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Disclaimer

This is a technical presentation that does not take into account contractual
limitations or obligations under the Standard Contract for Disposal of Spent
Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10
CFR Part 961). For example, under the provisions of the Standard Contract,
spent nuclear fuel in multi-assembly canisters is not an acceptable waste form,
absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with
the provisions of the Standard Contract, the Standard Contract governs the
obligations of the parties, and this presentation in no manner supersedes,
overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision
making by DOE. No inferences should be drawn from this presentation
regarding future actions by DOE, which are limited both by the terms of the
Standard Contract and Congressional appropriations for the Department to
fulfill its obligations under the Nuclear Waste Policy Act including licensing and
construction of a spent nuclear fuel repository.
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Legal Notice

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

K] energy.gov/ne



Acknowledgements

Results discussed below are based on work by:

Halim Alsaed — Termination of criticality
Amanda Barela — Inventory

Pat Brady — In-package chemistry and radionuclide
solubilities

Mike Gross and Fred Gelbard — Thermal analyses

Scott Painter (ORNL) and Michael Nole — PFLOTRAN
calculations

Jeralyn Prouty — Reference repository diagrams

energy.gov/ne



Objectives

Develop tools to model the consequences of postclosure criticality
* Couple neutronics calculations and thermal-hydraulic calculations
* Build sub-module in PFLOTRAN to account for postclosure critical event
= Further our understanding of the features, events, and processes
important to modeling postclosure criticality
= Examine processes leading to permanent termination of critical
event
= |dentify areas where further work is needed
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Approach

= Two hypothetical repositories considered

e Saturated repository in shale (Mariner et al. 2017)
* 500 m depth
» Backfilled with bentonite
» Hydrostatic pressure is 50 bars

* Unsaturated repository in alluvium (Mariner et al. 2018)
« 250 m depth
« Backfilled with crushed alluvium
» Percolation rate up to 10 mm/yr
= (Calculate radionuclide concentrations in the host rock with and
without the occurrence of a critical event
* Steady-state criticality (9,000 — 19,000 years postclosure)

* Transient criticality (9,000 years postclosure)
= Single waste package (37 PWR)
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Assumptions

= A waste package is breached; criticality occurs 9,000 years after
closure®

= Fuel assembly lattice remains intact (i.e., intact grid spacers) and
cladding permits radionuclide release (e.g., through pin holes and
cracks)”*

= Al-based neutron absorbers are not present
= The steady-state critical event is not cyclic*

* Will be investigated as the research effort moves forward
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Hypothetical Repository in Alluvium

*" inset of potential
geologic repository

] —_ Upper basin fill

o Alluvial fan
Consolidated rock

] Water table

Lower basin fill

Mariner et al. 2018
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Single DPC Model Setup

«  Geometry

- Consistent with GDSA Unsaturated Alluvium reference case
(Sevougian 2019; Hardin and Kalinina 2016)

- 40 m drift spacing, 40 m center-to-center spacing within drift

- Square cross-section for drift (4m x 4m) and DPC (1.67 m x 5 m x
1.67 m)

- 0.1 m overpack/shell

*  Properties
- Permeability 10-'4 (alluvium) 10-13 (backfill)
- Thermal conductivity =1 W/m?2-K (dry) and 2 W/m?-K (wet)
- Canister internals = hydraulic properties of backfill

« Scenario
- Postclosure with 37-PWR assembly and backfilled drifts in place
- Top of DPC shell breached at 9000 years allowing water to enter
- Initiate criticality event when canister is filled with water

« Cases
- 10 mm/year and 2 mm/year percolation into waste package
- Range of power outputs for criticality event

Objective is to estimate (bound) power output that could be sustained before
driving water out of the package
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PFLOTRAN

« Open source code for thermal hydrology and reactive transport in
variably saturated porous geologic media

