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Overview

= Why Machine Learning?
= Key Questions for ML
= Bayesian Probability Theory

= Applying Bayesian Inference to ML
* Challenges
e Variational Inference

* Priors




Why ML () s,

= Machine Learning automates the process of learning predictive
simplifications from data

= Enabling science and engineering for highly complex and evolving
systems with masses of heterogenous data will require Machine
Learning.

" For these tasks ML must be flexible, adaptable, and trustworthy.




Key Questions to Enable ML by UQ (i)

= Representable: How do we represent our beliefs?

= Flexible: How to learn from data?

= Adaptable: How to gather new data for learning?

= Trustworthy: How to quantify the degree of trust in ML?

= Answers to these questions can be rigorously formulated within the
Bayesian paradigm




Representing Beliefs R

= Within Bayesian theory, assumptions (@) that express states of belief
are represented using probability distributions.

= Prior p(6 |D, @) : Initial belief about the universe
* Likelihood p(D |6, ¢): Conditional beliefs about data
= Posterior p(0 |D, @) : Updated beleif




Updating Beliefs using Bayesian Inference () =,

Observations: D

Bayes’ Theorem

p(D|6,M)p(6| M)
p(D|M)

cvidence:  p(D | M) = [ p(D [0, M)p(0 | M)df

. . . 1 &
Posterior Estimation: E[g(9)|D,M]= /9(6’)19(«9 | D, M) db ~ N;g(«%)




Quantifying Change in Belief (i) B

* |Information quantifies how belief q(8) change to p(8) with respect to a
state of belief r(0) :

0 (6) |1 (6)) = [ (6 )1ongZ;d0

= Quantifying changes in belief due to inference:

Lpo1D,,.Mm) PO | Dy, M) || p(0 | 9, M)] =

KLp(0 | D, M) 11 90|, M)) = [ (0] D, M) log plO1D. . M) 4

p(0 | Y, M)

_



Assessing Learning Opportunities (T S,

= Bayesian Optimal Experimental Design
1. Predict change in belief due to inference, the Expected Information Gain (EIG):

FIG (d) =/Dp<2>|d)/9p<9|D,d)logp“;'(§)’d)

dOdD

2. Optimize experiment or data collection to maximize expected information gain

d* = argmax . EIG (d)

= EIG can also be assessed with respect to a Qol (Y)
p(Y |D,d)
p(Y)

Epjq {KL[p(Y | D,d) || p(V)]} = /

] dY dD
D

p<D|d)Lp<Y|D,d)1og[




Assessing Prediction Trustworthiness

= Bayesian UQ requires estimating prediction uncertainty

Prediction Assumptions  n

Posterior probabili}y of specific model

(D | 6,M) (8 | ¢, M) P(M;) ”
p(D |p, M)

with UQ p(ylx,D, 0, M) = Z jP(YIx, 6,M; )
~ i=1" | '

Prediction Input

Predict]ion from specific model




Assessing Prediction Trustworthiness () B

= Bayesian UQ requires estimating prediction uncertainty

= Bayesian Sensitivity Analysis or Robust Bayesian Inference quantifies the
importance of assumptions on predictions. This predicts extrapolation or
lack of generalization.

AESLIET R Pe'rturbptionls Perturbed Perturbed  Perturbed
Prediction p(y|x, D, @, M, Bp, By, B ) Likelihood Prijor Maqdel
Perturbation _ i Jp(ylx 0.M,) p( | 0, Ml,,BD) p(@ | @, Ml,ﬁ(p) P(M |,3M) 10
p(D |9, M, Bp, By B )




Assessing Prediction Trustworthiness

D

Linear regression example: Assessing prediction sensitivity to changes in
the assumed prior and noise in the data
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Bayesian Theory () s,

= Representation -> Probability Distribution

= |Learning -> Bayesian Inference

= Quantify change -> Information

= Gathering data -> Bayesian Optimal Experimental Design
" Trustworthiness -> Robust Bayesian Inference

= How do we apply Bayesian theory to ML?




