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Abstract—Graphs are commonly used to model the relation-
ships between various entities. These graphs can be enormously
large and thus, scalable graph analysis has been the subject
of many research efforts. To enable scalable analytics, many
researchers have focused on generating realistic graphs that sup-
port controlled experiments for understanding how algorithms
perform under changing graph features. Significant progress has
been made on scalable graph generation which preserve some
important graph properties (e.g., degree distribution, clustering
coefficients).

In this paper, we study how to sample a graph from the space
of graphs with a given shell distribution. Shell distribution is
related to the k-core, which is the largest subgraph where each
vertex is connected to at least k£ other vertices. A k-shell is
the subset of vertices that are in k-core but not (k + 1)-core,
and the shell distribution comprises the sizes of these shells.
Core decompositions are widely used to extract information from
graphs and to assist other computations.

We present a scalable shared and distributed memory graph
generator that, given a shell decomposition, generates a random
graph that conforms to it.

Our extensive experimental results show the efficiency and
scalability of our methods. Our algorithm generates 23° vertices
and 2°7 edges in less than 50 seconds on 384 cores. '

Index Terms—graph generation, scalable graph algorithms,
distributed algorithms, shared memory.

I. INTRODUCTION

Graphs have emerged as the standard language to model
interactions between entities in many applications including
social sciences, biology, cyber security, and finance. Graphs
derived from real-world datasets can scale up to billions of
entities and relations. Many researchers focus their efforts
on analyzing these networks to increase understanding of
the inherent interaction properties between entities of these
networks. Despite the availability of many public data sets,
a lack of real-world data at larger scales continues to hinder
computational efforts.

To mitigate this problem, many research efforts focus on
synthetic graph generators which closely capture properties
of real world graphs. There are two main challenges here:
What are the critical properties that need to be preserved? And
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how can we generate such graphs efficiently while preserving
the desired properties? Notable efforts in this area include
preferential attachment models such as [5], [9], which are
build on the “rich keep getting richer” principle, Kronecker
graphs [22], which generate a recursive structure, degree
and joint degree distribution-based methods [10], [36], and
BTER [19], which preserves both the degree distribution
and the clustering coefficient distribution. Some generators
are application driven such as Internet-specific [12], road
connectivity [6], and infrastructure [25]. Other efforts specifi-
cally focus on benchmarking such as the LFR [21] networks
for community detection algorithms. Stochastic block mod-
els [16], while designed as a generative model, are also used
to generate test cases. Additional efforts use a sample graph
to generate a (scaled) replica [37].

Many works focus on delivering synthetic graphs at scale,
as few real-world graphs are small, and subsequently, synthetic
copies required for an accurate analysis and interpretation
must be large. Some of the works focusing on scalable graph
generators are [37], [35], [32], [30], [20], [14]. Recent
work of Funke et al. [14] focuses on scalable generation of
Erdos-Renyi [13], Random Geometric [29], Random Hyper-
bolic [38], and Random Delaunay Graphs [30].

In this work, we focus on a well-known, important property
that indirectly affects density and structure of a graph: core de-
composition. The k-core of a graph is the maximal connected
subgraph in which each node is connected to at least k other
nodes. Typical core decomposition algorithms break down the
graph by incrementing k until the core is empty. It has been
observed that real graphs have much larger cores than random
graphs [33]. This is due to locally dense structures which
reveal information about the underlying system. As such,
the core decomposition of graphs have been used in many
applications, such as network visualization [3], [39], charac-
terizing the internet topology [4], [8], accelerating community
detection [28], resilience of communities [15], identifying
anomalous network nodes [34], finding influencers [1], [18],
[23], predicting protein functions [2], explaining jamming
transitions [26], and explaining structural collapse of ecosys-
tems [27].

Baur et al. [7], proposed an algorithm that given a shell
decomposition histogram N and a shell-connectivity matrix M
that stores inter-shell and intra-shell edge counts, generates a
graph from inside out. That is, it starts from the highest shell



value and progressively adds shells as layers to the graph.
To further improve the quality of the resulting graphs, they
propose methods of edge rewiring and swapping to adjust the
degree distribution and connected components, although it is
not always easy to find the correct ranges that make the graph
realizable.

Here, we present S3G?2, Scalable Shell Sequence Graph
Generator, set of parallel graph generators that given a shell
decomposition of a graph, generates a random graph that
conforms to this decomposition. Our work is based on the
sequential work of Karwa et al. [17]. These algorithms are
equivalent to ALGORITHM 3 of Karwa et al. They generate a
graph from the space of graphs with a given shell distribution
histogram where any graph can be generated with a positive
probability (see Theorem 9 of [17]). This does not imply
a uniform sampling of possible graphs. Despite empirical
evidence of near-uniform distributions over possible graphs,
formally quantifying the bias of the distribution is an open
question.

This work provides carefully designed shared-memory and
distributed-memory parallel algorithms for this process. Our
main contributions are:

e Design and analysis of shared and distributed memory

algorithms for the graph generator,

« Analysis of best and worst cases,

o Extensive empirical evaluation of the proposed parallel

algorithms, and

o A software package containing implementations of our

parallel algorithms as well as the optimized sequential
algorithm.”

The rest of the paper is organized as follows. First, the
model introduction and formalization of the problem is in
Section II. Section III introduces and explains major issues
to tackle in parallel approaches to preserve the probabilistic
properties of sequential algorithm. Next, the proposed shared
memory/distributed algorithms are described in Sections [V
and V, respectively, and they are evaluated through extensive
simulations in Section VI. Finally, conclusion and directions
for future work are given in Section VIIL.

