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1.0 Introduction

In this report, we refer to a pair of cameras that capture synchronized pictures with overlapping fields of
view (FOV) as a stereo pair. Each stereo pair independently performs a stereo reconstruction of cloud
points. Currently, there are three U.S. Department of Energy Atmospheric Radiation Measurement
(ARM) user facility stereo pairs (six cameras in total) positioned around the Southern Great Plains (SGP)
observatory’s Central Facility (CF; Romps and Oktem 2017). Time-synchronized pictures from the two
cameras in a stereo pair can be paired together to obtain a three-dimensional (3D) reconstruction of
feature points by triangulation. This document explains how we use ARM stereo cameras and
stereophotogrammetric principles to generate the Point Cloud of Cloud Points (PCCP) Value-Added
Product (VAP). The PCCP VAP is essentially a set of 3D positions representing the locations of cloud
features in the sky. Thousands of cloud features can be reconstructed instantly in each stereo pair's FOV,
which covers an area of tens of square kilometers. Cloud base and cloud top heights can be extracted from
the PCCP product.

2.0 Procedure

Stereo reconstruction is an implementation of projective geometry to estimate the position of an object in
3D space using a pinhole camera model. Figure 1 (Oktem et al. 2014, reused with permission from
©American Meteorological Society) illustrates this in a simplified two-dimensional (2D) example. The
green and the blue squares are the projections of the black square onto two separate image lines. Each
image line represents the projection screen of a pinhole camera. The position of the black square can be
determined as the intersection point of the green and blue lines that pass through the pinholes. In a more
realistic case, the black square has a position in 3D space, the projection screens are planes rather than
lines, and the projection screens associated with the separate cameras do not necessarily lie on the same
plane. However, similar geometrical principles still hold, and the 3D position of an object can be
estimated from its two projections. The general problem of 3D stereo reconstruction is tackled in three
basic steps: camera calibration, feature matching, and back-projection (triangulation). Each step is briefly
described in the following subsections.
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Figure 1. An example of stereo reconstruction in 2D. Each camera is represented by a pinhole (black
dot) and a projection screen (black line). The object of interest (black square) projects onto
the reference (right) and pairing (left) cameras at the positions of the blue square and green
square, respectively. The position of the black square is calculated as the intersection of these
two lines (this figure is reused from Oktem et al. 2014 with permission from © American
Meteorological Society).

2.1 Camera Calibration

The mapping from a 3D object to its projection on a camera screen is defined by the camera’s intrinsic
and extrinsic parameters. Camera calibration is the process of estimating these parameters. The intrinsic
parameters are focal length, sensor size, and relative pinhole position with respect to the camera screen,
and they are fixed for a specific camera. Intrinsic camera calibration is a well-formulated problem
(Hartley et al. 2003) that can be solved by calibration packages such as OpenCYV libraries

(Bradski et al. 2008). These calibration packages take up-close snapshots of a checkerboard captured at
multiple angles as inputs. They estimate the intrinsic parameters by using the relative positions of the true
and projected checkerboard corners. Radial distortion parameters related to wide-angle lens optics are
also estimated by these packages. Although the theory of stereophotogrammetry is formulated for pinhole
cameras, real camera lenses do not behave as pinholes. Wide-angle lenses, in particular, suffer from a
significant amount of deviation of the projection from that generated by a pinhole. Each of the ARM
stereo cameras is equipped with a wide-angle lens that causes noticeable radial distortion. This distortion
can be corrected by inverse mapping once the distortion parameters that are also fixed for a specific
camera lens are estimated. Figure 2 displays a snapshot from one of the ARM stereo cameras before (left
panel) and after (right panel) distortion correction.
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Figure 2. A sample image from the ARM stereo camera at site E45a. The image on the right is
corrected for radial distortion.

