

A Bayesian Perspective on Machine Learning and UQ

Thomas A. Catanach and Jed A. Duersch
CSRI Summer Seminar

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND NO. 2019-8684 C

Overview

- Why Machine Learning?
- Key Questions for ML
- Bayesian Probability Theory
- Applying Bayesian Inference to ML
 - Challenges
 - Variational Inference
 - Priors

Why ML

- Machine Learning automates the process of learning predictive simplifications from data
- Enabling science and engineering for highly complex and evolving systems with masses of heterogenous data will require Machine Learning.
- For these tasks ML must be flexible, adaptable, and trustworthy.

Key Questions to Enable ML by UQ

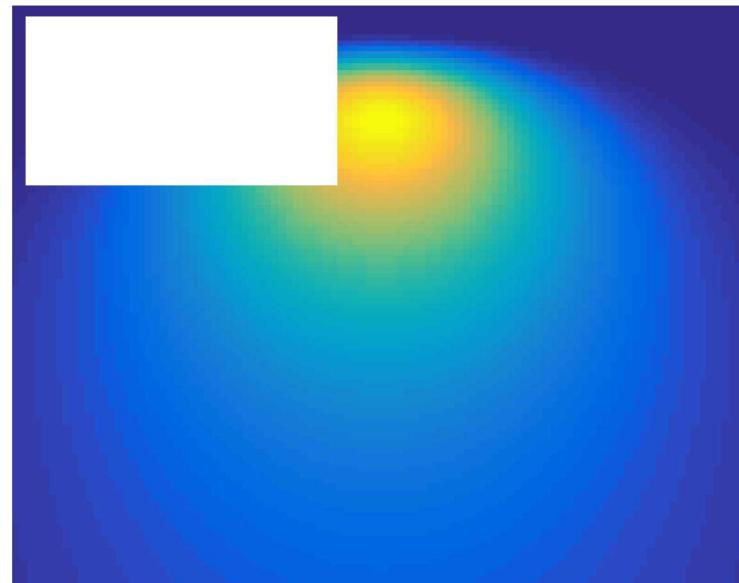
- Representable: How do we represent our beliefs?
- Flexible: How to learn from data?
- Adaptable: How to gather new data for learning?
- Trustworthy: How to quantify the degree of trust in ML?

- Answers to these questions can be rigorously formulated within the Bayesian paradigm

Representing Beliefs

- Within Bayesian theory, assumptions (φ) that express states of belief are represented using probability distributions.
- Prior $p(\theta | \mathcal{D}, \varphi)$: Initial belief about the universe
- Likelihood $p(\mathcal{D} | \theta, \varphi)$: Conditional beliefs about data
- Posterior $p(\theta | \mathcal{D}, \varphi)$: Updated belief

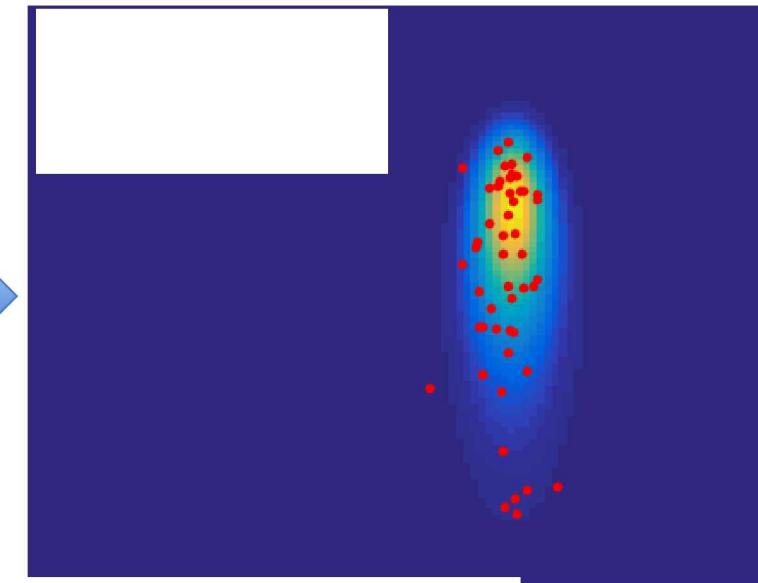
Updating Beliefs using Bayesian Inference



Observations: \mathcal{D}

Bayes' Theorem

$$p(\theta | \mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D} | \theta, \mathcal{M}) p(\theta | \mathcal{M})}{p(\mathcal{D} | \mathcal{M})}$$



Evidence:

$$p(\mathcal{D} | \mathcal{M}) = \int p(\mathcal{D} | \theta, \mathcal{M}) p(\theta | \mathcal{M}) d\theta$$

Posterior Estimation:

$$\mathbb{E}[g(\theta) | \mathcal{D}, \mathcal{M}] = \int g(\theta) p(\theta | \mathcal{D}, \mathcal{M}) d\theta \approx \frac{1}{N} \sum_{i=1}^N g(\theta_i)$$

Quantifying Change in Belief

- Information quantifies how belief $q(\theta)$ change to $p(\theta)$ with respect to a state of belief $r(\theta)$:

$$\mathcal{I}_{r(\theta)} [p(\theta) \parallel q(\theta)] = \int r(\theta) \log \frac{p(\theta)}{q(\theta)} d\theta$$

- Quantifying changes in belief due to inference:

$$\mathcal{I}_{p(\theta|\mathcal{D}, \psi, \mathcal{M})} [p(\theta \mid \mathcal{D}, \psi, \mathcal{M}) \parallel p(\theta \mid \psi, \mathcal{M})] =$$

$$\text{KL} [p(\theta \mid \mathcal{D}, \psi, \mathcal{M}) \parallel p(\theta \mid \psi, \mathcal{M})] = \int p(\theta \mid \mathcal{D}, \psi, \mathcal{M}) \log \frac{p(\theta \mid \mathcal{D}, \psi, \mathcal{M})}{p(\theta \mid \psi, \mathcal{M})} d\theta$$