II. BACKGROUND
A. Definitions and Notations

An undirected graph G = (V, E), contains a set of vertices
V and a set of edges E of the form e = {u,v}, where the
edge e is undirected. We limit our focus on simple undirected
graphs where there are no self-loops (¢ = {u, u}). The degree
of a vertex w is the number of vertices that are connected to
u. A subgraph G, = (V, Ey), is a graph where V; C V' and
E, C E. A k-clique is a complete graph on k vertices.

The k-core of a graph G, is the maximal connected subgraph
of G in which all vertices have degree of at least k in the
subgraph. A vertex u has a coreness (or also referred as k-
shell value) k, if it is in some k-cores of the graph but no
(k 4 1)-cores. The degeneracy (or k,q,) of a graph G is the
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largest k& such that there is a non-empty k-core. Algorithm 1
outlines a process known as peeling, which computes a k-
shell sequence, s, i.e., k-shell values s;, for all v; € V, by
repeatedly removing all vertices with degree less than k. This
algorithm also returns the degeneracy (k,,q,) of the graph.

Algorithm 1: Compute Core Values

Data: a graph G = (V, E)

Result: s;,Vv; € V and k40

S; *17V”U7; eV

k<0

repeat

Remove vertices with degree at most k (and their
associated edges) in G until there are no changes
to G (i.e., if at least one vertex is removed, restart
on the remaining G).

5 Assign the value k (i.e., s; + k) for all removed

vertices in the previous step (i.e., line 4).

6 kE+—k+1

7 until G =

8 return s, k — 1

AW N =

We define k,,,q.-shell histogram (array of k,,,q,+1 integers),
(So, S1,S2,...Sk,,..) to describe the sizes of a graph’s shells.
That is, the graph has n = |V| = )_..S; vertices in total, and
it has S; vertices with shell value 4, for i = 0,1,2,... knaz.

Theorem 1. There exists a graph G with a given shell his-
togram, (Sy, S1,S2,...Sk,...), if and only if S, > kmas-

max

Proof. The necessary condition follows from the definition of
core decomposition. Each vertex in the k,,,,.-core of a graph
should have k,,,,, neighbors and thus there should be at least
kmaz + 1 vertices in the core.

To prove sufficiency, we will use a constructive algorithm.
Given the k-shell histogram, we can start by generating the
kmaz-core as a (kpqq. + 1)-clique on the first k4. + 1 nodes
of the Sy, vertices. Then, add the remaining nodes one-by-
one, connecting them to exactly k,,q, last elements (i.e., for
vertex v;, the vertices from v;_j,_ to v;_1). For each of the
Sk,nan—1 vertices in the (Ky,q. — 1)-shell, we connect them to
(Kmax — 1) arbitrary vertices in the k;,q,-shell. Observe that
this will guarantee that all these vertices are in the (K0, — 1)-
shell and at the same time, the shell numbers of the vertices
in the graph do not change.

We can continue this procedure for all the shells, processing
the shells in decreasing order. O

B. Sequential Algorithm

Karwa et al. [17] presented a sequential algorithm which
forms the baseline of our parallel algorithms. Therefore, here
we briefly present the algorithm, with only some small tweaks
for performance.

The algorithm generates a graph where the core values of
the vertices are non-decreasingly ordered, i.e., lower vertex
IDs will have lower core values. Furthermore, the algorithm



will generate edges in the vertex ID order, i.e., each vertex
will generate edges only towards the higher ID vertices. For
each vertex v;, there must be at least s; edges towards higher
or equal core values as per the definition.

Since the definition of k-core involves vertices with higher
or equal core values for any given vertex in the graph, we can
safely separate any edges from lower shells to higher shells,
as there is no dependency between them. For edges between
pairs of vertices in the same shell, we need to keep a counter
of the required edge count that has been realized before we
reach the current vertex.

The sequential algorithm follows the reverse of the peeling
approach (Alg. 1) to generate graphs. It starts from the lowest
shell value, and generates edges towards vertices with same
or higher shell value. Since the graph is generated in non-
decreasing order of the shell values, it is easier to generate
one where if s; < s; then ¢ < j. Other labeled combinations
can be generated by permuting the vertex IDs.

Pseudo-code of the sequential algorithm is given in Alg. 2.
It generates a graph with a shell sequence distribution
that matches a given shell histogram (Sp,S1,So,...S%).
First, the algorithm divides the vertex set into two subsets:
V1, .eey Un—k—1 and vp_g, ..., v,, which are processed in two
separate phases of the algorithm. The first phase is the core of
the algorithm where it uses the reverse of the peeling approach
presented above. The second phase generates the last k4, +1
nodes of the last shell (i.e., ky,q-shell). This phase is typically
negligible compared to the first phase in terms of runtime (see
Table I).

The main points from the sequential algorithm are:

« Any vertex may generate at most s; edges towards higher

index vertices

« The only dependency among vertices ¢ and j is between

vertices where s; = s;.
o The last k4, + 1 vertices require a special case (Phase
2).

In addition, for random number generators, any distribution
that covers the entire space can be used to achieve a variation
of this algorithm that can generate all possible graphs with
a given shell sequence with a positive probability. Changing
the probability of selecting a node with the same shell value,
and skewing the probability distribution of random subset size
towards either end would allow one to adjust the average total
number of edges in the generated graphs. In our experiments,
we applied the uniform distribution for all random number
generation as in Karwa et al. [17].

III. S3G?: SCALABLE SHELL SEQUENCE GRAPH
GENERATION

Since Phase 1 is the most time consuming part of the
sequential algorithm (see Table I), we parallelize this phase by
simply partitioning the work required for shells and/or vertices.
If the workload, consisting of separate shells, can be divided
in a properly balanced fashion to the processing elements
(PEs), then, the shells can be processed in a pleasingly par-
allel fashion using the sequential algorithm, without requiring

Algorithm 2: Generate graph with given shell his-
togram

Data: a shell histogram (Sp, S1, 52, . ..Sk).