Differences between ML and Standard UQ (1) e _

= Parameters in physical systems have intrinsic meaning that makes
defining priors easier and more interpretable

= Model structure often comes from first principles. When competing
models exist, they often have more intuitive relationships i.e. fidelity.

= ML models often have too high capacity (many parameters), Physical
systems often have too low capacity

= ML tries to build a prediction model while UQ for physical systems often
trying to infer some unobservable states/parameters from data.




Challenges in applying Bayesian methods to ML () i,
= Representing a probability distribution over models

" Choosing a prior and space of model architectures

= Solving the inference problem and computing information in high
dimensions




Variational inference

The posterior distribution is virtually impossible to represent and
solve in high dimensional problems like over-parameterized deep
learning.

Variational inference approximates the posterior distribution using
more tractable methods:

» Local Gaussian approximation

» Stochastic gradient descent sampling

« Mean-field distribution

« Dropout sampling

« Variational Tempering
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Maximizing the ELBO amounts minimizing the following Kullback-Leibler divergences:

L(A) = =Dk [g(0|N)]|p(D, 0)] = log (p(D)) — Dk, [q(0]A)||p(6] D))




Variational Inference

= Different views of VI may be appropriate for different ML tasks

View

Expression

Posterior Distribution

KL[p(HID)IIQ(0|¢)]=/6p(0|D)logp(0|D)d0

Q0| ¢)

Variational Distribution

KL[Q(9|¢)|Ip(9|9)1=/962(9|¢)

Q] 9)

lo
“p0]D)

do

Variational Predictive

KL[Q(Y|¢)IIP(YID)]=LQ(Y|¢)

QY |9)

lo
Sp(Y D)

dy

Prior Predictive

KL[p(Y)||Q<Y|¢)1:Lp<Y>log P




Sandia

Variational Inference B

Linear regression example: Assessing different VI formulations for
prediction
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Monte Carlo Estimators for Variational Inference (T S,

= Evidence Lower Bound:

N
posterior  KL(Q (0] 6) || p(0] D)] ~logp (D) ~ - >~ [1ogQ (6 | 6) — logp (D | 01)p (6] 6, ~ Q 6 | 6)
i=1
. N
peadiative KL1Q (Y [6) | p(¥ | D)) ~logp (D) ~ - " (105 Q (¥; | 6) — logp (D, ¥)]Y: ~ Q0 | &

=1

= Assuming QY |¢) = [,p(Y [6)Q(0]¢)db

KLIQY [¢)|[p(Y |D)] —logp(D)

1 1
NZ logl_(.zp(me;)_logﬁzpw,n|ej> Yi~Q(Y 16).6;~p(8).6,~Q(6]0)
i=1 =1

J=1




Variational Inference: Bayes By Backprop [

Algorithm from Blundell et al. 2015

1.

Al ol Ll

Sample € ~ N(0,1).

Letw = p + log(1 + exp(p)) o e.

Let 0 = (u, p).

Let f(w,0) = log q(w|0) — log P(w)P(D|w).
Calculate the gradient with respect to the mean

Of(w,0)  9f(w,0)

Sw o 3)

A, =

. Calculate the gradient with respect to the standard de-

viation parameter p

0f(w,0) € 4 0f(w,0)

A, = 4
P ow 1+ exp(—p) op )

. Update the variational parameters:
b p—oad, 5)

p p—al,. (6)

Mean-Field Bayesian
Neural Network (BNN)

Standard DNN

lllustration from Blundell et al. 2015




Variational Inference: Subspace Restriction

=  Many ML models like DNNs are high over
parameterized so uncertainty may only need to be
captured in a small subspace in order to capture
predictive uncertainty

= VI means finding the parameterization () in the
basis (U) such that 8 = Uy

= Subspace variational inference is exact when we
reinterpret the subspace as just expressing a new
model representation

Example subspace restriction

(@
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Variational Inference: Subspace Restriction e
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Priors for ML models

