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Abstract. In the decade since support for task parallelism was incor-
porated into OpenMP, its use has remained limited in part due to con-
cerns about its performance and scalability. This paper revisits a study
from the early days of OpenMP tasking that used the Unbalanced Tree
Search (UTS) benchmark as a stress test to gauge implementation effi-
ciency. The present UTS study includes both Clang/LLVM and vendor
OpenMP implementations on four different architectures. We measure
parallel efficiency to examine each implementation's performance in re-
sponse to varying task granularity. We find that most implementations
achieve over 90% efficiency using all available cores for tasks of 0(100k)
instructions, and the best even manage tasks of O(lOk) instructions well.
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1 Introduction

The introduction of asynchronous task parallelism was the primary focus of ver-
sion 3.0 of the OpenMP® API specification published in 2008 [24]. Subsequent
versions of the specification up to and including version 5.0 [25] have added nu-
merous enhancements to the OpenMP tasking model. Tasking has carved out an
important role in OpenMP as the mechanism for asynchronous device offload,
but its use remains somewhat limited in CPU-only OpenMP programs. Common
concerns include finding the optimal task granularity to amortize the overhead
costs of task creation, scheduling, and synchronization while at the same time
exposing sufficient application parallelism.

Shortly after the first OpenMP 3.0 implementations appeared, the Unbal-
anced Tree Search Benchmark (UTS) [20] was ported to the OpenMP task-
ing model as a stress test [21]. The OpenMP tasking version of UTS was ini-
tially compared against an OpenMP version that handled load balancing at user
level and a Cilk [10] version. An expanded study [22] included comparisons to

Cilk++ [15] (forerunner of Intel® CilkTM Plus) and Threading Building Blocks
(TBB) [26]. The results shed light on the ability of runtime systems of the time
to cope with large numbers of tasks generated in an unpredictable manner. UTS
was later added to the Barcelona OpenMP Tasks Suite (BOTS)1.

1 https://github.com/bsc-pm/bots
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At the time of this writing, the UTS OpenMP tasking studies are just over
a decade old. They were carried out on a board comprised of eight dual-core
"Santa Rose Opteron processors manufactured in a 90nm feature size. In con-
trast, Intel and AMD are currently transitioning down from 14nm to smaller
feature sizes, and processors with up to 72 cores per chip have been deployed
in high performance computing (HPC) systems. Arm systems capable of 64-
bit server-class computing were not even available until recently. Compilers and
runtime systems have evolved in the intervening years as well. Many are now
based on the LLVM project [14], and its permissively licensed open-source code
base has enabled cooperation among vendors and researchers while still allowing
vendors to maintain custom versions with proprietary optimizations for added
value. In addition, the evolution of the OpenMP tasking model since its incep-
tion has required some changes to the data structures and algorithms used in
implementations. In light of these developments in hardware and software, the
time is ripe to reprise the UTS stress testing evaluation of OpenMP tasking.

We do not attempt to reproduce exactly the earlier UTS OpenMP tasking
studies. The problem size used then is much too small for current systems, and
only one machine was used. The present study explores the following dimensions:

— Diversity of architectures (IBM POWER9, Arm Thunder X2, Intel Xeon
Skylake, and Intel Xeon Phi Knights Landing);

— Comparison of Clang/LLVM and vendor implementations;
— Measuring parallel efficiency as a function of task granularity;
— Quantifying load balancing operations per thread per unit time.

This effort aims to offer insights into the present state of OpenMP tasking
efficiency for the benefit of OpenMP users and implementors.

2 UTS: The Benchmark and Its Implementation

The UTS benchmark is a traversal of a dynamically generated tree. The end
result is a count of all the tree nodes. Since the computation of the result does
not require storage of tree nodes already explored, it is possible to generate
and process massive problems on even a small system. A variety of tree types
are specified in the original UTS paper [20], but this study is confined to the
"binomiaP tree type, which is particularly challenging to load balance due to
its unpredictability. In particular, simply distributing nodes near the root of the
tree across threads is not sufficient, because some of those nodes produce very
few descendants and the size of the subtree rooted at any node in the tree is not
known a priori. Rather, continuous dynamic load balancing is required. Though
the benchmark itself is synthetic, it is representative of applications that perform
an exhaustive search of a large irregular state space.