Result: a graph G with shell sequence matching the
given histogram.

G(V,E) < G({v1,v2, . v}, 0)

initialize shell values s1, sa, ..., S,, using histogram S

t;+—0,Vi=1,2,...,n

// Phase 1

fori<—1lton—k—1do

WO -

S

5 Choose a random subset R of {v;1,...v,} where
maz{0,s; —t;} <|R| < s

6 for v; € R do

7

Add edge (v;,v;) to G
ifSi:Sj then tj (*tj+1

=)

// Phase 2
9 Rem< (v;:n—k<i<n)
10 Swap all v; where ¢; = 0 to the end of Rem
11 while Rem # () do
12 Assign v; = last element of Rem
13 | Rem< Rem\ {v;}
14 Choose a random subset R of Rem with
|Rem| — ¢; < |R]
15 for v; € R do

16 Add edge (v;,v;) to G

17 _ifSi:Sj then tj«t;+1
18 for v; € Rem do

19 tj — tj —1

20 if £; = 0 then

Rem - Rem \ {v;}
Add edges from v; to all vertices in Rem

21
22

any communication. If this is not possible, we partition the
vertices, in the shells, to different PEs but communicate the
information required by the higher ID vertices.

The sequential algorithm (Alg. 2) generates a random num-
ber of edges (line 5) for each vertex in the range from its
minimum number of edges (s; — t;) to the shell value itself
(s;), where t; is the number of received edges from lower ID
vertices with the same shell value (i.e., edges contribute to the
k-core value of the vertex). If a vertex already received enough
edges from the vertices in the same shell, then it does not need
to generate any edges but may still choose to do so. In the
parallel algorithms, we treat this operation (line 5) as a two-
step procedure. The maximum number of edges each vertex
may generate is bounded by its shell value. We can assume
the worst and generate all those edges. Next is to decide on
the random number of edges each vertex generates, which
requires knowledge about the edges coming from the vertices
with lower IDs within the same shell.

If the PEs do not communicate this information, the al-
gorithm cannot generate all possible graphs: It forces the



nodes that have dependencies to nodes in previous PEs to
create edges towards higher indices. Our parallel algorithms
tackle this problem by executing multiple fix rounds where
all PEs relay the information of edge counts they generate
to the PEs containing the corresponding higher-ID vertices.
This information is used by the receiving PE to re-select a
random subset size with the updated information. In other
words, our algorithms first generate an array of possible edges
from a node. Next, they generate a random subset size (which
is equal to the size of this array at this moment). Then, the
fix rounds only change how many elements of this array are
being used, by updating the subset size. The shared memory
algorithm asynchronously invalidates the affected nodes, and
queues them to be processed again, achieving the same goal.
Observe that this is not a re-run of the whole generation for
a node but just a range of confirmed edges for it.

In distributed memory setting, this re-selection for a vertex
v; may cause the previous information sent about v;’s edges
to be obsolete/incorrect, thus causing a cascading effect. Our
distributed memory algorithm assigns the workload to PEs by
increasing vertex ID, thus requiring sending information only
towards higher rank PEs. Thus, in the worst case scenario the
parallel algorithm running on p PEs will have up to p — 1
cascading fix rounds.

By properly handling the fix operations in our parallel
algorithms, the overall mechanics of the sequential algorithm
are preserved. As a result, the parallel algorithms conform to
all statistical findings reported in [17].

IV. S3G2: SHARED MEMORY ALGORITHM

The shared-memory algorithm starts by computing the com-
putational load of each shell, and schedules them with the
largest-job-first scheduling policy, that is, it orders the shells
in non-decreasing workload and starts assigning them in that
order. However, the actual scheduling is completely dynamic
after the p initial assignments, where p is number of PEs,
or threads in shared-memory code. Computation of each shell
can be done independently from each other (See Section II-B).
Therefore p initial threads are assigned to shells in a round-
robin manner. When a thread completes its work, it searches
for new work. If all shells are being processed by other threads,
it joins the shell with largest load, still following a round-robin
fashion among least crowded shells and takes a task from that
shell. This process continues until all shells and their tasks
have executed.

There are three implementation choices in our shared mem-
ory algorithm:

a) Granularity: We assign tasks to threads. The finest
granularity task is to process a single vertex, which we call
VERTEX. The coarsest granularity task is to process a complete
shell, however, in real-world cases k,,,, values might be
smaller than or close to the available number of PEs p. Hence,
we decided to use medium granularity tasks, where processing
a chunk of 64 vertices constitutes a task. We named this option
as CHUNK.

b) Memory: We implemented two options: i) GLOBAL:
All the necessary data for the algorithm is stored in shared
memory accessible by all threads, 2) LOCAL: The processing
of each shell is almost independent, therefore in this model
we have local data for each shell, which is allocated by the
first thread that takes a task from that shell.

¢) Queue: Since a vertex v; requires information of the
edges from vertices with lower IDs (with the same shell value),
to define the number of edges towards vertices with higher IDs
that it needs to generate, we process the vertices in increasing
index order as much as possible. To do so, we implemented
two different queues: 1) mutex-protected priority queue: where
all the vertices with the same shell value are pushed to a
priority queue, and access to the queue is protected via a
mutex, which we call MUTEX, ii) a lock-free version of the
approximate priority queue proposed by Matias et al. [24]. We
call this TRIE, and it uses bitwise and atomic operations to
keep track of the queue’s state.
In the shared memory algorithm, there are no global fix
rounds. Instead, nodes that have obsolete information are
simply re-added to the task queue.