The extrinsic camera parameters are the three Euler angles (pitch, yaw, roll) and the three translation
parameters defining the orientation and location of a camera with respect to a reference Cartesian frame.
Therefore, they need to be estimated after a camera is mounted in place. The translation parameters of a
camera can be determined by a Global Positioning System (GPS) device. Estimation of Euler angles often
relies on at least three external landmarks of known 3D world coordinates. We use the angular position of
the brightest stars/planets as the external landmarks. We identify the projection of the star/planet on the
image plane (camera screen) on a clear night sky. Sirius, Venus, and Jupiter are the brightest celestial
objects that can be identified in the ARM stereo camera images when they are in the FOV. We use a
nonlinear optimization method that aims to minimize the sum of squared distances between the observed
(on the projection screen) and the calculated (by stereophotogrammetry) projections of star/planet
positions to predict the three Euler angles.

External calibration with celestial objects is good at estimating Euler angles within around 0.1 degree
accuracy. However, stereo calibration requires that the two cameras within a pair are calibrated with at
least 0.01 degree accuracy with respect to each other. Such accuracy is achieved by adding the epipolar
constraint to the celestial calibration. Consider the green line in Figure 1. Any object placed on the
green/blue line is projected onto the same green/blue square on the left/right screen, but the projections of
these objects form a line on the right/left screen. This line is called the “epipolar line” associated with the
green/blue square in the left/right image. Each projection in an image has an associated epipolar line in
the other pair. Therefore, the projection of an object in the pairing image must lie on the epipolar line
associated with the object’s projection in the reference image, and that is the epipolar constraint. More
details on how celestial projection and epipolar constraint are formulated for extrinsic camera calibration
can be found in (Oktem et al. 2014, 2015). The relations between a 3D point and its projections and the
epipolar constraint are also listed in Appendix A.

2.2 Feature Extraction and Matching

Features are distinct visual points in an image. They are often detected using gradient-based approaches.
We extract cloud features based on the Canny edge detector that identifies positions of high gradient
pixels (Figure 3). This process is performed over the reference camera picture only. Next, we need to find
the corresponding matches in the pairing picture. We refer to the camera that is to the right of the baseline
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as the reference camera, and the one that is to the left of the baseline as the pairing camera. The matching
pixel of each extracted feature is sought on its epipolar line in the pairing camera’s picture. We developed
an hierarchical block search method to match the features with their pairs in a time-efficient manner. The
matching is performed over low-resolution and reduced-size (by a factor of eight in both dimensions)
image pairs at first. This significantly reduces the search area and the number of false matches. Then,
these initial matches are updated recursively by moving up to a higher-resolution level, until the
full-resolution images are processed. At each hierarchical level, the matches from the previous level are
considered as coarse estimates. They are updated by searching for better matches in a restricted
neighborhood of the coarse estimates (instead of full-range search). The measure for a match is the
cross-correlation coefficient between the reference and the pairing blocks. A block is composed of a
picture’s intensity values inside a rectangular region that has the feature point of interest at its center. The
best match is the one that outputs the highest correlation coefficient higher than a certain threshold. The
feature is discarded (i.e., no match is found) if the highest cross-correlation coefficient stays below the
threshold that is set separately for each hierarchical level. In Figure 3, some of the extracted features are
marked in blue in the right panel. The matches found by the summarized method are marked in green in
the left panel of the same figure.

Figure 3. The pictures in the right and the left panels are the cropped samples from the reference and
the pairing cameras, respectively, at site E45. The blue marks in the right panel correspond to
the detected cloud features within the red box in the reference picture. The green marks in the
left panel are the matched pairs of these features.

2.3 Stereo Reconstruction by Back-Projection

In the final step, we use direct linear transformation (DLT) to estimate the 3D positions corresponding to
the matched features. DLT is a triangulation method that combines the linear mapping between the 3D
coordinates and the 2D matches in the reference and pairing images into the form of a homogeneous
linear equation, and solves for the 3D coordinates using singular value decomposition (see

Hartley et al. 2003 for details on derivation and Oktem et. al. 2014 for details on implementation). The
reconstructed coordinates corresponding to the features of the cloud in Figure 3 are plotted on a 3D graph
in Figure 4.
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Figure 4. 3D coordinates corresponding to the features shown in Figure 3.