* Highly parallel by domain decomposition

« “General mode” solves coupled conservation equations over two
phases
- Water as liquid and vapor
- Air as gas and dissolved in liquid
- Energy (advection and conduction)
- Variable switching to accommodate phase disappearance/reappearance

 Lichtner, Hammond et al. www.pflotran.org
Hammond, Lichtner and Mills 2014 Water Resources Research
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Temperature at DPC Center Prior to Critical Event

The 2 mm/year case has
slightly higher temperatures
because of less latent heat of
vaporization to overcome and
slightly lower thermal
conductivity

Temperature [°C]
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Liquid Saturation Index at Time of Maximum Dryout

40mx 80 m Liquid saturation index
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Liquid Saturation Index for 10 mm/yr Case, 400

W Criticality Event
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Liquid Saturation Index for 2 mm/yr Case, 100 W

Criticality Event
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100 W event could desaturate the package in about 100 years
« Evaporation without boiling is sufficient to keep the waste package
dry in low infiltration unsaturated alluvium
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Post-breach Waste Package Temperatures
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Conclusions for Unsaturated Case

« DPC center temperature peaks around 20 years after closure
- ~235°C for 2 mm/year case
- ~225°C for 10 mm/year case

« Dryout zones around individual DPCs do not coalesce, allowing for
vertical drainage

 Criticality is possible after water returns to the emplacement drifts
- ~9,100 years postclosure for 10 mm/year case
- ~17,000 years postclosure for 2 mm/year case

« Long-term average power output from criticality event is limited by
thermal hydrology of the unsaturated alluvium
- <400 W per DPC for 10 mm/year case
- <100 W per DPC for 2 mm/year case
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Hypothetical Argillite Repository

Argillite
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Shale Host Rock
Shala =

Mariner et al. 2017
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Coupling Scheme Between Processes

Criticality Event
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Thermal Analyses — Power Generation
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Temperature vs. Time
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Inventory Changes

Mass Fractions of Selected Radionuclides in the DPC With and Without

Criticality
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Factors Affecting In-Package Chemistry During

Steady-State Critical Event

« Chemistry inside waste package affected by
- New fission products
- Increased temperature
- Increased radiolysis
- Stainless steel corrosion
- Spent fuel degradation

* Increased temperature accelerates corrosion rates of DPC materials

« Steel corrosion leads to reducing conditions (saturated shale
repository) BUT

« Radiolysis produces oxidants (H,O,, NO, in unsaturated case)

« Coupled calculation of radiolysis, steel degradation, spent fuel
degradation needed
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Radionuclide Solubilities

« Degradation of SNF produces relatively insoluble actinide oxides
containing Pu, U, Am, Np, and Th

« Solubilities of these oxides control actinide release and tend to
decrease as temperature increases

« pH affects radionuclide solubilities; in general, actinide solubilities are
higher away from neutral pH

» For fission products that are not solubility limited (e.g., I), releases into
the host rock depend on SNF degradation rates and uptake by backfill

« As temperature increases, there is a decrease in solubilities of oxides
and carbonates of neutron poisons ('49Sm, 1°7Gd, 143Nd)
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Engineered Barrier System Degradation

* In the hypothetical repositories assumed in this work, engineered
barriers consist of
- Waste package outer barrier
- DPC
- Fuel cladding
- Backfill (bentonite)

« Waste package is assumed to have failed for critical event to occur —
no longer serving as an engineered barrier but is still right circular
cylinder

« Cladding is assumed to maintain configuration but have small holes

* Bentonite backfill is assumed to not act as a barrier to radionuclide
transport during critical event
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Termination of Criticality

* Radioactive decay provides limited changes in reactivity after ~100,000 years.