Assessing Learning Opportunities

- Bayesian Optimal Experimental Design

1. Predict change in belief due to inference, the Expected Information Gain (EIG):

$$\text{EIG}(d) = \int_{\mathcal{D}} p(\mathcal{D} | d) \int_{\theta} p(\theta | \mathcal{D}, d) \log \frac{p(\theta | \mathcal{D}, d)}{p(\theta)} d\theta d\mathcal{D}$$

2. Optimize experiment or data collection to maximize expected information gain

$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \text{EIG}(d)$$

- EIG can also be assessed with respect to a QoI (Y)

$$\mathbb{E}_{\mathcal{D}|d} \{ \text{KL} [p(Y | \mathcal{D}, d) || p(Y)] \} = \int_{\mathcal{D}} p(\mathcal{D} | d) \int_Y p(Y | \mathcal{D}, d) \log \left[\frac{p(Y | \mathcal{D}, d)}{p(Y)} \right] dY d\mathcal{D}$$

Assessing Prediction Trustworthiness

- Bayesian UQ requires estimating prediction uncertainty

Prediction with UQ

$$p(y|x, \mathcal{D}, \varphi, \mathcal{M}) = \sum_{i=1}^N \int p(y|x, \theta, M_i) \frac{p(\mathcal{D} | \theta, M_i) p(\theta | \varphi, M_i) P(M_i)}{p(\mathcal{D} | \varphi, \mathcal{M})} d\theta$$

Assumptions

Prediction Input

Posterior probability of specific model

Prediction from specific model

Assessing Prediction Trustworthiness

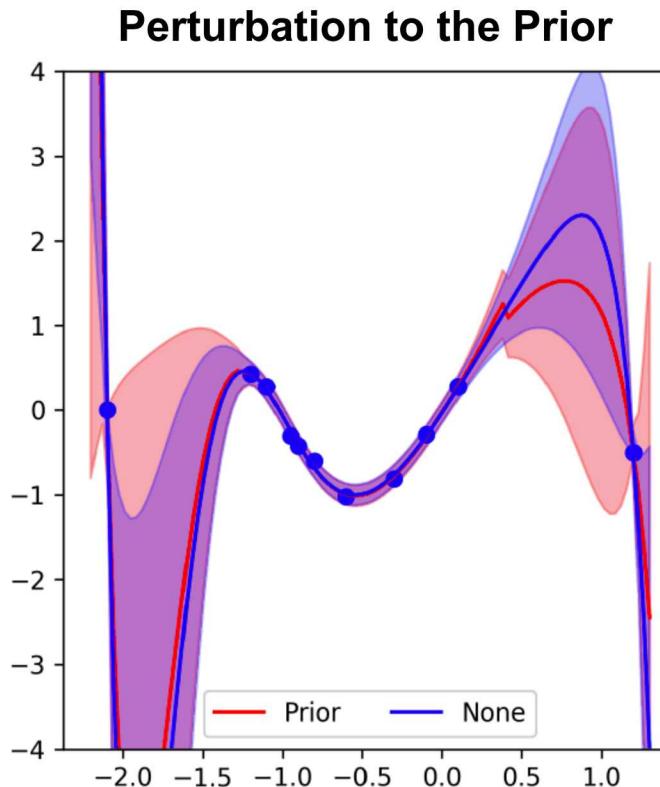
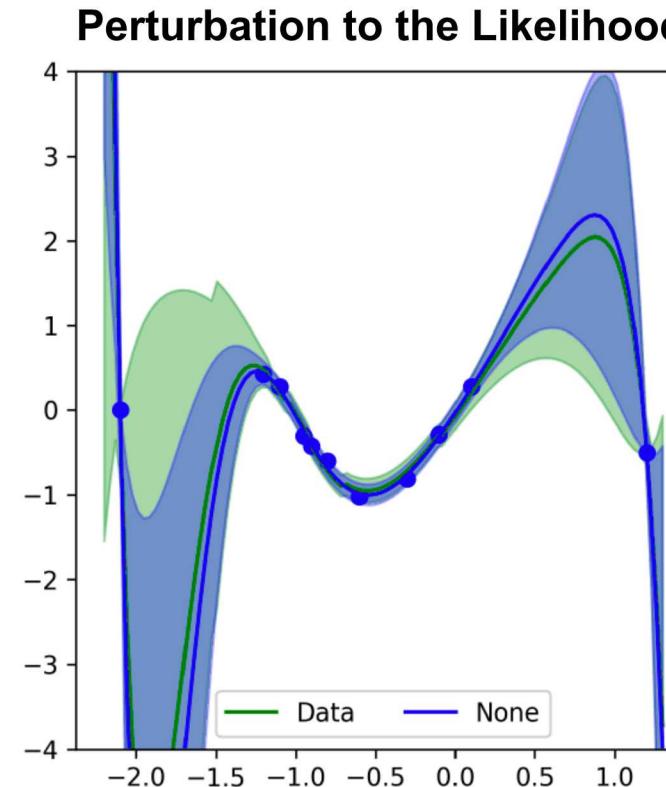
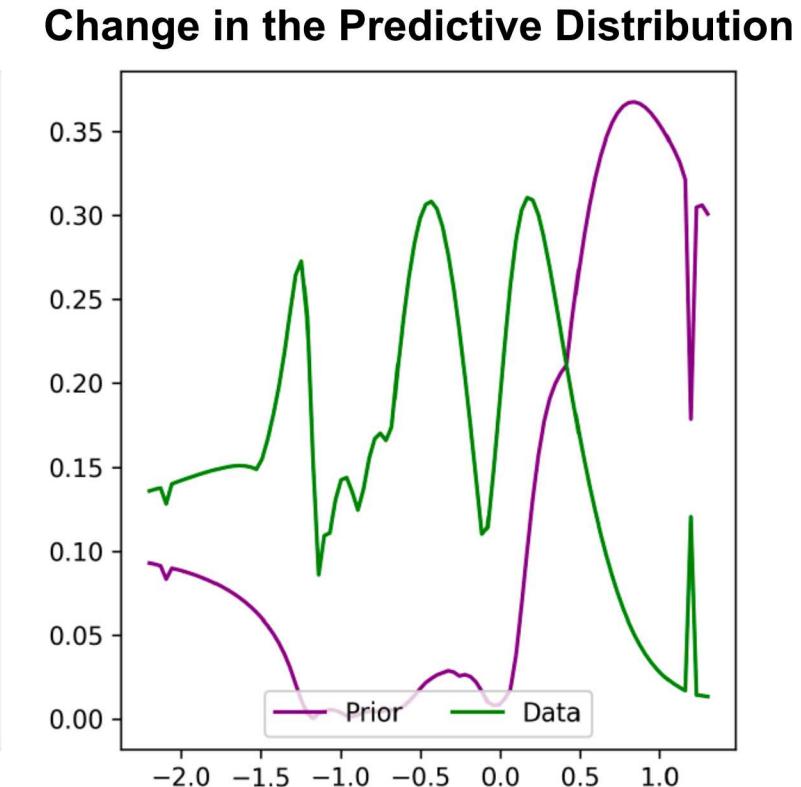
- Bayesian UQ requires estimating prediction uncertainty
- Bayesian Sensitivity Analysis or Robust Bayesian Inference quantifies the importance of assumptions on predictions. This predicts extrapolation or lack of generalization.