3.0 Software Package

We developed a software package in C++ to implement the stereophotogrammetric cloud point
reconstruction described in Section 2. The package uses OpenCV routines for basic processes such as
matrix operations and camera distortion correction and it has a modular structure to enable execution and
portability of different functions independently. For example, camera calibration is carried out by a
standalone module and it generates camera-specific configuration files that are updated as needed. Note
that intrinsic camera parameters are not expected to change unless the cameras are replaced, but a change
in camera orientation as small as 0.01 degree requires that the extrinsic calibration is updated. Currently,
only the PCCP VAP generation module is ported to the ARM system.

3.1 PCCP VAP Algorithm

The PCCP VAP generation module executes through the following four main stages for each time
interval starting from sunrise until sunset for a day:
e Pre-processing:
— Distortion correction and image enhancement — Images are read in pairs, corrected for radial
distortion, and enhanced by unsharp masking to emphasize the high-frequency features.
— Cloud mask generation and sun detection — Regions of clouds are extracted from the background
and the region of sun (if in FOV) is discarded.
e Feature extraction and matching:
— Distinctive cloud features are identified inside the cloud mask in the reference image.
— A match for each feature is sought in the pairing image by using the hierarchical block search
method described in Section 2.2.
e Post-processing:
— A 3D filtering is applied to remove false positives.
e Back-projection — DLT is used to estimate the 3D coordinates corresponding to the filtered matches.
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Note that although post-processing substantially reduces the number of false positives, it does not
completely eliminate them at all times. The algorithm may report false detections under clear sky but
hazy conditions when the sun is close to the horizon and is in the FOV of the camera. However, the
number of false detections for such cases is in the order of tens whereas the number of correct positives
are in the order of thousands in most cloud conditions. Another point worth mentioning is that the
algorithm may not be able to detect any cloud points at all when the clouds do not exhibit any distinct
features such as in the case of heavy rain, fog, snow, etc.

3.2 Input and Output Data for the PCCP VAP

The PCCP VAP algorithm reads synchronized images from a stereo pair as input. The input images are
tagged as

sgpstereocamaxx.al. YYYYMMDD.HHMMSS.jpg,
sgpstereocambxx.al. YYYYMMDD.HHMMSS.jpg,
the letters a and b referring to the reference and the pairing cameras, respectively.
The dimensions and the variables in PCCP VAP datastream are:
Dimensions:
time (UNLIMITED)
camera_a_col = 2592, number of columns of the reference image
camera_a_row = 1944, number of rows of the reference image
Variables:
base_time — Base time in Epoch in seconds since 1970-1-1 0:00:00 0:00
time_offset — Time offset from base time in seconds since YYYY-MM-DD 00:00:00 0:00
time — Time from midnight since YYYY-MM-DD 00:00:00 0:00

x_relative — Distance to the East in meters relative to the base, function of (time, camera a col,
camera_a_row)

y_relative — Distance to the North in meters relative to the base, function of (time, camera_a col,
camera a row)

z_relative — Height in meters relative to the base, function of (time, camera a col, camera_a row)

camera_b_col — References camera_b x axis to camera_a pixel axes, function of (time, camera_a col,
camera_a_row)
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camera_b_row — References camera_b y axis to camera_a pixel axes, function of (time, camera_a_col,
camera_a_row)

base lat — North latitude of the base coordinate in degrees

base_lon — East longitude of the base coordinate in degrees

base_alt — Altitude of the base coordinate above mean sea level in meters
input_images — Names of the processed input stereocamera images

lat — North latitude

lon — East longitude

alt — Altitude above mean sea level in meters.

The base_lat, base lon, and base_alt variables refer to the position of the base. For ARM cameras
situated at the SGP CF, base is selected to be the position of the Doppler lidar as its data is frequently
used for comparison. The lat, lon, and alt variables refer to the position of the reference camera, but not
to the PCCP data. The GPS positions of the ARM baseline stereo cameras are listed in Table 1.

Table 1.  GPS locations of SGP stereo setups.