« Buildup of 233U from decay of 22’"Np results in a relatively small reactivity
increase over a few million years

» Depletion and production of fissile material from additional burnup from
steady-state postclosure criticality occurs very slowly

- For saturated repository, 4kW for 10,000 years results in additional ~1 GWd/MTU average
burnup

« Grid spacer corrosion/collapse resulting in uniform pin pitch reduction of ~3
mm could result in permanent termination of criticality for most DPCs

« Dissolution and transport of neutron-absorbing isotopes could increase
reactivity

 Dissolution and transport of 23°Pu (t,,, = 24,100 years) prior to about 100,000
years could reduce reactivity

« Dissolution and transport of uranium would likely have a small effect on
reactivity because of the large mass of uranium in a DPC
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Performance Assessment Calculations

« Developed a criticality sub-module in PFLOTRAN

- Added capability to specify a steady-state heat from a critical event for a
specified period of time
- Added capability to change radionuclide inventory at a specified time

« Considered case without steady-state critical event and case with
steady-state critical event

« Present results for saturated shale case only; unsaturated alluvial
case was too dry for chemistry model to run
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Performance Assessment Model Setup

Host Rock

DRZ

Buffer
6.2 m

Model domain for a 3D, single-drift, single-waste package
simulation using quarter symmetry boundaries.
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PFLOTRAN Model Results in Shale Next to Drift
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Conclusions (1/2)

« Developed new criticality sub-module for PFLOTRAN that accounts
for additional heat and additional radionuclides generated by
postclosure critical event

 The power generated by a postclosure steady-state critical event in a
saturated repository has the potential to be much higher than that in
an unsaturated repository

« Qualitative insights into in-package chemistry and radionuclide
solubility

- Acids produced by additional radiolysis can be buffered by stainless steel
corrosion products

- Coupled calculation of radiolysis, steel degradation, spent fuel degradation
needed

- Both actinides and neutron-absorbing radionuclides are less soluble at
higher temperatures, but also affected by pH
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Conclusions (2/2)

- Behavior of EBS in saturated repository with postclosure critical event
not well understood, needs further study

 Insights into permanent criticality termination
- Fuel can remain reactive for entire postclosure period
- ldentified termination mechanisms for future study

* Insights into repository performance

- Importance of newly generated radionuclides to dose is dependent on
radionuclide travel time from repository to dose receptor

- Concentration of ?°l in the near field increases about 3% in the long term

- Concentration of 23’Np in the near field increases about 50% in the long
term

- Concentrations of 240Pu, 22°Th, and 233U in the near field increase about an
order of magnitude in the long term

- 241Am, 908r, 137Cs, and 238Pu appear only in the case with criticality because
they had decayed to nothing in the case without criticality.
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Waste Package Temperature

Time After Repository Closure (Years)
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Temperature Change — Adjacent Waste Packages
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Effects of Convection — 10,000 Years
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Inventory Changes — Actinides and Their
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Inventory Changes — Fission and Activation

Products
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Inventory Changes — Stable Fission Products
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Chemistry Inside the Waste Package During

Steady-State Critical Event

« Arrhenius equation predicts corrosion rates of SS
- 0.00008 uym/day at 100° C (alluvial repository)
- 0.002 ym/day at 169° C (shale repository)

* In hypothetical unsaturated alluvium environment, lower SS corrosion
rate is not likely to produce enough trevorite to buffer acid produced
by radiolysis (assuming “bathtub”)

* In hypothetical saturated shale environment, higher SS corrosion rate
is likely to produce enough trevorite to buffer acid produced by

radiolysis and inhibit oxidative degradation of SNF (assuming
“pathtub”)
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Termination of Ciriticality - Approach

What, how, and when could SNF or DPC characteristics be affected
by disposal events and processes such that the potential for criticality
initiation or continuation becomes permanently significantly
diminished?

« To begin to answer this question, examined eight typical criticality
control parameters

« Determined four parameters were worthy of further examination
- Radioactive decay
- Burnup
- Irreversible geometry changes
- Compositional changes due to corrosion or dissolution
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Reactivity Perturbations Due to Burnup
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Reactivity Perturbations Due to Burnup (cont'd)
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