Prediction Perturbation

$$p(y|x, \mathcal{D}, \varphi, \mathcal{M}, \underbrace{\beta_{\mathcal{D}}, \beta_{\varphi}, \beta_{\mathcal{M}}}_{\text{Assumption Perturbations}}) = \sum_{i=1}^N \int p(y|x, \theta, M_i) \frac{p(\mathcal{D} | \theta, M_i, \underbrace{\beta_{\mathcal{D}}}_{\text{Perturbed Likelihood}}) p(\theta | \varphi, M_i, \underbrace{\beta_{\varphi}}_{\text{Perturbed Prior}}) P(M_i | \underbrace{\beta_{\mathcal{M}}}_{\text{Perturbed Model}})}{p(\mathcal{D} | \varphi, \mathcal{M}, \beta_{\mathcal{D}}, \beta_{\varphi}, \beta_{\mathcal{M}})} d\theta$$

Assessing Prediction Trustworthiness

Linear regression example: Assessing prediction sensitivity to changes in the assumed prior and noise in the data



Bayesian Theory

- Representation -> Probability Distribution
- Learning -> Bayesian Inference
- Quantify change -> Information
- Gathering data -> Bayesian Optimal Experimental Design
- Trustworthiness -> Robust Bayesian Inference

- How do we apply Bayesian theory to ML?

Differences between ML and Standard UQ

- Parameters in physical systems have intrinsic meaning that makes defining priors easier and more interpretable
- Model structure often comes from first principles. When competing models exist, they often have more intuitive relationships i.e. fidelity.
- ML models often have too high capacity (many parameters), Physical systems often have too low capacity
- ML tries to build a prediction model while UQ for physical systems often trying to infer some unobservable states/parameters from data.

Challenges in applying Bayesian methods to ML

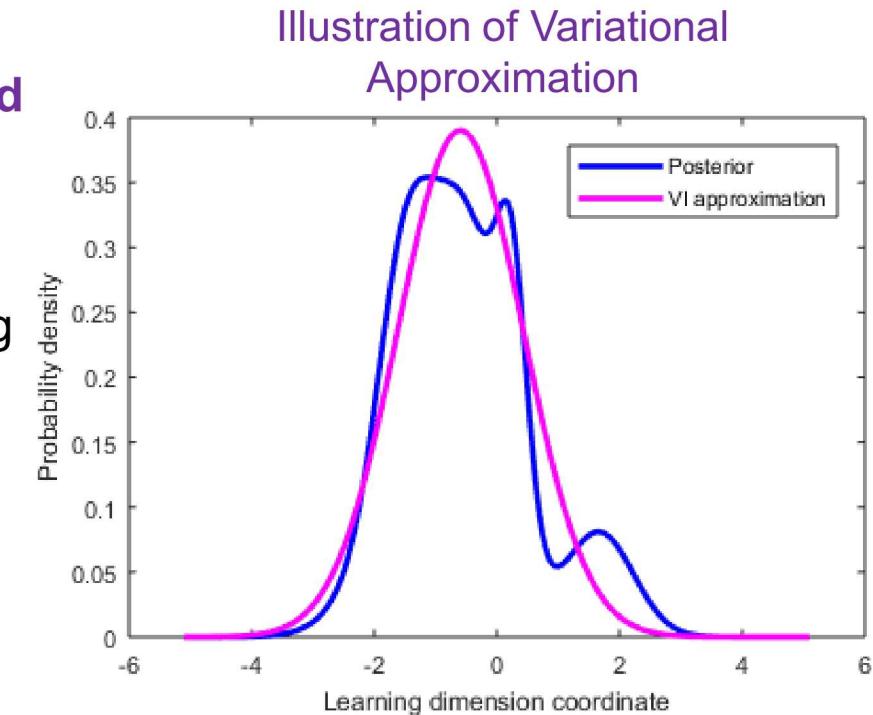
- Representing a probability distribution over models
- Choosing a prior and space of model architectures
- Solving the inference problem and computing information in high dimensions

Variational inference

The **posterior distribution is virtually impossible to represent and solve in high dimensional problems** like over-parameterized deep learning.