Camera site Latitude (N°) | Longitude (W°) Altitude (m)
SGP/E43a 36.63704 97.53817 311
SGP/E43b 36.64056 97.53435 310
SGP/E44a 36.63705 97.43015 319
SGP/E44b 36.63360 97.42650 321
SGP/E45a 36.54990 97.47970 317
SGP/E45b 36.54950 97.48550 316

x_relative, y_relative, and z_relative are the fundamental variables identifying the positions of the
detected cloud points. They are stored in the datastream as a function of time, columns (camera_a_col),
and rows (camera_a_row) of the reference camera. Note that the number of pixels in a camera screen
(camera_a _row times camera_a_column) is the maximum number of features that can be detected at any
time instance. However, most of the pixels of an image at a time may not correspond to a distinctive
feature or may not correspond to a cloud point at all, therefore most of the x_relative, y_relative, and
z_relative entries have a value of “-99999”, denoting that no cloud point is detected at that pixel. The
valid entries of these variables are exhibited in Figure 5 for March 24, 2020. The upper panel presents a
heatmap showing the distribution of reconstructed cloud points by time and height using the variable
z_relative. The lower panels show the distortion-corrected image captured at 20:43:20 UTC on the left
and x_relative versus y_relative (black dots) and the two camera positions (blue and green squares) on
the right panel.
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Figure 5. PCCP VAP variables for E45 site on March 24, 2020. The upper panel displays the
distribution of the reconstructed cloud points by time and height. The colors represent the
count of the detected points in the corresponding bin. The bottom left panel shows the
distortion-corrected reference camera image at time 20:43:20 UTC. The bottom right panel
displays x_relative versus y_relative for the reconstructed cloud points at 20:43:20 UTC.
The blue and the green squares in the bottom right panel represent the reference and the
pairing cameras at the site, respectively.

4.0 Clouds Optically Gridded by Stereo (COGS)

As presented in the earlier sections, PCCP provides 3D coordinates of cloud points collected over the
surface of clouds (Figure 3) captured from a single view. When synchronous PCCP data are available
from multiple views surrounding a cloud, it is possible to extract the representation of the whole cloud
surface. COGS is a four-dimensional (4D) map of cloudiness generated by multiview stereo
reconstruction using PCCP datastreams from the ARM stereo camera ring at the SGP site

(Romps and Oktem 2018). COGS data are particularly useful for studies of the life cycles and
microphysical attributes of shallow cumulus clouds (Romps et al. 2021, Oktem and Romps 2021,

Tian et al. 2021, Williams et al. 2021). COGS covers a 6 km x 6 km x 6 km region at the SGP Central
Facility centered at the position of the Doppler lidar as illustrated in Figure 6. The grid resolution is 50 m
in horizontal and vertical directions and 20 seconds in time.
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Figure 6. Locations of the six cameras at the ARM SGP site are shown on the map. The black box
defines the COGS reconstruction area encircling the Central Facility (CF). The six pictures
show views of clouds from each camera on August 22, 2022, at 18:30 UTC.

4.1 COGS VAP Algorithm

COGS is best suited for representing shallow cumulus clouds. A preprocessing algorithm inspects PCCP
data in half-hour intervals and returns true if it detects shallow cumulus cloud events in that half-hour
interval. COGS VAP is executed only over these shallow cumuli detected intervals.

The basic assumptions in generating COGS are that: 1) a cloud surface that is in the common field of
view (CFOV) of the three cameras but not captured by one of the camera pairs can be captured by either
one of the other camera pairs, 2) the obstructed regions can be estimated from the retrieved data. The
CFOV is enclosed by the black box in Figure 6 and up to 6 km above the ground. This cubic volume is
gridded with 50-m resolution in horizontal and vertical directions. The grids that are out of the CFOV are
labeled as not available (NA). 3D coordinates in all PCCP datastreams are already recorded with respect
to the center of the COGS region as its origin; therefore translation or rotation of PCCP data are not
required when combining them. COGS grids that are in the CFOV are labeled as non-cloudy by default
and the cloudy grids are filled in the following steps:
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e Cross-validation: PCCP from each camera pair are back-projected onto the other four camera planes.
Back-projection refers to finding the 2D pixel locations on the reference and pairing camera planes
associated with a 3D PCCP coordinate, using the pinhole model. Back-projections that hit a cloudy
pixel (identified by the same cloud detection method used in PCCP VAP) are considered as true
positives and corresponding grids are filled. This step aims to eliminate the false positives as much as
possible, by incorporating information from other cameras.