V. S3G2- DISTRIBUTED MEMORY ALGORITHM

Alg. 3 outlines our high level parallel distributed algorithm,
which follows the two phases of the sequential algorithm
(Alg. 2) and in addition, includes a fix phase following Phase
1. The algorithm starts by distributing the shell histogram
and work (load) to PEs according to chosen load balancing
algorithm (loadBalAlg), and then each PE generates the shell
sequence they are responsible for, using the input histogram.
After that Phase 1 starts, where each PE first generates a
random subset (of size s; for vertex v;) of edges (R;) for each
of their local vertices. Then, they pick a random subset of the
edges in R;. For each chosen edge {v;,v,} (i < j), t; values
need to be incremented, which may require communication if
v; is not a local vertex.

After Phase 1 is completed, the parallel algorithm requires
a fix phase (Alg. 4). In this phase updates from other PEs
regarding local nodes are accumulated, and if updates cause a
change in the number of outgoing edges selected for a vertex,
edges from that vertex are adjusted accordingly. Then, an
update for the affected neighbors of the vertex is prepared.
If those affected vertices do not reside in the same PE as the
vertex, updates to the corresponding PEs are sent in the next
round.

The performance of this distributed memory algorithm
mainly depends on two choices: i) the load balancing algo-
rithm (loadBalAlg) and ii) the communication scheme used for
the updates. Below we present these choices in more detail.

A. Load Balancing

We start by defining the metric, and then discuss the
algorithms used to partition the load.



Algorithm 3: Distributed Memory Algorithm

Algorithm 4: DistributedFixPhase

Data: p: number of PEs; P; is the processor executing
this algorithm; and a histogram of number of
vertices per shell sorted by shell value
/’liSl‘I(SQ, Sty Sk)

Result: Generated graph

1 distributeLoad(hist, loadBalAlg, P;, p)
2 s « generateLocalShellVector(hist)

// Phase 1

3for i< 0¢tol|s|—1do

4 Choose a random subset R; of {v;11,...v,} with
| Rl = s

s for i < 0o |s| — 1 do

6 Pick a subset size ¢ where

maz{0,s; —t;} <c<s;
7 for v; € R;(slicel0,c— 1]) do

8 if S; = S; then

9 if v; is a local vertex then

10 | tj«t;+1

11 else

12 P, < Processor containing vertex v;
13 L sendVal[ P ][v;] < sendVal[FP;][v;] +1

// Fix the misinformation
14 DistributedFixPhase()
// Phase 2
15 if P, = P,_; then

16 Initialize Rem + (v; :n—k <i < n)

17 Swap all v; where t; = 0 to the end of Rem

18 while Rem # () do

19 Assign v; = last element of Rem

20 Rem ¢— Rem \ {v;}

21 Choose a random subset R of Rem with
|Rem| —¢; < |R|

22 for v; € R do

23 Add edge (v;,v;) to G

24 ifSiZSj then tj<—tj+1

25 for v; € Rem do

26 t]' £— tj -1

27 if t; = 0 then

28 Rem <— Rem \ {v;}

29 Add edges from v; to all vertices in

Rem

1) Metric: In a general sense, load is the work a computing
resource is assigned. In particular for our algorithm, load is
a function of n = |V| and m = |E| assigned to a PE,
as for each vertex the process generates a number of edges
and stores them locally. In each PE, the distributed algorithm
generates s; edges for each vertex v; over all v; it is assigned
(= O(m)). While doing this, the algorithm generates and

1 while frue do

2 Prepare sendCnts, sendData using non-zero
sendVal

3 globalSend <— ALLREDUCE (sendCnts, MAX)
4 if globalSend = 0 then

5 | break
6 Communicate the sendDatas to their targets
7 recvData < Receive data from each process to

receive from
8 for < v,a > in recvData do

/

Il < vertex, adjustment > pair
9 oldval = t,
10 to —ty+a
1 if oldval = t, then continue;
12 oldc < R,.size()
13 Repick a subset size ¢ where

max{0,8, —t,} < c < sy

14 8,1 < minmax(oldc, ¢)
15 d+ (olde<c)?1:-1
16 for v; in R,[s,l — 1] do
17 if s, = s; then
18 if v; is a local vertex then
19 L tj — t]‘ -1
20 else
21 Py < Processor containing v
22 L sendVal[ P ][j] <+ sendVal[P;][j] + d

maintains several arrays proportional to n. For each edge that
points out of the current process, it inserts/updates a value
in a priority queue dedicated to the receiver process. Thus,
we cannot simply say the load is proportional to number of
vertices, or edges alone.

We use a linear expression of number of vertices and edges
to define the workload due to its simplicity and effectiveness in
practice. The workload is, then, characterized as w = axn+m,
where « is a small constant (i.e., a < 10).

2) Load Balancing Algorithm: Our algorithm utilizes con-
tinuous block partitioning, which is also known as chains-on-
chains partitioning [31]. We have implemented two heuristics
and one optimal algorithm.

a) Greedy Balancing (GB): First, the total and average
load per PE is computed. Then, starting from the first PE,
each PE takes vertices until it reaches the average load. The
maximum load imbalance is bounded by k4. (+a), which is
typically small in real world graphs.

b) Relaxed Greedy Balancing (RB): The communication
and fix phases are only required when the vertices of a shell
value are divided into multiple PEs. Thus, a logical approach
would be to try minimizing the spread of each shell value as
much as possible with minimal damage to the load balance.
We relaxed our greedy balancing approach to allow PEs to load



approximately 2% more if the remaining load for a given shell
after the current PE takes its share is less than that amount.
Similarly, we allow a PE to delegate its remaining load to the
next PE if it is going to get the first % of the average load
from a shell. In the experiments, we tried x values ranging
from 10 to 16, and results were similar.

c) Optimal Balancing (OB): The Greedy Balancing and
Relaxed Greedy Balancing algorithms are heuristics. We also
experimented with a variation of Nicol’s 1D Optimal Parti-
tioning algorithm, NicolPlus [31].