Variational inference approximates the posterior distribution using more tractable methods:

- Local Gaussian approximation
- Stochastic gradient descent sampling
- Mean-field distribution
- Dropout sampling
- Variational Tempering



Maximizing the ELBO amounts minimizing the following Kullback-Leibler divergences:

$$\mathcal{L}(\lambda) = -D_{\text{KL}} [q(\theta|\lambda) || p(D, \theta)] = \log(p(D)) - D_{\text{KL}} [q(\theta|\lambda) || p(\theta|D)]$$

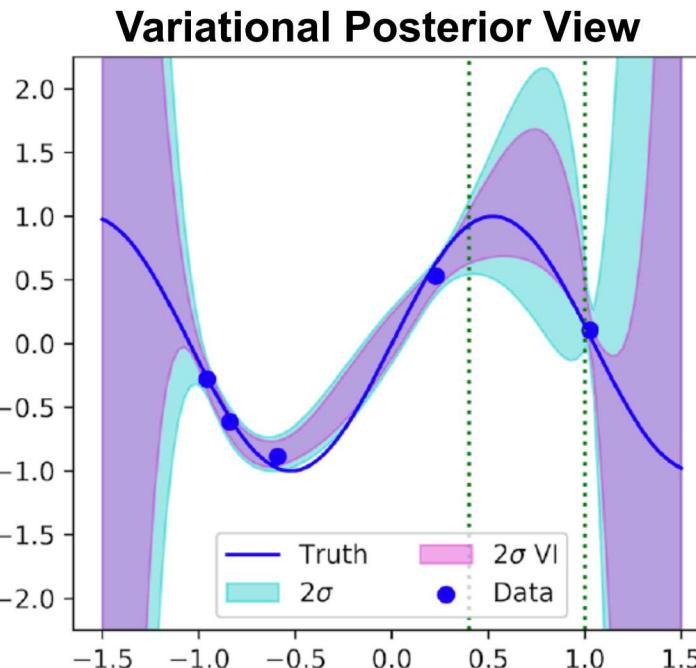
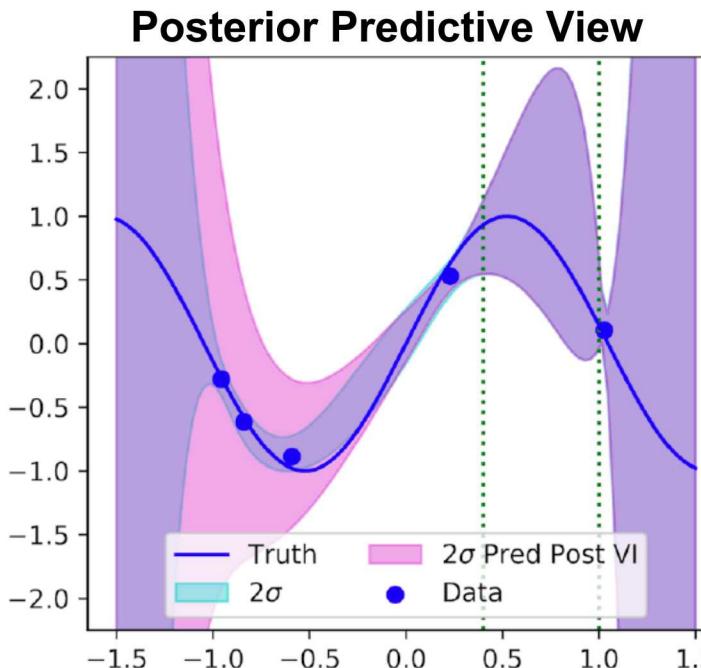
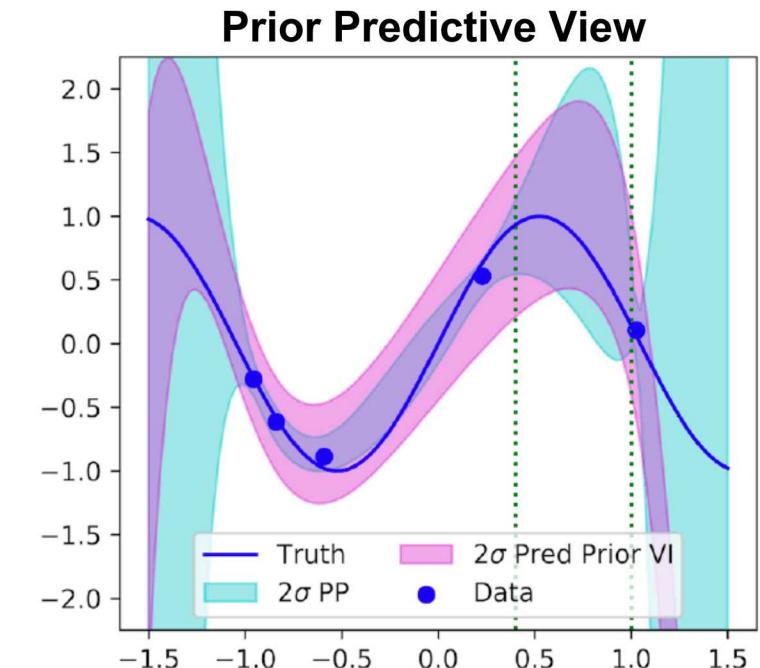
Variational Inference

- Different views of VI may be appropriate for different ML tasks

View	Expression
Posterior Distribution	$\text{KL} [p(\theta \mathcal{D}) Q(\theta \phi)] = \int_{\theta} p(\theta \mathcal{D}) \log \frac{p(\theta \mathcal{D})}{Q(\theta \phi)} d\theta$
Variational Distribution	$\text{KL} [Q(\theta \phi) p(\theta \mathcal{D})] = \int_{\theta} Q(\theta \phi) \log \frac{Q(\theta \phi)}{p(\theta \mathcal{D})} d\theta$
Variational Predictive	$\text{KL} [Q(Y \phi) p(Y \mathcal{D})] = \int_Y Q(Y \phi) \log \frac{Q(Y \phi)}{p(Y \mathcal{D})} dY$
Prior Predictive	$\text{KL} [p(Y) Q(Y \phi)] = \int_Y p(Y) \log \frac{p(Y)}{Q(Y \phi)} dY$

Variational Inference

Linear regression example: Assessing different VI formulations for prediction



Monte Carlo Estimators for Variational Inference

■ Evidence Lower Bound:

Posterior $\text{KL} [Q(\theta | \phi) || p(\theta | \mathcal{D})] - \log p(\mathcal{D}) \approx \frac{1}{N} \sum_{i=1}^N [\log Q(\theta_i | \phi) - \log p(\mathcal{D} | \theta_i) p(\theta_i)], \theta_i \sim Q(\theta | \phi)$

Posterior Predictive $\text{KL} [Q(Y | \phi) || p(Y | \mathcal{D})] - \log p(\mathcal{D}) \approx \frac{1}{N} \sum_{i=1}^N [\log Q(Y_i | \phi) - \log p(\mathcal{D}, Y_i)], Y_i \sim Q(\theta | \phi)$

■ Assuming $Q(Y | \phi) = \int_{\theta} p(Y | \theta) Q(\theta | \phi) d\theta$

$$\begin{aligned} & \text{KL} [Q(Y | \phi) || p(Y | \mathcal{D})] - \log p(\mathcal{D}) \\ & \approx \frac{1}{N} \sum_{i=1}^N \left[\log \frac{1}{K} \sum_{l=1}^K p(Y_i | \theta'_l) - \log \frac{1}{M} \sum_{j=1}^M p(\mathcal{D}, Y_i | \theta_j) \right], Y_i \sim Q(Y | \phi), \theta_j \sim p(\theta), \theta'_l \sim Q(\theta | \phi) \end{aligned}$$

Variational Inference: Bayes By Backprop

Algorithm from Blundell et al. 2015

1. Sample $\epsilon \sim \mathcal{N}(0, I)$.
2. Let $\mathbf{w} = \mu + \log(1 + \exp(\rho)) \circ \epsilon$.
3. Let $\theta = (\mu, \rho)$.
4. Let $f(\mathbf{w}, \theta) = \log q(\mathbf{w}|\theta) - \log P(\mathbf{w})P(\mathcal{D}|\mathbf{w})$.
5. Calculate the gradient with respect to the mean

$$\Delta_\mu = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \mu}. \quad (3)$$

6. Calculate the gradient with respect to the standard deviation parameter ρ

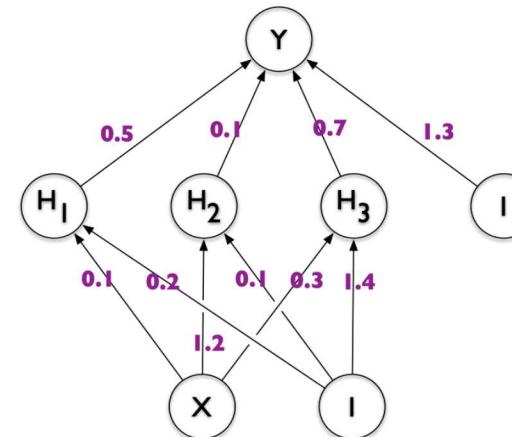
$$\Delta_\rho = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} \frac{\epsilon}{1 + \exp(-\rho)} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \rho}. \quad (4)$$

7. Update the variational parameters:

$$\mu \leftarrow \mu - \alpha \Delta_\mu \quad (5)$$

$$\rho \leftarrow \rho - \alpha \Delta_\rho. \quad (6)$$

Standard DNN



Mean-Field Bayesian Neural Network (BNN)

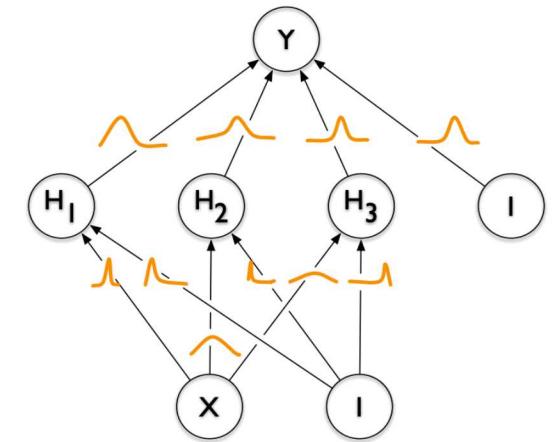
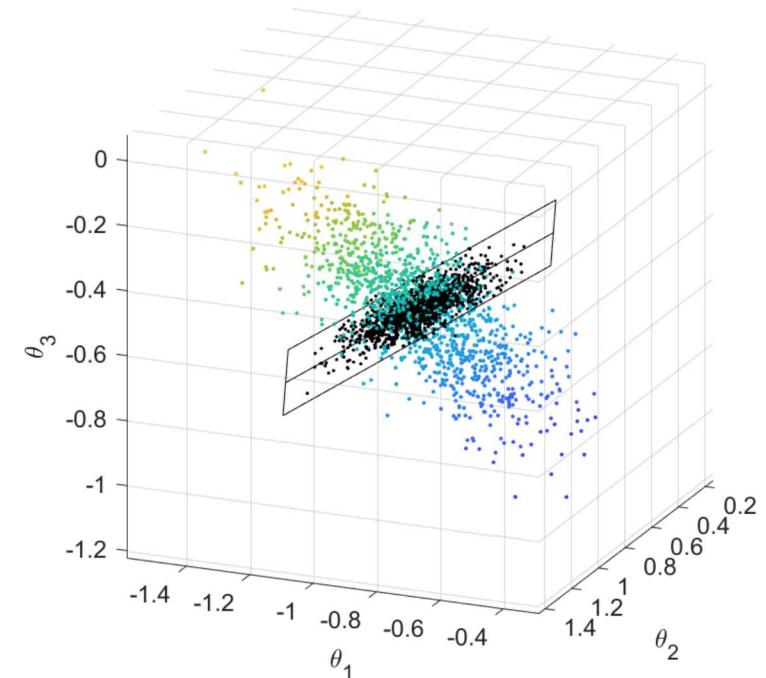