e Missing cloud point detection: Cloud boundaries are extracted and hollow parts are identified from
the filled grids. Hollow parts might be the results of cloud points missed by PCCP VAP due to not
exhibiting distinctive features (i.e., overexposed cloud region in Figure 3) or not lying on the cloud
surface.

e Rematching and validation: The grids associated with missing cloud points are assigned as ‘cloudy
grids’ if their back-projections satisfy the following two conditions: 1) they hit a cloudy pixel, 2) the
projection onto the reference image matches with the projection onto the pairing image. This step
aims to recover missing cloudy grids without introducing false positives.

4.2 Input and Output Data for the COGS VAP

COGS VAP uses PCCP datastreams and PCCP images from the three stereo pairs as inputs. The original
camera images have lens distortion as shown in Figure 2. When the PCCP VAP corrects these images for
lens distortion, it saves them so that they are later read by the COGS VAP.

The input images are tagged as
sgppccpaxx.cl.YYYYMMDD.HHMMSS.jpg,
sgppcepbxx.c1.YYYYMMDD.HHMMSS.jpg,

and the input datastream is tagged as
sgppcepxx.cl. YYMMDD.HHMMSS.nc,

where xx refers to the camera site and the letters a and b refer to the reference and the pairing cameras,
respectively.

The dimensions and the variables in COGS VAP datastream are:
Dimensions:
time (UNLIMITED)
x 121 grids representing distance to East in meters, from -3 km to 3 km, in 50-m intervals
y 121 grids representing distance to North in meters, , from -3 km to 3 km, in 50-m intervals

z 120 grids representing altitude above the ground in meters, from 25 m to 5975 m in 50-m
intervals

10
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Variables:
base_time — Base time in Epoch in seconds since 1970-1-1 0:00:00 0:00
time_offset — Time offset from base_time in seconds since YYYY-MM-DD 00:00:00 0:00
time — Time from midnight since YYYY-MM-DD 00:00:00 0:00

cloud_status—[0,1,2] representing [no cloud, NA, cloud] for the corresponding grid, function of
(x,y,z,time)

cldfrac — vertically projected cloud fraction calculated from the number of cloudy grids and the
number of available grids at the cloud base height, function of (time)

cbh— estimated cloud base height, function of (time)
input_images — Names of input images.

lat — North latitude of the center of the COGS grid.
lon — East longitude of the center of the COGS grid.

alt — Altitude above mean sea level in meters.

The lat, lon, and alt variables refer to the position of the center of the COGS grid. The GPS positions of
the ARM baseline stereo cameras are listed in Table 1.

The trinary values of cloud_status indicate whether the corresponding grid for the associated time and
space is cloudy, not-cloudy, or NA. NA is assigned when that grid is not in the field of view of all three
pairs. The positions of NA grids vary with height. Within long intervals of time, such as months or years,
NA grid positions may also slightly vary due to a slight change in the orientation of any of the cameras.

Cloud fraction and cloud base height estimations are also included in the COGS datastream as a function
of time. Cloud base heights are estimated as the 1% of the cloudy grid heights. Cloud fraction is
calculated as the fraction of vertically projected cloudy grids over total number of available grids at the
cloud base height.

Figure 7 plots COGS data for August 22, 2022. The upper left panel shows the distribution of cloudy
grids over time and height. The colors represent the fraction of cloudy grids over total number of grids
(that are not NA) for a horizontal slice in the corresponding height and time bin. Cloud base height
defined as the 1% of the cloudy grid heights and vertically projected cloud fraction are plotted in the left
and right axes, respectively, of the upper right panel. The lower panels display instantaneous COGS data
at time 18:30 UTC. The left panel shows the thickness of the cloudy grids over the eastward and
northward distances from the center. The right panel displays instantaneous cloudy COGS grids in 3D
Cartesian coordinates. The red circles refer to the six camera locations.