= Priors are critical for accurate UQ and model selection
= Because ML models are abstract, prior assumptions are difficult to quantify

= ML model structure encode priors that we do not quite understand but is
useful

= Examples of priors

e Strict assumptions about model architectures to include symmetries, invariances, and
hierarchical structure i.e. CNNs

e Tasks being shared from one model to another i.e. transfer learning

* Principle of maximum entropy

* Explicitly developing priors to encode beliefs about the underlying predictions
 Model complexity (Algorithmic Probablity)




Maximum Entropy Prior with Prediction Properties () e,

Principle of maximum entropy: Example: Belief about expected mean

= The prior that best represents parameter and variance of predictions with linear
uncertainty would maximize the parameter regression
posterior entropy while being consistent with
our beliefs.

= This maximizes our uncertainty about p,uT = argmax,, s — /P (0| p, %) logp (0 | p, %) do

parameters not the predictions

s.t. y(@,2)p (0| u,X)p(x)dbde =
w*:argmaxw—/p(ﬂ|w)logp(9|w)d0 //

[ [ w@.0)~5p 01120 dodz =

s.t. /g (9) p (0 | w) df = gveliet




Linear Regression Model Example
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Prior on Model Complexity () s,

= QOccam’s Razor expresses a belief that similar models should be preferred over
complex models.

= This is a type of prior. We a priori believe that predictions can be learned from the
data because the relationship is relatively simple.

= Prior belief should be consistent with the minimum number of bits i.e. information
needed to represent the model (Solomonov, 1960-1964; Rissanen, 1983).

= This leads to parsimonious inference: Bayesian inference with a prior that limits
model complexity, including both source-coding information in the symbolic
representations and information in inference
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Parsimonious inference @ Laboratries

Our theory regards changes in three kinds of belief:

Hyperprior: p(v) Prior: p(@h/} Predictions: p(y|x, 0)
Potential prlor Individual Potential
representations models predictions

We derive the following optimization objective from the total information, change in belief, that occurs when
we observe the data and construct a predictive model.

w(y) = p(@ﬁy Hr(yly) [p(y|0) | Qo(y)ﬂ Expected info gained about data.
complexity | — L,(915.4) [p(ﬁly, 0) || p(0|1p)] Model info due to inference.

terms

— L 1) [r(19) || p(¥)] - Representation info due to selection.

|
— log (p(¢|y)j + I (y15) [P(¥)]|@0(y)] . Representation posteriot.
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Examples:
Hyperprior: p(v) Prior: p(6|1)) Predictions: p(y|x, )
/
VR =l W
y -
Potential prior Individual Potential
representations models predictions
Polynomial Prior Mean and Variation Polynomial Coefficient Predicted Response
Regression Distribution
Decision Tree struolure Le. spiting Dirichlet Distribution for Predicted Class Probability
Tree decisions and location

Class Probability
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Parsimonious inference () i

Parsimonious inference (Pl) extracts simple regression Pl also learns simpler decision trees than
models even if we train with 20t degree polynomials standard approaches
Parsrmomous ot1mum Hold-one-out ParSImomous tree ParSImomous aggregate

Aggregate Mean

Predictive Deciles

Pl avoids memorization by

controlling complexity Standard information- Bootstrap aggregate
=\ Natural ) t)ased dec1$19n tree d{ fores pdctls

extrapolation ;' 1“”‘ 6‘*? ;g*isi‘“ ¥

uncertainty : ,‘& Vo o

Aggregated predictions over
60 plausible models

7/////////////////////////4% |




Why do we need UQ for ML? ()

= Applications where highly confident predictions are needed

= Layering ML models together which magnifies errors and requires a
notion of a model’s operational envelope

= Designing for specification instead of what the data is capable of

= How to improve a prediction model by augmenting the model structure
or gathering new data




Key Challenges for Bayesian UQ for ML () e,
= Representing a probability distribution over models

" Choosing a prior and space of model architectures

= Solving the inference problem and computing information in high
dimensions