The key benchmark parameters are the root branching factor (b0), the non-
root branching factor (m), and the probability of generating children (q). At
the start of the benchmark only the root node of the tree exists. After the bo
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child nodes of the root are generated, each of those nodes and each of their de-
scendants determine the number of children to generate by sampling a binomial
probability distribution. Each non-root node has m children with probability
q and no children with probability 1 — q. Each node is identified by a 20-byte
descriptor. The generation of a child executes a SHA-1 cryptographic hash [9] on
the combination of the parent's descriptor and its child index. Thus, successful
completion of the benchmark on an n-node tree requires n SHA-1 evaluations.

An additional parameter is useful for the present study, compute granularity
(g). This parameter specifies the number of times to repeat the SHA-1 hash at
each node and it defaults to 1. Repeating the hash does not change the result
of the computation, but it changes the amount of work done at each node. The
effect of increasing the compute granularity is to coarsen the tasks.

The version of UTS used in this study is based on the implementation in the
Barcelona OpenMP Tasks Suite (BOTS). The code for the recursive function
that performs the tree traversal is shown in Figure 1. The code in the figure
includes some minor simplifications, but it also shows one substantive change
from the BOTS version that has been made to the actual code run in the ex-
periments. That change is the if statement that ensures recursive calls are only
made in the case where a child node itself has children.2 This change aids anal-
ysis of the benchmark by ensuring that all tasks do the same number of SHA-1
hash operations (including only those performed within that task itself, not its
descendants). Recall that each node has m children with probability q and no
children with probability 1 — q. Thus, each task performs exactly m x g hash
operations, where g is the compute granularity parameter specifying the number
of repetitions of the hash operation for each node. In the original BOTS version,
the if statement was not present, and tasks were created for child nodes that
themselves produced no children and thus did no SHA-1 hash operations.3

3 Test Problem

The problem input used in the study is tree "T35", found in the small.input file
in the inputs/uts subdirectory of the BOTS distribution. The root node of the
tree has bo = 2000 child nodes. Each non-root nodes has m = 5 children with
probability q = 0.200014 and no childen with probability (1 — q) = 0.799986.
The resulting tree has 111 345 631 nodes and with a maximum depth of 17 844
nodes. Only 22 268 727 nodes (19.99964% of the total nodes) have children, while
the remaining 89 076 904 nodes (80.00036% of the total nodes) have no children.
These numbers match closely the expected number of nodes with no children
based on the parameterized bias of the probability distribution given by q and

2 An if clause on the task construct would still create a task, though it would be
undeferred. The combination of final and mergeable clauses would allow but not
require that child tasks be merged, and it would require additional look-ahead since
the parent task must also be final to enable merging of the child tasks.

3 The version used in the 2009 UTS OpenMP tasking study [21] also had uniform
work per task, but with each task performing the SHA-1 hash for only a single node.



4 S. L. Olivier

unsigned long long search(Node *parent, int numChildren)
{
Node n[numChildren], *nodePtr;
int j;
unsigned long long subtreesize = 1, partialCount[numChildren];

// Recurse on the children of Node
for (i = 0; i < numChildren; i++) {

nodePtr = Szn[i];

// The following line is the work (one or more SHA-1 ops)
for (j = 0; j < granularity; j++) {

shal_rng(parent—>state.state, nodePtr—>state.state, i);
}

// Sample a binomial distribution to determine the number of children of child i
nodePtr—>numChildren = uts_n.umChildren(nodePtr);

if (nodePtr—>numChildren > 0) {
// Traverse the subtree rooted at child i to get subtree size
#pragma omp task untied firstprivate(i, nodePtr) shared(partialCount)

partialCount[i] = search(nodePtr, nodePtr—>numChildren);
}
else

partialCount[i] = 1;
}

// Wait for all subtree traversals
#pragma omp taskwait

// Combine subtree counts from children to get total size of subtree rooted at Node
for (i = 0; i < numChildren; i++)

subtreesize += partialCount[i];
}

return subtreesize;
}

Fig. 1. UTS code

(1— q). Since the parallel code used in the experiments is structured to create one

task per child-producing node, 22 268 727 is also the number of OpenMP tasks.

The compute granularity is varied in the experiments, but where not specified

explicitly it is only one SHA-1 hash operation per tree node.