Illustration from Blundell et al. 2015

Variational Inference: Subspace Restriction

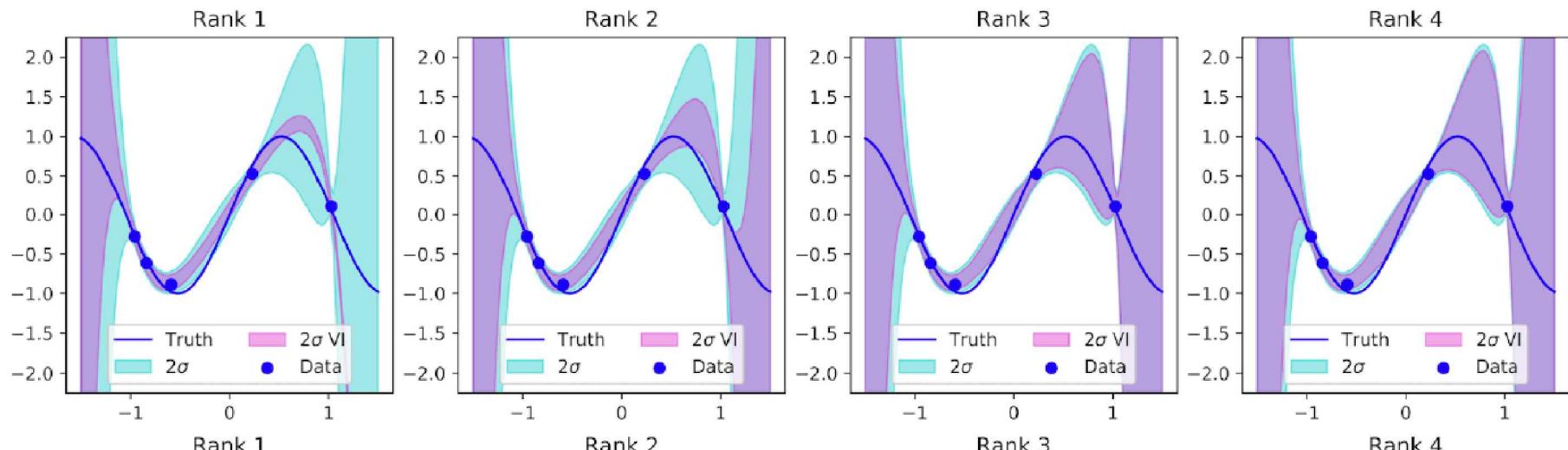
- Many ML models like DNNs are high over parameterized so uncertainty may only need to be captured in a small subspace in order to capture predictive uncertainty
- VI means finding the parameterization (ψ) in the basis (U) such that $\theta = U\psi$
- Subspace variational inference is exact when we reinterpret the subspace as just expressing a new model representation

Example subspace restriction

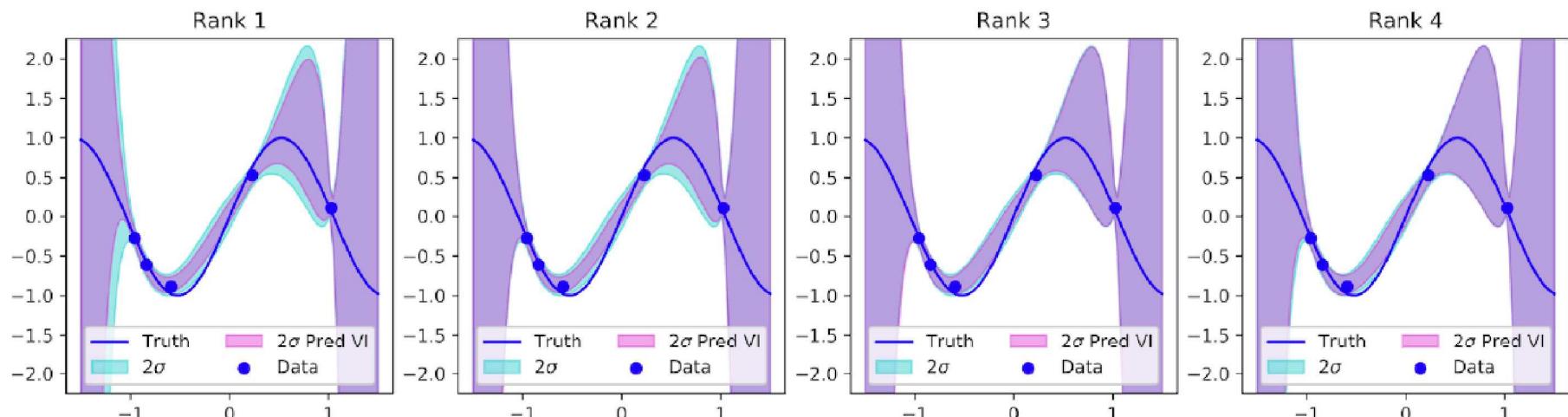


Variational Inference: Subspace Restriction

Variational Posterior View



Variational Posterior Predictive View



Priors for ML models

- Priors are critical for accurate UQ and model selection
- Because ML models are abstract, prior assumptions are difficult to quantify
- ML model structure encode priors that we do not quite understand but is useful
- Examples of priors
 - Strict assumptions about model architectures to include symmetries, invariances, and hierarchical structure i.e. CNNs
 - Tasks being shared from one model to another i.e. transfer learning
 - Principle of maximum entropy
 - Explicitly developing priors to encode beliefs about the underlying predictions
 - Model complexity (Algorithmic Probability)

Maximum Entropy Prior with Prediction Properties

Principle of maximum entropy:

- The prior that best represents parameter uncertainty would maximize the parameter posterior entropy while being consistent with our beliefs.
- This maximizes our uncertainty about parameters not the predictions

