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Overview

■ Why Machine Learning?

■ Key Questions for ML

■ Bayesian Probability Theory

■ Applying Bayesian Inference to ML

• Challenges

• Variational Inference

• Priors
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Why ML

■ Machine Learning automates the process of learning predictive
simplifications from data

■ Enabling science and engineering for highly complex and evolving
systems with masses of heterogenous data will require Machine
Learning.

■ For these tasks ML must be flexible, adaptable, and trustworthy.
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Key Questions to Enable ML by UQ

■ Representable: How do we represent our beliefs?

■ Flexible: How to learn from data?

■ Adaptable: How to gather new data for learning?

■ Trustworthy: How to quantify the degree of trust in ML?

■ Answers to these questions can be rigorously formulated within the
Bayesian paradigm
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Representing Beliefs

• Within Bayesian theory, assumptions (co) that express states of belief
are represented using probability distributions.

• Prior p(6) ID, co) : Initial belief about the universe

• Likelihood p(7) 19, co): Conditional beliefs about data

• Posterior p(6) ID, co) : Updated beleif
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Updating Beliefs using Bayesian Inference

J

servat ons: D

Bayes' Theorem

p l M) —

73(7)10 ,M)p(OIM) 
P(P")

Evidence: p )

Posterior Estimation: E (0) ID,M

I13 (I) 1

  g(0)p(OlD,M)dO

.A4) p(e 1 .A4) clO

Sandia
National
Laboratories

g (0i)

6



Quantifying Change in Belief
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• Information quantifies how belief q(6) change to p(6) with respect to a
state of belief r(6) :

/09) [p(o) 11 (AO)] r 09) 
log P(0) 

7

q(0
)

• Quantifying changes in belief due to inference:

1p091D,1P,N) [PO D101 M) HO I IP, A4)]

KL [p(O DOP,M) I I p(O I0, A4)] — f PO I Do 
p(e D, sm)

p,M) log dO
13(9 I 11/), M)



Assessing Learning Opportunities
Sandia
National
Laboratories

• Bayesian Optimal Experimental Design

1. Predict change in belief due to inference, the Expected Information Gain (EIG):

EIG (d) D d) log 
p 

0) 

(1) 
dO dD

p ( 

2. Optimize experiment or data collection to maximize expected information gain

d* = argmaxdE EIG (d)

• EIG can also be assessed with respect to a Qol (Y)

ED d {I{L (Y d) I I p (11). p (D d) I p (Y , d) log [P (Y  dY dD
P (1
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Assessing Prediction Trustworthiness

• Bayesian UQ requires estimating prediction uncertainty

Prediction
with UQ
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Posterior probability of specific model
Assumptions N r — — — 1

i 1 i x-i 
J 
r PM l OIMO1909 l col Mi) P(Mi) 

lo(ylxyDycoyM) = 2.4 19(Yky 0 y Mi)
/I' i=1 _i PO lcoyM ) 

dO

Prediction Input Predidion from specific model



Assessing Prediction Trustworthiness
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• Bayesian UQ requires estimating prediction uncertainty

• Bayesian Sensitivity Analysis or Robust Bayesian Inference quantifies the
importance of assumptions on predictions. This predicts extrapolation or
lack of generalization.

Prediction
Perturbation

Assumption Perturbotions
Perturbed Perturbed Perturbed

p(ylx,D,(p,M, f3D, f3(p, f3m) Likelillood Prior i Myel 

= 1 fio(ylx, 0, Mi)  dO

i=1

PM 1 191 Mil GcT 7510 Mi, P (mi IflA
p(1) flpy fl(py Am.)



Assessing Prediction Trustworthiness

Linear regression example: Assessing prediction sensitivity to changes in
the assumed prior and noise in the data

Perturbation to the Prior

— Prior — None

—2.0 —1.5 —1.0 —0.5 0.0 0.5 1.0
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Perturbation to the Likelihood Change in the Predictive Distribution

— Data — None

—2¡.0 —1.5 —1.0 —0.5 0.0 0.5 1.0 ¡ —2.0 —1.5 —1.0 —0.5 0.0 0.5 1.0



Bayesian Theory

• Representation -> Probability Distribution

• Learning -> Bayesian Inference

• Quantify change -> Information

• Gathering data -> Bayesian Optimal Experimental Design

• Trustworthiness -> Robust Bayesian Inference

• How do we apply Bayesian theory to ML?
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Differences between ML and Standard UQ
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I , National
  Laboratories

• Parameters in physical systems have intrinsic meaning that makes
defining priors easier and more interpretable

• Model structure often comes from first principles. When competing
models exist, they often have more intuitive relationships i.e. fidelity.