Each experiment consisted of ten trials. Perhaps due in part to effective load

balancing, percent standard deviation was no more than 2% and in most cases

a fraction of a percent. Hence, error bars are omitted from the graphs.
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4 Experimental Setup

The present study spans four different architectures and 2-3 OpenMP implemen-
tations per architecture:

— Xeon SKL: Intel Xeon "Skylake" Platinum 8160 Processors, dual socket
with 24 cores per socket (48 cores total), 2 hardware threads per core, 2.1
GHz, 192 GB DDR4 memory, Red Hat® Enterprise Linux® 7.1. Compilers:
Intel® C/C++ Compiler 19.0.5 using "-fopenmp -03 -xHost"; Clang LLVM
9.0.1 using "-fopenmp -03 -march=native with LLVM OpenMP Runtime.

— IBM P9: IBM® POWER9TM 8335-GTW Processors, dual socket with 22
cores per socket (44 cores total), 4 hardware threads per core, 2.3 GHz,
256GB DDR4 memory, Red Hat® Enterprise Linux® 7.6. Compilers: PGI®
Compiler 20.1 using "-mp -03 -tp=pwr9"; Clang LLVM 9.0.1 using "-fopenmp
-03 -mcpu=pwr9" with LLVM OpenMP Runtime.

— Arm TX2: Marvell® ThunderX2® CN9975-2000 Arm® v8 Processors,
dual socket with 28 cores per socket (56 cores total), 2 hardware threads per
core4 , 2.0 GHz, 128 GB DDR4 memory, Tri-Lab Operating System Stack
(TOSS) based on Red Hat® Enterprise Linux® 7.6. Compilers: Arm® Com-
piler 20.0 ("armclane ) using "-fopenmp -03 -mcpu=native ; Clang LLVM
9.0.1 using "-fopenmp -03 -mcpu=native with LLVM OpenMP Runtime.

— Xeon Phi: Intel® Xeon PhiTM "Knights Landine 7250 Processor, sin-
gle socket with 68 cores, 1.4 GHz, 4 hardware threads per core, 16GB
Multi-Channel MCDRAM on-package memory, 96 GB DDR4 memory, Cray
Linux® Environment (CLE) based on SUSE Linux® Enterprise Server.
Compilers: Intel® C/C++ Compiler 19.0.4 using "-fopenmp -03 -xMIC-
AVX512"; Cray® Compiling Envronment (CCE) "Cray clane 9.1.2 using
"-fopenmp -03 -h cpu=mic-knF ; Clang LLVM 9.0.1 using "-fopenmp -03
-mcpu=knr with LLVM OpenMP Runtime.

Clock speeds quoted above are as reported by /proc/cpuinfo, but proces-
sors may operate at higher "turbo" speeds given sufficient thermal headroom. To
enable the large stack sizes required by the recursion (and recursive parallelism)
in UTS, the system stack limit is set to "unlimitor via the ulimit command
and the OMP_STACKSIZE environment variable is set to 100MB. For the
Intel TBB version of UTS, per-thread stack size is provided as an argument at
TBB runtime initialization. Intel Cilk Plus limits maximum spawn depth to 1024
tasks, rendering it unable to run our test problem regardless of stack size.

Two major OpenMP implementations not included in the study are IBM XL
and GCC. Unfortunately, the executable generated by the XL 20.1 compiler
encounters a segmentation fault each time, regardless of stack size. This issue
has been reproduced by an IBM compiler engineer. GCC 9.2 correctly executes
UTS, but the task parallel OpenMP program does not scale at all: Even 2-thread
executions run no faster than the sequential program. Code inspection reveals

4 Each core has 4, but the BIOS configuration on the test system only has 2 enabled.
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that GCC continues to employ a centralized queue for OpenMP tasks, while
most other implementations use scalable distributed work-stealing schedulers.

While task reductions would be useful for the expression of the UTS tree
traversal code, they are not used in the version tested in this study. Of the few
compilers that so far claim support for this OpenMP 5.0 feature, only GCC
successfully compiled a UTS version adapted to use task reductions. The others
reject the use of the in_reduction clause on orphaned tasks. Bug reports have
been filed for clang and LLVM, with fixes expected to be available in the 11.0
release and subsequently in derivative vendor implementations.

5 Results

The primary independent variable in this study is task granularity. Recall that
the granularity of each task is the product m x g where m is the non-root
branching factor and g is the number of repeated SHA-1 hash operations per
tree node. Since each non-leaf node in the tree, excluding the root node, has 5
children, the lowest granularity of 5 hash operations per task represents only
one SHA-1 hash operation per child node in the tree. Coarser granularities are
obtained by repeating the hash operations.