B. Communication Scheme Variations

1) ALL-TO-ALL (A2A): All PEs communicate the amount
of data (counts) they need to send to other PEs, followed by
an ALLREDUCE (AR) with the total amount of information
(nSent) needing to be sent from each PE. If the maximum
of these total amounts is zero, that means no process is
sending information to anyone, which completes the fix phase.
Otherwise, all PEs communicate the data they have for other
PEs.

2) ALL-TO-ALL-SPLIT (Split after first fix round) (A2AS):
Due to the block distribution we used and nature of our
algorithm, there actually are subsets of PEs that (i) may
communicate, (ii) communicate only once, or (iii) never com-
municate. Let us start by reviewing the possible load of a PE
P,, in terms of the shells it participates in. Figure 1 shows
the three possible cases of shell distribution for any given PE.
First, as Figure 1(a) shows, the PE may be processing a single
shell value. Nodes of this shell may (or may not) have started
in a lower rank PE and (may or may not) continue in a higher
rank PE. Second, as Figure 1(b) shows, the PE might have
two shell values. In this case, s; < s; and the PE P, is the
first (smallest-ranked) PE that contains the shell s;. Similarly,
it is the last (highest-ranked) PE that contains the shell s;. The
third case (Figure 1(c)), is where the PE contains more than
two shell values. Similar to second case, the PE P, is the last
PE that holds s; and first that holds s;. All the shell values
{sz]s; < sy < s;}, are only contained by P,,.

P P P
Si S | Sj S; \ | Sj
(a) One (b) Two (c) More than two

Figure 1. Possible shell distributions for a given PE P,,.

Now, considering all three possibilities, and noting that
communication is required only within the same shell (only
between the PEs that hold vertices from the same shell), a PE
P,, may be at most participating in the communication related
to two shells: s; and s;. Furthermore, the PE P, may only
send data regarding s; and receive data regarding s;. Note that
in Case 1(a), the PE may both receive and send data regarding
s;, and in the Case 1(c), the PE cannot receive any data related
with shell values {s;|s; < s, < s;}, because there is no other
PE that holds them.

Following this and the nature of the cascading updates
explained earlier, we can deduce that the only time a PE
P,, may communicate regarding two different shell values

is the first round of communications where it may receive
information for s; and send information about s;. Since P,
is the first PE that contains the shell s;, it does not receive
any information regarding this shell, and does not require any
further updates or communications. (We will give more detail
about this in the next section, Sec V-B3.)

Hence, after the first fix round, the PEs may send and receive
information only about the first shell s; they contain. This
means, after the first fix round, we can split the PEs into
disjoint subgroups according to the first shell value they have,
and only communicate within their group instead of ALL-TO-
ALL communication.

In summary, all PEs do the first fix round the same as
explained in V-Bl. For the following rounds, each PE only
communicates within their own group. The performance of
this variant is expected to beat ALL-TO-ALL as the number
of PEs increases and the shells are distributed to many PEs.

3) POINT-TO-POINT (P2P): On average, realistic graphs
contain more than a single shell value. Thus, they rarely
require communicating with all other PEs. And, at each round,
the number of PEs a PE need to communicate with decreases,
rendering ALL-TO-ALL communication unnecessary. Instead,
allowing PEs to communicate with each other POINT-TO-
POINT, asynchronously, and synchronizing them once each
round is better when there are not many PEs that require a fix
round.

In this approach, each PE posts its non-blocking receives
for the data they might receive from each PE. Then, each
posts their non-blocking sends to each PE working on the
same shell value. All PEs wait on any of the receives posted,
then deserialize and insert all received information into a local
priority queue of the vertex IDs, as vertices of the same shell
value need to be processed in increasing order.

After transferring the information, all PEs synchronize with
an ALLREDUCE to receive the maximum globalSend value
from any PE, learning if the fix phase is complete. Here,
ALLREDUCE is also not required to be global after the first
round of fix phase, it can be split into separate ALLREDUCES
for each group with respect to the first shell value of each PE.

In general, the communication requirement comes from
the updates received from another PE P; that invalidates the
current PE P;’s computation. If a PE P; is the first PE that
works on a shell value, then it cannot receive any updates
invalidating its computation. Thus, it should not create a new
fix communication packet.

All PEs, within the subset of PEs that work on the same
shell may only send fixes if their place in the ascending PE-
ID ordered list is greater than or equal to the fix round. For
example, PE P (first PE that processes a shell value), can
only send fixes in the first round, P; may send in first and
second rounds, etc.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our algorithms take a shell distribution as input. Since our
algorithm is fast, we use 6 real-world undirected unweighted



Table 1
GRAPH INSTANCES.

Graph V] avg. deg.  kmar Phase 1 % Phase 2 %
cit-Patents 3,774,768 16,518,947 4.38 64 99.990 0.010
friendster 65,608,366  1,806,067,135 27.53 304 99.999 0.001
soc-LiveJournall 4,847,571 42,851,237 8.84 372 99.853 0.147
twitter 61,578,414  1,202,513,046 19.53 2,488 99.749 0.251
uk-2005 39,459,925 783,027,125 19.84 588 99.984 0.016
wb-edu 9,845,725 46,236,105 4.70 448 99.860 0.140

simple graphs with more than 3M vertices, Table I presents
number of nodes, edges, average degree, ky,q, value for each
graph, and percentages of the computation time breakdown
for Phase 1 and 2 of the sequential algorithm. Note that
computation time of Phase 2 is negligible compared to that
of Phase 1.