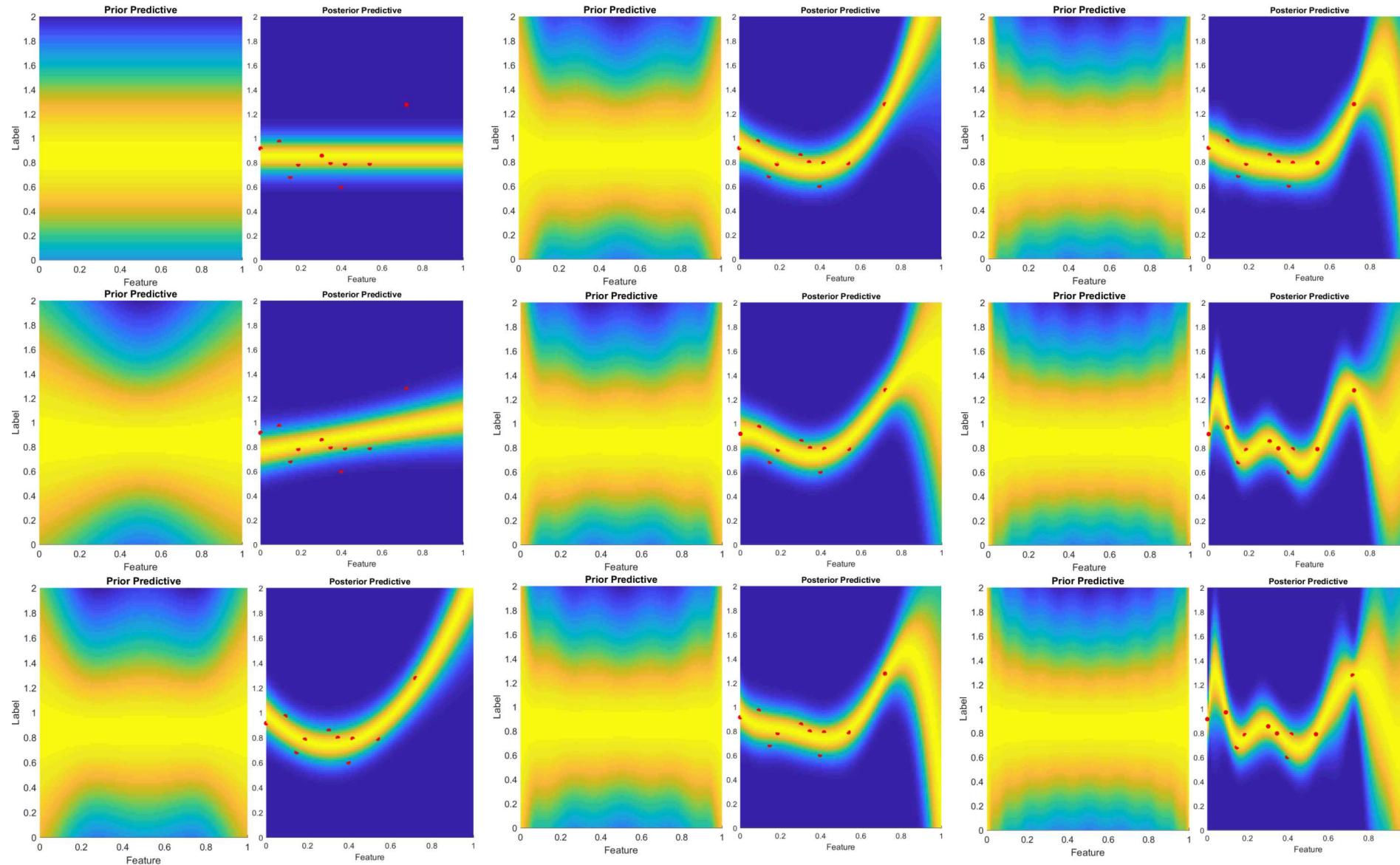
$$\omega^* = \operatorname{argmax}_{\omega} - \int p(\theta | \omega) \log p(\theta | \omega) d\theta$$