11
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COGS data are presented for August 22, 2022. (upper left) Fraction of the horizontal COGS
domain that is cloudy as a function of UTC time and height above the ground. (upper right)
Cloud base height defined as the 1% of the cloudy grid heights and vertically projected cloud
fraction are plotted in the left and right axes, respectively. The lower panels display
instantaneous COGS data at time 18:30 UTC. (lower left) The thickness of the cloudy grids
are plotted over eastward and northward distances from the center of the COGS region.
(lower right) Cloudy COGS grids are displayed in 3D Cartesian coordinate system. The red
circles refer to the six camera locations.
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Appendix A

Projection Relations

Let X = (x,y, 2, 1) denote the homogenous coordinates of a point in 3D space. Similarly, let X' =
(x',y',1) be the homogeneous coordinates of its projection in the camera screen. For a pinhole camera,

the relation between X and X' is expressed as
X' =P-X.

P is the projection matrix that can be decomposed into camera, rotation, and translation matrices as

P=C-R-T,

ka 0 Cx

C=10 fk, cy],

0 0 1
1 0 0 cosf, 0 —sinb,][cosf; —sinf; 0O
R=1|0 cos6, sin91” 0 1 0 ”sin93 cosfs 0],
0 —sinf; cosO,1Llsin6, 0 cosb, 0 0 1

1 0 0 —x

T=(0 1 0 Yol

0 0 1 -z

where f, k, (ky), Cy (Cy) are the focal length, number of pixels per distance on the camera screen’s

x'(y")direction, and the principal point coordinate of the camera screen (camera intrinsic parameters),
01,05, 05, x4, Vo, Zg are the Euler angles (pitch, yaw, roll) and camera world coordinates (camera
extrinsic parameters), respectively.

Let X; and X; denote the two projections of a 3D point onto the reference and pairing stereo cameras,
respectively. The epipolar line equation associated with X;. is given by the equation

el:F'X.,’-,

where F is the fundamental matrix (see Hartley et. al. 2003 for derivation of the fundamental matrix). The
epipolar constraint dictates that X; lies on the epipolar line e;, therefore

X,"FX. = 0.
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Appendix B

Sample Code to Extract Instantaneous PCCP Data

D B L L P e P
#Contact roktem@]Ibl.gov for questions

#Date : June 2020

#This script reads PCCP data for a time instance and displays relevant plots

#Usage: python pccp snapshot.py <input nc_filename> <output plot filename> <time instance>

#  e.g. python pcep_snapshot.py sgppeecpE45.¢1.20190512.130000.nc sample plot 201100

# reads data from sgppccpE45.¢1.20190512.130000.nc and saves the output in sample plot.png for time
20:11:00

import matplotlib as mpl

import numpy as np

import numpy.ma as ma

import sys

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

from netCDF4 import Dataset

import time

plt.re("xtick’, labelsize=14)
plt.re('ytick', labelsize=14)
plt.rc(‘axes', labelsize=16)
plt.re(‘figure’, titlesize=16)

###2D plot of x,y variables in subplot(2,2,si)
def plot2D(x,y,fig,si,xlabel,ylabel):

ax = fig.add_subplot(2,2,si)

ax.scatter(x, y, s=1, marker="x', c="gray")

ax.set_xlabel(xlabel)

ax.set_ylabel(ylabel)

ax.xaxis.labelpad = 5

ax.yaxis.labelpad = 5

###3D plot of x,y,z variables in subplot(2,2,si)
def plot3D(x,y,z,fig,si):
#check if data point count is sufficient for display
if (len(x)>10):
ax = fig.add_subplot(2,2,si, projection="3d")
x = [x[0:len(x)]]
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y = [y[0:len(y)]]
z = [7[0:len(z)]]
x1 = int(min(min(x)))
x2 = int(max(max(x)))
y1 = int(min(min(y)))
y2 = int(max(max(y)))