Figure 2 shows the normalized number of edges in each k-
core value for the graphs in our dataset (cutoff at k& = 80 for
readability, the succeeding shells have near zero percent). This
shows that the load of a single k-shell, in real-world graphs,
do not comprise a large portion of the graph.

- cit-Patents-hist.txt
friendster-hist.txt

- soc-LiveJournall-hist.txt

- twitter-hist.txt

+- uk-2005-hist.txt

-~ wb-edu-hist.txt

x

1

Percentage of Edges

s T TrTTTevees

0 10 20 30 40 50 60 70 80
k-shell value

Figure 2. Normalized number of edges for the first 80 k-shells for
the graphs in our dataset.

The experiments were conducted on three different mi-
croarchitectures: Cascade Lake, Newell, and Haswell. Table 11
details the properties of the computing platforms.

Table II
OVERVIEW OF THE ARCHITECTURES.

Cascade Lake Newell Haswell
CPU Intel, Xeon 6226 POWERY | Intel, E7-4850
Cores x Sockets | 2 x 12 2 x 16 4x 14
Host Memory 193 GB 320 GB 2 TB
L2-Cache 1 MB 512 KB 256 KB
L3-Cache 19 MB 10 MB 35 MB
Compute Nodes 16 1 1
Networking Mellanox CS7500 Switch
Technology EDR 100 Gb/s

The experiments were conducted using the GNU G++-
9.2.0 compiler (with -O3 optimization level) with C++17
standard libraries. The distributed algorithm uses the MPI
implementation MVAPICH2 (v2.3.1) and is executed only on
the Cascade Lake system. The shared memory implementation
uses the C++11 threads library. All experiments are repeated
25 times and arithmetic means are reported unless otherwise
noted.

B. Shared Memory Experiments

For the shared memory algorithm, we have 3 choices and 2
options per choice. Due to space limitations, we only present
5 different variants of the algorithm:

Algorithm Memory  Granularity Queue
Naive GLOBAL VERTEX MUTEX
Trie GLOBAL VERTEX TRIE
ChunkTrie GLOBAL CHUNK TRIE
Local LocAL VERTEX MUTEX
ChunkTrieLocal LOCAL CHUNK TRIE

Figure 3 shows the comparison of these variants on the
three architectures in Table II. As expected, Naive performs
worst. Our lock-free TRIE priority queue improves the per-
formance significantly as the number of threads increases.
Increasing granularity and using chunking further improves
the performance. One unexpected, but welcomed result of
this experiment was the performance of the Local algorithm.
It performs significantly better than Naive, as one would
expect, but is also comparable to other sophisticated variants.
When combined with those sophisticated variants, the final
algorithm, ChunkTrieLocal gave the best performance on all
architectures.

C. Distributed Memory Experiments

1) Parameter Tuning for Load Balance: There are multiple
parameters to tune. For the sake of simplicity in the presen-
tation, we will test only one at a time and fix the rest. For
this experiment, we set the communication scheme to ALL-
TO-ALL and only present results for p = 96 PEs (4 nodes x
24 cores on Cascade Lake).

The first experiment is to select load balancing algorithm.
Figure 4 shows average execution time of the three algorithms
using histograms of the 6 real-world graphs as inputs. Just
looking at the graph generation runtime, OB and GB have
similar performance. The critical observation here is that
GB, in general, gives a similar performance to OB since the
imbalance is bounded by the maximum weight of a single
work element (plus alpha). For our dataset, the largest is
2496 with a degeneracy of 2488 and a = 8 (twitter). On
the other hand, computation of OB, requires the computation
of a prefix sum. In the case of sequential computation at
each process, this takes about 0.2 seconds in friendster
and twitter graphs. In case of a parallel prefix sum, we
are at the mercy of network bandwidth and latency for this
computation. Thus, the lead goes to GB. OB does the best job
of minimizing the maximum load, however, the computation
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Figure 3. Speedup Comparison of Shared Memory: geometric means of speedups for 6 graphs in our dataset for number of processes on:
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Figure 4. Runtime comparison of 3 distribution methods on 96 cores,
o = 3, communication scheme = ALL-TO-ALL.

of the optimal distribution itself is significantly slowing down
overall runtime.

In the fix period, the total runtime is proportional to the
highest number of cascading updates (maximum number of
fix iterations). RB is supposed to help decrease this number
by relaxing the load balance in favor of decreasing the com-
munication. However, if the maximum number of iterations
is not decreasing, the application will have to wait for the
lagging PEs and the relaxation does not practically decrease
the runtime. In addition, the increased load imbalance may
even slow down the overall runtime.

For the subsequent experiments, we will use GB.

The second experiment is to understand the load balancing
metric. The parameter a explained in V-Al can affect the
performance significantly. We compared all 3 load balancing
algorithms with all « = [0,9) values. Our results showed
similar behavior for different algorithms. Here, due to space
limitations we only show the results with GB. Figure 5, shows
the performance profile comparing alpha values on 24, 48, 72,
96, and 120 cores (1, 2, 3, 4, and 5 nodes respectively) for GB
decomposition. A performance profile shows the ratio of the
problem instances in which a variation obtains a value (run
time) on a problem instance that is no larger than 6 times the
best value reached by any variation for that instance [11]. The
figure shows that GB with a = 3 and o = 4 give the best
overall runtimes, and as « deviates from those values, the
performance degrades. In addition, & = 3 achieves runtimes
within x1.12 the fastest instance 90% of the time. Thus, for
the subsequent experiments, we will use o = 3.

14 15

6

Figure 5. The performance profile showing the comparison of total
runtimes with ALL-TO-ALL communication scheme with GB variant
and 9 « values. For number of cores: (24, 48, 72, 96, 120).