The number of SHA-1 hash operations per tree node is a metric particular
to the UTS benchmark, but Tables 1 and 2 present task granularity in terms of
execution time and instructions, respectively. This data is taken from sequential
executions, representing lower bounds since the time to do the calculations in
each task may increase in parallel executions. This "work-time inflation" can
result, e.g., from cache and NUMA effects [23]. Moreover, the integer-heavy
instruction mix of SHA-1 means that these numbers may not be universally
applied to other programs. In spite of these differences, our results provide some
rough guidance for acceptable granularity of OpenMP tasks.

The time required to perform one SHA-1 hash operation (the first column of
numbers in Table 1) varies widely across the four systems, roughly 3x slower on
Xeon Phi compared to Xeon Skylake. Differences in clock speed and in core and

Table 1. Translating task granularity from SHA-1 operations / task to time / task

Architecture and
Implementation

Time (its)
per op.

Time (As) per recursive call at granularity
5 ops. 10 ops. 20 ops. 40 ops. 80 ops. 160 ops.

Xeon SKL - ICC 0.22 1.12 2.23 4.47 8.94 17.9 35.7
Xeon SKL - Clang 0.18 0.89 1.78 3.55 7.10 14.2 28.4
IBM P9 - PGI 0.31 1.53 3.06 6.13 12.2 24.5 49.0
IBM P9 - Clang 0.29 1.45 2.90 5.80 11.6 23.2 46.4
Arm TX2 - Armclang 0.32 1.61 3.22 6.43 12.9 25.7 51.4
Arm TX2 - Clang 0.34 1.73 3.45 6.90 13.8 27.6 55.2
Xeon Phi - ICC 0.64 3.21 6.42 12.8 25.7 51.4 103
Xeon Phi - Clang 0.74 3.68 7.36 14.7 29.4 58.9 118
Xeon Phi - CCE 0.63 3.14 6.29 12.6 25.2 50.3 101
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Table 2. Translating task granularity from SHA-1 operations / task to machine in-
structions / task

Architecture and
Implementation

Kilo instr.
per op.

Kilo instr. per recursive call at granularity
5 ops. 10 ops. 20 ops.40 ops.80 ops. 160 ops.

Xeon SKL - ICC 1.74 8.72 17.4 34.9 69.7 139 279
Xeon SKL - Clang 1.70 8.51 17.0 34.0 68.1 136 272
IBM P9 - PGI 1.65 8.26 16.5 33.1 66.1 132 264
IBM P9 - Clang 1.67 8.35 16.7 33.4 66.8 133 267
Arm TX2 - Armclang 1.39 6.97 13.9 27.9 55.7 111 223
Arm TX2 - Clang 1.51 7.59 15.2 30.4 60.7 121 243
Xeon Phi - ICC 1.70 8.51 17.0 34.0 68.1 136 272
Xeon Phi - Clang 1.71 8.57 17.1 34.3 68.6 137 274
Xeon Phi - CCE 1.63 8.15 16.3 32.6 65.2 130 261

memory subsystem design contribute to these different computation rates. Using
different compilers on the same system mostly results in similar SHA-1 execution
rates, with some differences attributable to optimization choices and vectoriza-
tion capability. The number of instructions required to perform one SHA-1 hash
operation (the first column of numbers in Table 2) is a much narrower range
(1.39-1.74 kilo-instructions) across systems than the time per operation. This
observation suggests that generalizations of task granularity trends across sys-
tems may be more meaningful when expressed in terms of instructions per task
rather than time per task.

5.1 Comparing Parallel Efficiency

The ability to compare across platforms with different architectures and core
counts makes percent parallel efficiency an ideal metric. It is calculated by the

speedup sequential _excution _time 
formula x100, where speedup isnumber _o f _threads par all el _execution _time '
Ideal speedup is a speedup equal to the number of threads, yielding a percent
parallel efficiency of 100%.

Figures 2 and 3 show percent parallel efficiency for the UTS benchmark
across architectures and OpenMP implementations (and TBB on the Intel Sky-
lake platform). The vertical axis indicates percent parallel efficiency. The hori-
zontal axis indicates the task granularity on a logarithmic scale, in thousands of
instructions, derived from the data in Table 2. For each platform, the number of
OpenMP threads is equal to the number of available cores on the machine, and
each thread is bound to a single core.

