best features for predicting a given fuel property are likely the features that share the most "mutual



Nguyen ET AL 5

information" with that property. Because of this, mutual information is one of the most common methods for ranking feature

importance in filter-based feature selection [5, 131,1/31.

2.2.3 Gini Impurity

Gini impurity is the most common metric for measuring prediction accuracy in random decision tree models [7], and describes

the probability that a sample would be incorrectly labeled if it was randomly labeled according to the distribution of the labels

in the training set. In a decision tree, the Gini impurity G1 for a given leaf node 1 is

= 1 _ fi2). fz, (11)

where fp and fn refer to the fraction of positive and negative samples, and a leaf containing only positive or negative samples

would have a Gini impurity of O. The Gini impurity for a given feature in the decision tree is the weighted average of the two

leaf nodes which correspond to a feature. The Gini impurity is so common that the popular ML python package, scikit-learn,

includes a feature_importances_ attribute with all random forest models, which is the normalized inverse Gini impurity, such

that

Gf = 1 (12)
f

for all features f . While Gini impurity may be the obvious choice for measuring feature importance in ensemble decision tree

models, it is important to note that Gini has also been shown to have a selection bias when comparing variables of different scale

or type (discrete vs continuous) [E7].

2.2.4 LIME

The open-source Local Interpretable Model-agnostic Explainer (LIME) [IA] package is an explainable AI tool that shows

which features are most important for decisions made by ML models. LIME achieves this by perturbing an input variable

around its local neighborhood and measuring how the model predictions differ. Input variables are weighted based on how much

changing that variable causes the model to change its predictions. It is important to note that while LIME is a valuable tool for

explaining how decisions are made by black-box ML models, LIME feature weights are especially dependent on limitations in

the completeness of the training set.

2.2.5 i Causality
Our hypothesis is that knowing the causal effect between features and fuel properties could potentially improve feature selec-

tion. Ideally, the causal effect would be measured through counterfactual examples in the data, where counterfactuals a ra LI3]

are data points in which only the variable in question is changed. By controlling only one variable at a time, we could deter-

mine the causal effect that changing that variable has on various fuel properties. While this may be possible when designing

an experiment (e.g. randomized, double-blind drug trials), real-world datasets rarely contain sufficient counterfactuals for every

feature, and that is especially true in the case of datasets containing molecular signatures, where almost every feature shares a

dependence with another. Instead, we could estimate causal effects using conditional Bayesian statistics. To do this, we first con-

structed the causal Bayesian network containing features, fuel properties, and the potential causal relationships between them.

We identified potential causal relationships between features based off correlation, then determined the direction of those fea-

tures based on a priori knowledge. For example, molecular substructure may have a causal impact on melting point, but not the

other way around. Similarly, adding another benzene ring may increase total carbon count, but adding carbon to a molecule does

not necessarily require a benzene ring to be present. In general, we determined that structural features could cause chemical

properties, and that both structural features and chemical properties could cause fuel properties.

Once the causal relationships were mapped out in our Bayesian network, we could estimate the causal effect of features

on fuel properties. Because we lacked sufficient data to estimate causal effect using counterfactuals, we instead relied on an

alternative method - propensity score stratification. Samples were separated into strata based on the probability (propensity) that

the feature of interest will have the value that it does based on the common causes between that feature and the fuel property.

Existing causal inference packages such as Microsoft's DoWhy [8] include methods to estimate causal effects via propensity

score stratification, but assume binary treatments and outcomes. We developed a method similar to the one used in DoWhy for

propensity score stratification, but used linear regression to enable estimation of causal effects due to continuous variables. Any

continuous variables in the dataset were discretized into bins, and the propensity score for each data point was calculated using
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multi-class logistic regression. Samples were then stratified based on k-means clustering of the probability that each data point

will have a given value for a particular feature based on the common causes between the feature and fuel property. In order to

ensure relative confidence that the causal effect was actually present in the data, strata with less than 5 data points were removed,

as well as strata with only one unique value for the feature in question. Removal of strata with only one unique value was also

necessary in order to perform linear regression, which was done on the remaining strata using only that feature as the input.