2) Selecting Communication Scheme: Figure 7 shows the
comparison of geometric means of speedups for three com-
munication schemes (see Sec. V-B): ALL-TO-ALL, ALL-
TO-ALL-SPLIT, and POINT-TO-POINT. All schemes perform
similarly within a single node (up to 24 processes). Starting
from 24 processes, ALL-TO-ALL-SPLIT starts outperforming
ALL-TO-ALL, as the number of processes increases. The
performance of POINT-TO-POINT communication surpasses
the other variations since it can reduce the number of pairs
communicating at each fix round, and can better overlap
communication and computation.

D. Comparing Average Degrees

Figure 6 shows the number of edges for the generated
graphs (for two sample cases) over a different number of
cores (25 repetitions in each case), together with the runs for
sequential algorithm (100 repetitions). As shown, the range
for the number of edges generated is not vast. Compared
to total number of edges, the variation is very small. For
friendster, the sequential algorithm experiences a max-
imum of 0.004% variation for 100 repetitions, and it is very
similar for the distributed algorithm.

E. Strong Scaling Experiments

Figure 8 shows the strong scaling of our algorithm on
Cascade Lake, using 1 to 10 nodes, as the geometric mean
of speedups for our dataset. Shared memory (ChunkTrieL.ocal)
algorithm is run on single node. Our results on single node
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Figure 7. Speedup comparison of communication schemes: geometric
means of speedups for 6 graphs in our dataset.

comparison showed that shared memory implementations do
not provide a significant speedup advantage over the dis-
tributed algorithm. As seen in the figure, our shared memory
and distributed memory algorithms achieved similar perfor-
mances on up to 24 PEs, hence we decided not to implement
a hybrid code.

Our distributed memory algorithm achieves up to 90
speedup on 240 PEs. The slight decrease in the speedup as the
number of PEs increases can be correlated with the increase
in the number of fix rounds (as seen in Fig. 9).
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Figure 8. Strong scaling for shared and distributed memory algo-
rithms.

F. Weak Scaling Experiments

Finally, we present the weak scaling experiments. We scale
the graphs from our dataset by x1, x2, x4, x8, x16, x32,
%64, and x128. (We just multiply the size of each shell by this
amount to reach to a bigger graph. Curve fitting over the his-
tograms yielded insignificant variations.) Figure 10(a) shows
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Figure 9. Maximum number of fix rounds for any process per number
of processes.

the weak scaling for our algorithm. The results show that
scaling from x1 to x 128, our runtime goes at most up to twice
the initial the runtime. The worst result in this experiment is for
the smallest graph cit-Patents, which also has the lowest
kmas value, thus with scaling, communication requirements
increase more for this particular graph. The increase in the
runtime as the number of PEs and the input size increased
proportionally can be further explained with the increase on
the number of fix rounds, as displayed in Fig. 10(b).

Our biggest scale (x128), reaches about 23 vertices and
237 edges. The distributed algorithm can generate this graph
in less than 50 seconds on 384 cores.

VII. CONCLUSION

Our algorithms focus on another well-known graph property
that has not been explored for scalable graph generation:
cores decomposition. We presented scalable shell sequence
based graph generators for both shared memory and distributed
architectures. We analyzed our algorithms’ strength and weak-
nesses, and empirically showed their scalability.

Our future work includes approaches to more realistic graph
generation using shell histograms, extensive analysis of the
quality of generated graphs compared to real-world datasets
and conformity to well-known graph properties.

ACKNOWLEDGMENTS

We would like to thank Kasimir Gabert for his careful
review and editing of the paper.



[1]

[2

[3]

[4]

[5]

[6

[t

[7

—

[8]

[10]

[11]

[12]

3.00
Input
275 ] — cit-Patents-hist.txt
—— friendster-hist.txt
—— soc-LiveJournall-hist.txt —

2507 — twitter-hist.txt ./.
o —— uk-2005-hist.txt /
E 2.251 — wb-edu-hist.txt -
H .
= 2,00
2 = o
8 e o
Eum = ,///”/ff;fég:
S o .
2 o _ o

1.50 / ./ /'?2/

=
o A o=
- il
; s /,
1.00 {—e

12-x4  24-x8  48-x16  96-x32
Number of Processing Elements - x Graph Scale

192 -x64 384 -x128

(a) Normalized Running time for MPI on 6 graphs in our dataset.
The runtimes for each repetition on each graph is divided by the
shortest runtime achieved for that graph’s scaled version.

Input
—— cit-Patents-hist.txt

—— friendster-hist.txt

74 — soc-Livejournall-hist.txt
—— twitter-hist.txt

—— Uuk-2005-hist.txt

—— wb-edu-hist.txt

"
8
g
3
2 o
x5 - .
s o
: 7 )
54 /
3 7
E /
5
=23 o o o
y///
2 . /'
1
3-x1 6-x2 12-x4  24-x8  48-x16  96-x32 192-x64 384-x128

Number of Processing Elements - x Graph Scale

(b) Maximum number of fix rounds for any process per number
of processes.
Figure 10. Weak scaling.

REFERENCES

M. A. Al-garadi, K. D. Varathan, and S. D. Ravana, “Identification of
influential spreaders in online social networks using interaction weighted
k-core decomposition method,” Physica A, vol. 468, 2017.

M. Altaf-Ul-Amine, K. Nishikata, T. Korna et al., “Prediction of protein
functions based on k-cores of protein-protein interaction networks and
amino acid sequences,” Genome Informatics, vol. 14, pp. 498-499, 2003.
J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the k-core
decomposition,” in NIPS, 2005.