ax.scatter(x, y, z, c='gray', marker='0")
ax.xaxis.set_ticks(np.arange(x1,x2,int((x2-x1+2)/4)+0.5))
ax.yaxis.set_ticks(np.arange(y1,y2,int((y2-y1+2)/4)+0.5))
ax.view_init(elev=15, azim=-70)

ax.set_xlabel('X [km] ")

ax.set_ylabel("Y [km] ")

ax.xaxis.labelpad = 15

ax.yaxis.labelpad = 15
ax.zaxis.set_ticks(np.arange(0,9,2))

ax.set_zlabel('Z [km] ")

#filter out values that exceed 50km
def FilterRange(data_in, indnz):
if (indnz==-1):
indnz = (abs(data_in) < 50000).nonzero()
data_out = data_in[indnz]/1000 # convert to km
return data_out,indnz

HHHHHHHHM A INHHEH R R T
T R R R R R R R R R R R,
def main():
#check input arguments
if (len(sys.argv)<4):
print('Usage: python pccp_snapshot.py in_filename out plot name time(HHMMSS)")
print(‘e.g. python pcep_snapshot.py sgppccpE44.¢1.20180420.130000.nc sample 170000")
sys.exit();

inFileName = sys.argv[ 1] #input nc filename

outFileName = sys.argv[2] #output png filename

curTimeStr = sys.argv[3] #time to display

curTime = int(curTimeStr[0:2])*3600+int(curTimeStr[2:4])*60+int(curTimeStr[4:6]) #convert to
integer

#read input
try:

dataset = Dataset(inFileName, 'r', format="NETCDF4")
except:

print('Could not open file:', inFileName)

x_relative var = dataset.variables['x_relative']
y_relative_var = dataset.variables['y_relative']
z relative_var = dataset.variables['z_relative']
timeoff = dataset.variables['time'][:]
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tind = np.array(range(0,len(timeoft)))

ti = tind[timeoff = curTime |

if (len(ti)==0): #if no data is available at the time entered
dt = abs(timeoff-curTime)
tn = tind[dt==min(dt)]
print('No data available at the entered time, the nearest available time is at

"time.strftime("%H:%M:%S", time.gmtime(timeoff[tn])))

else:
x_slice,ind_nonzero = FilterRange(x_relative_var[ti][:][:],-1)
y_slice,ind_nonzero = FilterRange(y_relative var[ti][:][:],ind nonzero)
z slice,ind_nonzero = FilterRange(z_relative var[ti][:][:],ind_nonzero)
print(len(x_slice),' cloud points are extracted')

fig = plt.figure(figsize=(20,10))

fig.suptitle('PCCP data from file '+inFileName +' at '+curTimeStr + ' UTC")
plot2D(x_slice,y_slice,fig,1,'direction eastward [km]','direction northward [km]")
plot2D(x_slice,z_slice,fig,2,'direction eastward [km]','altitude above the ground [km]')
plot2D(y slice,z_slice,fig,3,'direction northward [km]','altitude above the ground [km]')
plot3D(x_slice,y slice,z_slice,fig,4)

fig.savefig('{}.png'.format(outFileName))
dataset.close()

T R R R T R R R R e e e
main()
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Appendix C

Sample Code to Plot COGS Data

T T R R R R R R
#Contact roktem@]Ibl.gov for questions

#Author: Krista Gaustad, modified by Rusen Oktem

#Date : June 2022

#This script reads COGS data and displays cloudy grids distribution over time

#and height on a heatmap. The colors show the count of cloudy grids at the

#corresponding height-time bin. Cloud base heights are also displayed in the

#same plot with black marks. Cloud fraction is displayed in the bottom panel.

import matplotlib as mpl

import numpy as np

import numpy.ma as ma

import sys

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

from matplotlib import cm

mpl.use('Agg")

from matplotlib.colors import ListedColormap, LinearSegmentedColormap
from mpl_toolkits.axes grid]l import make axes locatable
from netCDF4 import Dataset

import time

VALIDCV =2 #cloudy

ZMAX = 120 # number of height levels
GRDSZ =50 #grid size in m

HGRDSZ = 25 #half grid size

DELTAT = 20 #s between frames
TRES = 300 #time resolution in seconds

def plot cogs data(in_file, quicklook path):
try:
dataset = Dataset(in_file, 't', format="NETCDF4")
except:
print('Could not open file:', in_file)