ICC on Intel Skylake and PGI on IBM POWER9 are the top performers
among OpenMP implementations, bested only by TBB (compiled with ICC).
Even at the lowest granularity all three exceed 65% efficiency, and at a gran-
ularity of 67-70 kilo-instructions per task, they exceed 90% efficiency. On Intel
Skylake, IBM POWER9, and Arm ThunderX2, the Clang/LLVM implementa-
tion achieves 43.0-47.7% efficiency at the lowest granularity and above 80% with
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Fig. 2. Parallel efficiency of UTS as a function of task granularity on Intel Xeon Skylake
and IBM POWER9 using various compilers

tasks of 61-68 kilo-instruction granularity. While the efficiency of the Arm imple-
mentation is similar to clang on ThunderX2 at low granularity, it achieves better
efficiency at the coarser granularities. The Intel Xeon Phi exhibits the lowest ef-
ficiency of all architectures at the lowest granularity, but ICC fares much better
than Clang or CCE. At a granularity of 65-68 kilo-instructions per task, CCE
and ICC reach 80% efficiency while Clang lags behind at 72.3%.

Several trends emerge from the data. At the finest task granularity, the range
of parallel efficiency is wide (16.8-77.5%). However, at the coarsest granularity
it is much narrower (89.7-96.9%). Better performance at fine task granularity
requires low overheads on the part of the OpenMP runtime implementations.
Vendor implementations exhibit the best results on each architecture among
those tested: ICC on Skylake and Xeon Phi, PGI on IBM, and armclang on
ThunderX2. However, Clang/LLVM reaches reasonable efficiency at the coarser
granularities on all architectures. Xeon Phi appears be the most challenging
architecture for implementations to target efficiently, but it also has the most
cores.
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Fig. 3. Parallel efficiency of UTS as a function of task granularity on Arm ThunderX2
and Intel Xeon Phi Knights Landing using various compilers

The best implementations are successfully processing tasks consisting of
O(lOk) instructions, but most implementations need a task granularity of 0(100k)
instructions to reach high efficiency. Due to lack of space, the results in terms
of execution time per task are not shown. However, Tables 1 and 2 can help to
translate the results: In terms of execution time, the best implementations can
manage tasks with only a few microseconds of work, but most require tasks to
have at least tens of microseconds of work.

5.2 Thread Scalability and Simultaneous Multithreading

All platforms used in this study support multiple hardware threads per core,
sometimes referred to as simultaneous multithreading (SMT). To assess the ben-
efits of SMT, we compared the speedup of executions using only one OpenMP
thread per core and executions using a number of OpenMP threads equal to
the number of available hardware threads. Figure 4 shows the results across
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Fig. 4. Speedup at the coarsest granularity, varying thread count

the various architectures with the maximum task granularity from the earlier
experiments (223-279 kilo-instructions per task). Also included are results us-
ing 40 threads, which allows comparison of speedup for the same thread count
across the architectures. All implementations achieve over 37X speedup using 40
threads, and speedup continues to improve as more threads are added from 40
threads to the number of threads equal to the number of cores on each architec-
ture.5 POWER9 exhibits the best improvement from SMT, with its 4 hardware
threads more than doubling the performance compared to using a single thread
per core. The Arm ThunderX2 system shows a more modest benefit from SMT.

5 UTS places relatively low demands on memory, so it can be more amenable to
adding threads compared to more memory-hungry applications, which can saturate

the memory subsystem with fewer active threads than the total available cores.
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On Skylake (2-way SMT), ICC delivers a performance improvement with SMT
while Clang sees none. The reverse occurs on Xeon Phi, with its 4-way SMT.

5.3 Quantifying Load Balancing Operations

Due to the unpredictable imbalance of the dynamically generated tree traversed
in UTS, nearly continuous load balancing is required to scale the computation
across available threads. The OpenMP implementation is free to move any unex-
ecuted task from the thread on which it was generated to another thread in the
team. We instrumented the UTS source code to check the thread number at the
start of each task and increment a counter if it differs from the thread number
of the thread on which its parent task executed. Figure 5 reports on a log-log
scale the number of these "move& child tasks per thread per second at each
granularity (in thousands of instructions, as in the earlier figures). This metric
allows comparison across executions on different numbers of threads and with
different total execution times. With finer-grained tasks, all implementations are
performing thousands of load balancing operations per second per thread. Un-
surprisingly, the rate of load balancing operations decreases as the granularity
of the tasks becomes coarser. The one outlier in this respect is CCE on Xeon
Phi, whose load balancing rate is flat across the finer granularities.
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Fig. 5. Load balancing: Number of child tasks executing on different threads than their
parent tasks, per thread, per second (log-log scale)
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Table 3. Pearson correlation between speedup and number of moved child tasks per
second per thread