The causal effect and weight for strata were recorded as the coefficient of regression (slope) and the max(0, R2) between the

predicted and actual values. Using the R2 value as the weight when estimating the weighted average of the overall causal effect

ensured that causal effects from low-confidence strata had minimal impact on the overall estimate. In other words, the overall

causal effect Cf that a feature has on the fuel property was estimated to be

Es ns • cs • R2s
C f =   (13)

Es • R2n s s

where S is the set of strata, iis is the number of points in each strata, cs is the causal effect of that strata, and R2, is the max(0, R2)

for that strata. Estimating the causal effect for each strata helps to eliminate confounding dependence between the feature, the

fuel property, and their shared causes, emphasizing the dependence that the fuel property has on that particular feature.

2.3 I Quantitative Evaluation of Various Ranking Methods

In order to compare across different methods of ranking feature importance, we normalized the feature importance as the

relative weight for each ranking. The feature weight, tvf, for any given ranking method, r, is given by

l if, l
iv,

r 
=

j Ef lif,i'

where if is the feature importance as defined by ranking method, r, and EF Wf = 1. Once the feature weights

were determined, we tested the top features listed by each ranking using a fairly standard random forest regressor

(n_estimators=100,max_depth=5). In addition to the ranking methods mentioned above, we also included the results from a

random feature selection method, as well as the mean of weights between all ranking methods. We trained the model on a subset

of features starting with only the best feature, then adding features one-by-one with each iteration, measuring the root-mean-

squared-error (RMSE) along the way. The expectation was that the most important features being included would result in the

lowest RMSE at first, and that the RMSE would quickly decrease as more and more features were included in the training.

Rather than a traditional splitting of training and test sets, we used 10-fold cross validation for this process. Because each

sample in the dataset is a unique molecule, removal of any given molecule could have removed key information regarding one

of the features, resulting in significantly higher prediction error. The use of 10-fold cross validation over distinct training and

test sets ensured that any negative impact from removing a key sample was averaged across the other 9 folds that included that

molecule.

Another experiment we conducted to evaluate ranking methods was to remove the top 10 features identified by each ranking

method and to repeat the RMSE experiment for the top 50 features that remained. If a ranking method correctly identified

a feature as being important for accurate prediction, the RMSE curve should be higher than its counterpart with no features

removed. On the other hand, if the ranking method incorrectly identified a feature as being important, removing that feature

should have minimal effect on the RIVISE curve.

3 I RESULTS

Due to some ranking methods attributing more features as having zero weight than others, different ranking methods could only
be compared up to the minimum number of feature inclusions. FIGURE I3 Ishows the RMSE results for the top 80 features for

RON, MON, and OS. While all ranking methods showed significant improvement over random feature inclusion, the causality-

based feature selection method performed relatively poorly for all fuel properties.

Another test to see if each ranking method successfully identified the most important features was to remove the top 10 features

of each ranking method and compare the models' error with the control where no features were removed. FIGURE 4 Ishows
the RMSE results of this experiment and compares the RMSE curves for when the top 10 features were removed according to
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each ranking method. The order of feature importance for this experiment was the mean of the feature weights for each ranking

method. While causality-based feature selection still did not show improvement in the RON and MON models, it did perform

well for predicting OS. It is also worth noting that while Gini impurity performed the best in the previous experiment, methods

based on correlation and mutual information appeared to perform the best in this experiment.
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As expected, the best ranking method for each fuel property was different, reflecting the common sentiment that there is no

"best" feature selection method for all datasets. However, feature selection in general remains an important preprocessing step

for machine learning models based on sparse and limited datasets. FIGURE 5 4nd 0 Ishow the difference between models

trained on all features and models trained on only the top 80% cumulative feature weights for each fuel property, which ended

up being 605, 603, and 606 features for RON, MON, and OS respectively. TABLE 1  shows the cross validation results (R2 and

RMSE values) for the models based on the amount of feature inclusion, but it is important to note that FIGURE 5 4nd I6 $how

predictions where the training and test set are the same. Samples in both FIGURE 5 4nd 0 Ore colored from green to red such

that the red samples represent errors outside of the acceptable range of ±10 for RON and MON and ±5 for OS.