• ML models often have too high capacity (many parameters), Physical
systems often have too low capacity

• ML tries to build a prediction model while UQ for physical systems often
trying to infer some unobservable states/parameters from data.



Challenges in applying Bayesian methods to ML

■ Representing a probability distribution over models

■ Choosing a prior and space of model architectures

■ Solving the inference problem and computing information in high
dimensions
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Variational inference

The posterior distribution is virtually impossible to represent and
solve in high dimensional problems like over-parameterized deep
learning.

Variational inference approximates the posterior distribution using
more tractable methods:

• Local Gaussian approximation
• Stochastic gradient descent sampling
• Mean-field distribution
• Dropout sampling
• Variational Tempering
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Illustration of Variational
Approximation

Poste rior

VI a op roximation

-4 -2 2 4 6

Learning dimension coordinate

Maximizing the ELBO amounts minimizing the following Kullback-Leibler divergences:

ÐKL q(01A)iip(D 0)]   log (p(D)) DKL [q(01A) P(0 D)]



Variational Inference

• Different views of VI may be appropriate for different ML tasks
View Expression

Posterior Distribution KL D) D) log P (19 1 D) dO[p (0 1 1 Q (0 1 0)] = p (0 1
. 0
f 

Q (0 I 0)

Variational Distribution KL (9 I (1)) dO0) D)] I[Q (0 1 II /3 (0 1 = Q (0 I 0)log Q
p (0 1 D)

Variational Predictive KL D)] Q log Q (Y I °)dY[Q (Y l 0) 11 P (Y l = f (Y l 0)
Y 19 (17 I D)

Prior Predictive KL log P (Y) dY[/) (Y) l l Q (Y 1 45)] = f p (Y)
IT Q (y 1 0)
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Variational Inference

Linear regression example: Assessing different VI formulations for
prediction
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Monte Carlo Estimators for Variational Inference

• Evidence Lower Bound:

Posterior la [Q (0 I (b) II p (0 1 D)] — logp (D

Posterior 
KL

 

[Q 
(17

Predictive   i 1 0) 11 P (Y 1 D)] — log p (D

• Assuming Q (Y- 1 0) = f0/3(17 10)Q(010c/O

KL [Q (Y 1 (I)) 11 13 (Y. 1 D)] — log p (D)

es.....,
es...,

1

N
i=

[log
1
K =1

N

i=

N
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1 g Q (e i 1 0) — logp(D 1 0 i) P (0i)] 1 0 i r` Q (0 1 0)

[log Q (Yi 1 0) — logp (D,Yi)] , Yi ,-,) Q (9 1 0)

m1

13 (177, I WI) — log  13(73,17i 1 t9j) lYi r\ (207 1 40) 1 0i r• p (19) 10i r• Q (19 I (I))m .
J=



Variational Inference: Bayes By Backprop

Algorithm from Blundell et al. 2015

1. Sample E "i N(0, I).

2. Let w = p, + log(1 + exp(p)) o E.

3. Let 0 = (tt, p).

4. Let f (w , 0) = log q(w10) — log P(w)P (1)1w).

5. Calculate the gradient with respect to the mean

a f (w , 0) a f (w , 0)
Ap, =  +   (3)

aw aft •
6. Calculate the gradient with respect to the standard de-

viation parameter p

A a f (w , 0)  E  a f (w , 0)
. (4)

"IP aw 1 + exp(— p) 
+ 

a p

7. Update the variational parameters:

p, <— p, — aAt, (5)

p <— p — ceA p. (6)

Standard DNN
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Mean-Field Bayesian
Neural Network (BNN)

Illustration from Blundell et al. 2015



Variational Inference: Subspace Restriction

• Many ML models like DNNs are high over

parameterized so uncertainty may only need to be
captured in a small subspace in order to capture
predictive uncertainty

• VI means finding the parameterization (P) in the

basis (U) such that 0 = UV)

• Subspace variational inference is exact when we

reinterpret the subspace as just expressing a new
model representation

Example subspace restriction

0

-0.2

-0.4

cbc.1 -0.6 —

-0.8 —

-1 —

-1.2 —

-1.4 _1.2

••.& • •
.• •
: ••••••

. .