SHA-1 ops. per task 5 10 20 40 80 160

Pearson correlation 0.69 0.59 0.42 0.42 0.38 0.12

The implementations that performed best in the parallel efficiency results,
ICC on Xeon Skylake and PGI on IBM POWER9, carry out the most load
balancing operations at the finest granularity setting. The least efficient imple-
mentations at the finest granularity setting, those on Xeon Phi, carry out the
fewest load balancing operations. As a group, Clang/LLVM on IBM, Clang/L-
LVM on Arm, and Armclang produce nearly indistinguishable results on this
metric throughout the range of granularities. The load balancing metric may
also help to explain CCE's poor parallel efficiency at low granularities and bet-
ter parallel efficiency at higher granularities, relative to other implementations:
CCE is tied for the second-fewest tasks moved among implementations in the
fine granularity executions but has the second-highest number of moved tasks
in the coarse granularity executions.

Table 3 shows the Pearson correlation between speedup and the number of
moved child tasks per second per thread, calculated across implementations at
each granularity. A correlation coefficient near 1.0 or -1.0 indicates high posi-
tive or negative correlation, respectively, and a correlation coefficient near 0.0
indicates low correlation. Observe from the table that the finer the granularity
of tasks, the more correlated are speedup and the number of load balancing
operations. This data suggests that carrying out large numbers of load balanc-
ing operations per unit time becomes more important to the performance of
OpenMP implementations as task granularity becomes finer.

Our moved child tasks metric is actually only a lower bound on the number
of load balancing operations since we use untied tasks. Implementations can
move untied tasks between threads during execution at any task scheduling
points, such as at child task creation and when waiting in a taskwait region.
Since we did not check the thread number after each task scheduling point,
any such operations would have been missed. Unfortunately, repeated calls to
omp_get_thread_num() can be expensive for some implementations. OMPT-
based tools that introspect the OpenMP runtime library, once they are more
universally supported, may be a better way to capture a more complete load
balancing metric than the user-level code instrumentation we employed.

6 Related Work

Early work pertaining to the OpenMP tasking model included experimental
studies [4, 7] and a treatment on the design rationale [3]. BOTS [8] was among
the earliest benchmark suites for OpenMP tasking and included kernels like FFT
and linear algebra, many based on recursive parallelism. Later efforts provided
basic microbenchmarks [5], benchmarks exercising task dependences [29], and
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evaluations of NUMA impacts on tasking [28]. A study applying OpenMP tasks
to a graph problem is noteworthy for its scale, having run on an entire 1024-core
SGI Altix UV system [1]. A more recent application study used a Fast Multipole
Method (FMM) mini-application with results on some of the same architectures
that we used [2].

Several efforts have focused on developing tools for analysis of programs using
OpenMP tasking [11, 16-18, 27]. Previous work to analyze and reduce overheads
has taken several directions, including cutoffs (adaptive [6] or static [13]) to limit
parallelism. Others studied task granularity through profiling [12] or dynamic
adjustment of granularity [19]. The unpredictable parallelism of UTS makes it
a challenging target for the use of cutoffs or aggregation techniques.

7 Conclusions

The UTS benchmark is an extreme stress test, resulting in thousands of load bal-
ancing operations per second per thread. The study's focus on parallel efficiency
allows comparison across diverse architectures and OpenMP implementations.
The results illustrate that all implementations tested, except GCC, can effi-
ciently manage tasks of 0(100k) instructions per task using all available cores,
and the best implementations perform well with tasks of even O(lOk) instruc-
tions per task. The adequate efficiency of OpenMP tasking in Clang/LLVM as
demonstrated in this study is particularly important for the OpenMP commu-
nity due to its free availability under a permissive license and its role as a base
for vendors to build upon. Still, we find that vendor OpenMP implementations,
many of which are LLVM-based, do perform best. The overarching conclusion
is that OpenMP tasking can be very efficient for unbalanced computation on a
variety of architectures.
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