#Read the variables from nc file
cl = dataset.variables['cloud_status'] #4D cogs data
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t = dataset.variables['time'][:]

cbh = dataset.variables['cbh'][:] #cloud base height, 1D function of time
cf = dataset.variables['cldfrac'][:] #cloud fraction, 1D function of time
Nt = len(t) #length of time index

#get count of height bins

ts = int(t[0]) #start time

te = int(max(t))+20 #end time

tr = int((te-ts)/TRES) #number of time bins
tind = np.array(range(0,Nt))

clz = np.zeros((tr,ZMAX))

tent =0
tsc = TRES/20
for ii in range(ts,te-TRES, TRES):
ti = tind[(t>=i1) & (t < 1i+TRES)] #time interval from [ii,ii+tstep)
if len(ti) > 0: #if there exists data in this time interval
for zi in range(ZMAX):
cslice = cl[ti,zi,:,:]
clz[tent][zi] = (cslice==VALIDCV).sum()/tsc
tent = tent+1

#generate mesh data for display
tax, hax = np.mgrid[ts:te:tr*1j, HGRDSZ:ZMAX*GRDSZ-HGRDSZ:ZMAX*1j]
hax = hax/1000 #from m to km
# Time indices to display
num_time_steps = int((te-ts)/4)
tind =]
for x in range(ts,te,num_time_steps):
tind.append(time.strftime("%H:%M", time.gmtime(x)))

#PLOTS

fig = plt.figure(figsize=(20,10))

#upper panel, distribution of grid counts over height and time, and cloud base height
ax1 = fig.add_subplot(2,1,1)

axl.xaxis.set_ticks(np.arange(ts,te,num_time_steps))

axl.set_xticklabels(tind, minor=False, rotation=45, fontsize=12)
plt.yticks(fontsize=12 )

axl.set ylabel('"Height [km]',fontsize=15)

axl.set_title('Cloudy grids from file {}'.format(in_file),fontsize=15)

#modify color map so that 0 is represented by white

colormap = plt.cm.get_cmap('rainbow")

colors = colormap(np.arange(colormap.N))

colors[0,:] =1

colormap = LinearSegmentedColormap.from_list(colormap.name, colors, colormap.N)
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cax = plt.pcolormesh(tax, hax, clz, cmap=colormap,shading="nearest")

plt.plot(t,cbh/1000,linestyle="",marker="0",color="k',label='cloud base height') #cloud base height

plt.legend(loc="best",fontsize=12,framealpha=1, frameon=True)

#add colorbar

fig.colorbar(cax,ax=ax1,fraction=0.05,aspect=30,pad=0.2,panchor=(0.,1),orientation =
'horizontal',label="count of cloudy grids per 20 s')

#lower panel, cloud fraction

ax2 = fig.add_subplot(2,1,2)
plt.plot(t,cf,linestyle="",marker="+",color="k")
ax2.xaxis.set_ticks(np.arange(ts,te,num_time steps))
ax2.set_xticklabels(tind, minor=False, rotation=45, fontsize=12)
plt.yticks(fontsize=12 )

ax2.set xlabel("UTC time [HH:MM]',fontsize=15)
ax2.set_ylabel('Cloud fraction', fontsize=15)

fig.savefig(quicklook path)
dataset.close()

SR R B T R I R
def main():
#check input arguments
if (len(sys.argv)<3):
print('"Usage: python cogs_quickplot.py in_filename out_plot name')
print(‘e.g. python cogs_quickplot.py cogsS4.20181220.130000.nc out')
sys.exit();

inFileName = sys.argv[1] #input nc filename
outFileName = sys.argv[2] #output png filename

plot_cogs data(inFileName, outFileName)

main()
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