*.:*

• • •. :**(*.**4

. • • •
• • • . . .

-1 -0.8 -0.6 _
0.4

8
1

Sandia
National
Laboratories

0.2
0.4

0.6
0.8

1
1.2

1.4 0
2



Variational Inference: Subspace Restriction

Variational
Posterior View

Variational Posterior
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Priors for ML models

■ Priors are critical for accurate UQ and model selection

■ Because ML models are abstract, prior assumptions are difficult to quantify

■ ML model structure encode priors that we do not quite understand but is
useful

■ Examples of priors

• Strict assumptions about model architectures to include symmetries, invariances, and
hierarchical structure i.e. CNNs

• Tasks being shared from one model to another i.e. transfer learning

• Principle of maximum entropy

• Explicitly developing priors to encode beliefs about the underlying predictions

• Model complexity (Algorithmic Probablity)
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Maximum Entropy Prior with Prediction Properties

Principle of maximum entropy:

• The prior that best represents parameter
uncertainty would maximize the parameter
posterior entropy while being consistent with

our beliefs.

• This maximizes our uncertainty about
parameters not the predictions

fp (0 l w) logp (0 l w) dO

s g (0) p (0 l co) dO gbelief

Example: Belief about expected mean
and variance of predictions with linear
regression

argin
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fp l E) logp (0 E) dO

s.t. f y (0 , x) p (0 I tt,E) P(x) d0dx =

I (y (0 , x) — )2 p (0 E) p (x) dOdx



Linear Regression Model Example
Prior Predictive Posterior Predictive
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2

Linear Regression Model Evidence
Prior Predictive Posterior Predictive
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Prior on Model Complexity

• Occam's Razor expresses a belief that similar models should be preferred over
complex models.

• This is a type of prior. We a priori believe that predictions can be learned from the
data because the relationship is relatively simple.
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• Prior belief should be consistent with the minimum number of bits i.e. information
needed to represent the model (Solomonov, 1960-1964; Rissanen, 1983).

p(fIP) a 2-x(?P)

• This leads to parsimonious inference: Bayesian inference with a prior that limits
model complexity, including both source-coding information in the symbolic
representations and information in inference



Parsimonious inference

Our theory regards changes in three kinds of belief:

Hyperprior: p(V))

/
Potential prior

representations

Prior: p(o

Individual

models

) Predictions: p(y

Potential

predictions

x
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We derive the following optimization objective from the total information, change in belief, that occurs when
we observe the data and construct a predictive model.

(14') — Ep(ONM (y10 [P(0) 11 q0(y)] Expected info gained about data.

complexity — l[pow77b) [P(eI 'th 7b) 11 *Ink Model info due to inference.
terms

oplik) (101/b) 11 p(0)]  • Representation info due to selection.

og :(pt(i/Ply) (y p(y)llgo(Y).] Representation posterior.

27



Parsimonious inference

Examples:

Polynomial
Regression

Decision
Tree

Hyperprior: p (

71'

Potential prior

representations

Prior Mean and Variation

Tree structure i.e. splitting
decisions and location

) Prior: p (0

0

Individual

models

1P)

Polynomial Coefficient
Distribution

Dirichlet Distribution for
Class Probability

Predictions: p y

Y.

Potential

predictions

Predicted Response

Predicted Class Probability
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Parsimonious inference

Parsimonious inference (PI) extracts simple regression
models even if we train with 20th degree polynomials

Parsimonious optimum
- Posterior Mean

Predctive Deciles

Hold-one-out
Agswegate Mean
Precictive Declles

VS

PI avoids memorization by
controlling complexity

- Posterior Mean Natural
Predictive 

Decil

extrapolation
uncertainty

Aggregated predictions over
60 plausible models
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PI also learns simpler decision trees than
standard approaches

Parsimonious tree

Standard information-
based decision tree

Parsimonious aggregate
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Why do we need UQ for ML?
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■ Applications where highly confident predictions are needed

■ Layering ML models together which magnifies errors and requires a
notion of a model's operational envelope

■ Designing for specification instead of what the data is capable of

■ How to improve a prediction model by augmenting the model structure
or gathering new data



Key Challenges for Bayesian UQ for ML

■ Representing a probability distribution over models

■ Choosing a prior and space of model architectures

■ Solving the inference problem and computing information in high
dimensions
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