4 I DISCUSSION

Although causal-based feature ranking performed much better than random feature selection, it generally performed worse

than other common methods for identifying the most important features for fuel property predictions. The exception was that

causal-based feature selection seemed to perform the best for identifying the top features for predicting OS according to the

results of the second experiment. Gini importance appeared to perform well in the first experiment, but other methods quickly
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FIGURE 5 Actual vs predicted values for RON, MON, and OS with all features included.
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FIGURE 6 Actual vs predicted values for RON, MON, and OS with filtered features.

TABLE 1 R2 and RMSE for models based on feature inclusion

30

RON MON OS

Features included R2 RMSE R2 RMSE R2 RMSE

All 0.555 13.849 0.544 12.451 0.525 5.723

Top 80% Weight 0.669 11.491 0.666 10.535 0.550 5.556

caught up as the number of features increased. Gini importance also did not perform as consistently in the second experiment,

indicating that features identified as important by Gini may have contained redundant information, and removing those top 10

features did not have a large impact on predictive performance.

In order to compare between features and fuel properties of different scales, the dataset was normalized prior to estimating

causal effects. FIGURE 7 Ishows examples of some of the molecular features with the greatest impact on fuel properties, as
well as examples of those substructures in the dataset. It is clear that features identified to have a causal effect on fuel properties

most consistently identified changes in OS, as expected from the results of the second experiment. While causal-based feature

selection may not have improved feature selection for all fuel properties, it performed on par with other feature selection methods

as the number of included features increased. Causal-based feature selection and the associated construction of SCMs also have

the additional benefit of increased understanding behind the underlying mechanisms that influence fuel properties, as well as a

simpler understanding of how different features affect each other and the fuel properties. FIGURE I8 Ishows the relationships

between features according to correlation (with a threshold of 1 + 0.51) on the left vs causal relationships between each feature

and the fuel properties on the right. The correlation map shows that 612 features share at least one "significant" correlation with
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FIGURE 8 Correlative vs causal feature relationship map.

another feature, but the causal map indicates that only 214 of those nodes share a causal relationship with another feature. The

causal map also reduces the number of potential relationships by roughly 90% from 3465 edges to 349. The simpler structural

causal model allows us to construct a Bayesian causal network to visualize the role that each feature plays in determining fuel

properties and develop a better understanding of how to design fuels with improved fuel properties in the future.

Because the two experiments to evaluate feature ranking methods did not yield consistent results, we have decided to use

the mean feature weight for all ranking methods for feature selection of RON, MON, and OS models. Because this approach is

an aggregate of several different ranking methods, it is robust to different datasets regardless of sparsity or size. FIGURE

and FIGURE 16--clearly show the importance of feature selection for sparse and limited datasets, and that the mean feature

weight between several ranking methods is sufficient for accurate model predictions. Note that the predicted fuel properties in

FIGURE 5 I shows the tendency for such datasets to predict values closer to the mean when redundant and irrelevant features
are included. Intelligent feature selection enables us to generate robust models that neither overfit nor underfit the available data,

such as the ones used in FIGURE 16 I. While feature selection may not be as important for large and robust datasets with limited

5 I
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dimensionality, it is certainly important in many applications with limited data which are common across scientific research.

Causal-based feature selection may not be the best ranking method for every application, but it is a useful tool which helps to

pull back the curtain on the underlying mechanisms that a black-box model cannot otherwise identify.
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