J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-
core decomposition of Internet graphs: hierarchies, self-similarity and
measurement biases,” Networks and Heterogeneous Media, vol. 3, no. 2,
2008.

A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509-512, 1999.

R. Bauer, M. Krug, S. Meinert, and D. Wagner, “Synthetic road
networks,” in International Conference on Algorithmic Applications in
Management. Springer, 2010, pp. 46-57.

M. Baur, M. Gaertler, R. Gorke, M. Krug, and D. Wagner, “Generating
graphs with predefined k-core structure,” in Proceedings of the European
Conference of Complex Systems, 2007.

S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model of
internet topology using k-shell decomposition,” PNAS, vol. 104, no. 27,
pp. 11150-11 154, 2007.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 442-446.

F. Chung and L. Lu, “The average distances in random graphs with given
expected degrees,” Proceedings of the National Academy of Sciences,
vol. 99, no. 25, pp. 1587915882, 2002.

E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Mathematical programming, vol. 91, no. 2, pp.
201-213, 2002.

A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of
bgp: The role of topology growth,” IEEE Journal on Selected Areas in
Communications, vol. 28, no. 8, pp. 1250-1261, 2010.

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

P. Erdos, “On the evolution of random graphs,” Publications of the
mathematical institute of the Hungarian academy of sciences, vol. 5,
pp. 17-61, 1960.

D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von
Looz, “Communication-free massively distributed graph generation,” in
IPDPS, May 2018, pp. 336-347.

D. Garcia, P. Mavrodiev, and F. Schweitzer, “Social resilience in online
communities: The autopsy of friendster,” in COSN, 2013.

P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social networks, vol. 5, no. 2, pp. 109-137, 1983.

V. Karwa, M. J. Pelsmajer, S. Petrovi¢, D. Stasi, and D. Wilburne,
“Statistical models for cores decomposition of an undirected random
graph,” Electron. J. Statist., vol. 11, no. 1, pp. 1949-1982, 2017.

M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse, “Identification of influential spreaders in
complex networks,” Nature physics, vol. 6, no. 11, 2010.

T. G. Kolda, A. Pmar, T. Plantenga, and C. Seshadhri, “A scalable
generative graph model with community structure,” SIAM Journal on
Scientific Computing, vol. 36, no. 5, pp. C424-C452, 2014.

S. Lamm, “Communication efficient algorithms for generating massive
networks,” 2017, master’s thesis.

A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical review E, vol. 78,
no. 4, p. 046110, 2008.

J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” Journal
of Machine Learning Research, vol. 11, no. Feb, pp. 985-1042, 2010.

Y. Liu, M. Tang, T. Zhou, and Y. Do, “Core-like groups result in
invalidation of identifying super-spreader by k-shell decomposition,”
Scientific reports, vol. 5, 2015.

Y. Matias, S. C. Sahinalp, and N. E. Young, “Performance evaluation
of approximate priority queues,” in Proceedings of Fifth DIMACS
Implementation Challenge, 1996.

A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” in MASCOTS 2001, 2001, pp. 346-353.
F. Morone, K. Burleson-Lesser, H. Vinutha, S. Sastry, and H. A. Makse,
“The jamming transition is a k-core percolation transition,” Physica A,
vol. 516, pp. 172-177, 2019.

F. Morone, G. Del Ferraro, and H. A. Makse, “The k-core as a predictor
of structural collapse in mutualistic ecosystems,” Nature Physics, vol. 15,
no. 1, p. 95, 2019.

C. Peng, T. G. Kolda, and A. Pinar, “Accelerating community detection
by using k-core subgraphs,” arXiv preprint arXiv:1403.2226, 2014.

M. Penrose et al., Random geometric graphs. Oxford university press,
2003, vol. 5.

M. Penschuck, “Generating practical random hyperbolic graphs in
near-linear time and with sub-linear memory,” in [6th International
Symposium on Experimental Algorithms (SEA 2017), 2017.

A. Pmar and C. Aykanat, “Fast optimal load balancing algorithms
for 1D partitioning,” J. Parallel Distrib. Comput., vol. 64, no. 8, pp.
974-996, aug 2004.

P. Sanders and C. Schulz, “Scalable generation of scale-free graphs,”
Information Processing Letters, vol. 116, no. 7, pp. 489-491, 2016.

C. Seshadhri, A. Pmar, and T. G. Kolda, “An in-depth analysis of
stochastic kronecker graphs,” J. ACM, vol. 60, no. 2, pp. 13:1-13:32,
May 2013.

K. Shin, T. Eliassi-Rad, and C. Faloutsos, “Corescope: Graph mining
using k-core analysis - patterns, anomalies and algorithms,” in /CDM,
2016.

G. M. Slota, J. Berry, S. D. Hammond, S. Olivier, C. Phillips, and
S. Rajamanickam, “Scalable generation of graphs for benchmarking
HPC community-detection algorithms,” in SC, 2019, pp. 1-14.

I. Stanton and A. Pinar, “Constructing and sampling graphs with a
prescribed joint degree distribution,” J. Exp. Algorithmics, vol. 17, pp.
3.1-3.25, 2012.

C. L. Staudt, M. Hamann, A. Gutfraind, 1. Safro, and H. Meyerhenke,
“Generating realistic scaled complex networks,” Applied Network
Science, vol. 2, no. 1, p. 36, Oct 2017.

M. von Looz, M. S. Ozdayi, S. Laue, and H. Meyerhenke, “Generating
massive complex networks with hyperbolic geometry faster in practice,”
in IEEE High Perf. Extreme Computing Conf. (HPEC), 2016.

F. Zhao and A. K. Tung, “Large scale cohesive subgraphs discovery for
social network visual analysis,” PVLDB, vol. 6, no. 2, 2012.