$$\text{s.t. } \int g(\theta) p(\theta | \omega) d\theta = g_{\text{belief}}$$

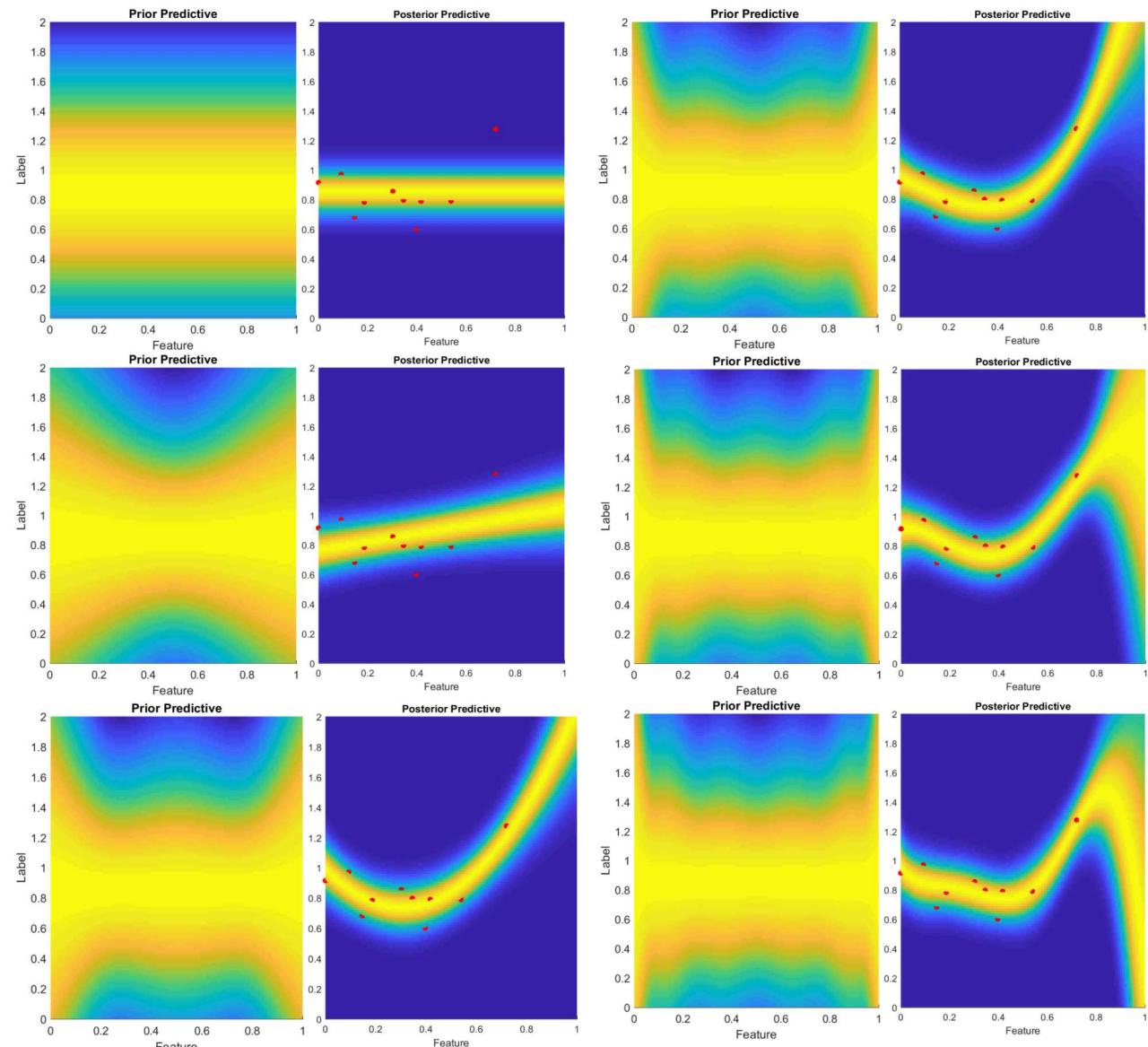
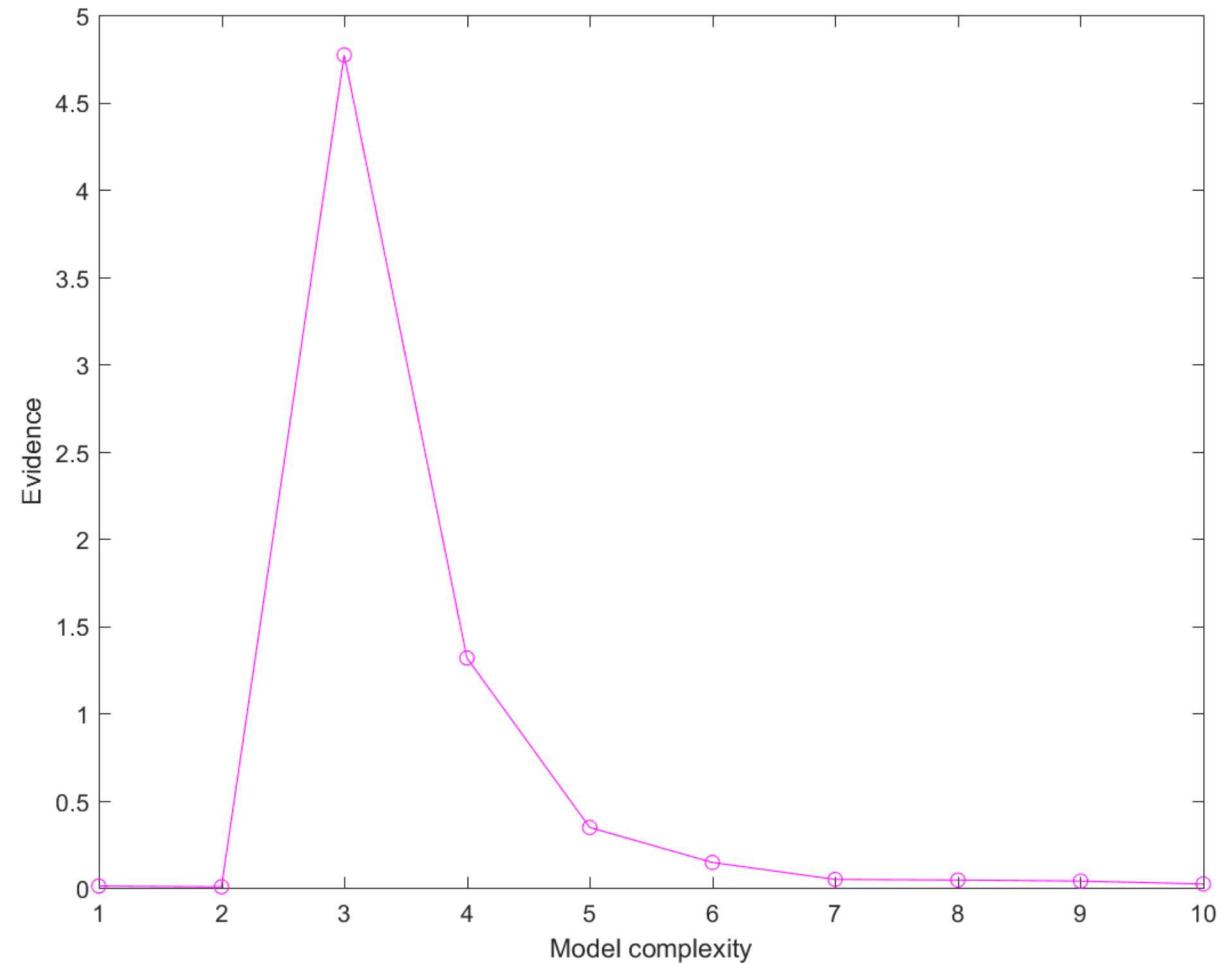
Example: Belief about expected mean and variance of predictions with linear regression

$$\begin{aligned} \mu^*, \Sigma^* &= \operatorname{argmax}_{\mu, \Sigma} - \int p(\theta | \mu, \Sigma) \log p(\theta | \mu, \Sigma) d\theta \\ \text{s.t. } & \int \int y(\theta, x) p(\theta | \mu, \Sigma) p(x) d\theta dx = \bar{\mu} \\ & \int \int (y(\theta, x) - \bar{\mu})^2 p(\theta | \mu, \Sigma) p(x) d\theta dx = \bar{\sigma}^2 \end{aligned}$$

Linear Regression Model Example



Linear Regression Model Evidence



Prior on Model Complexity

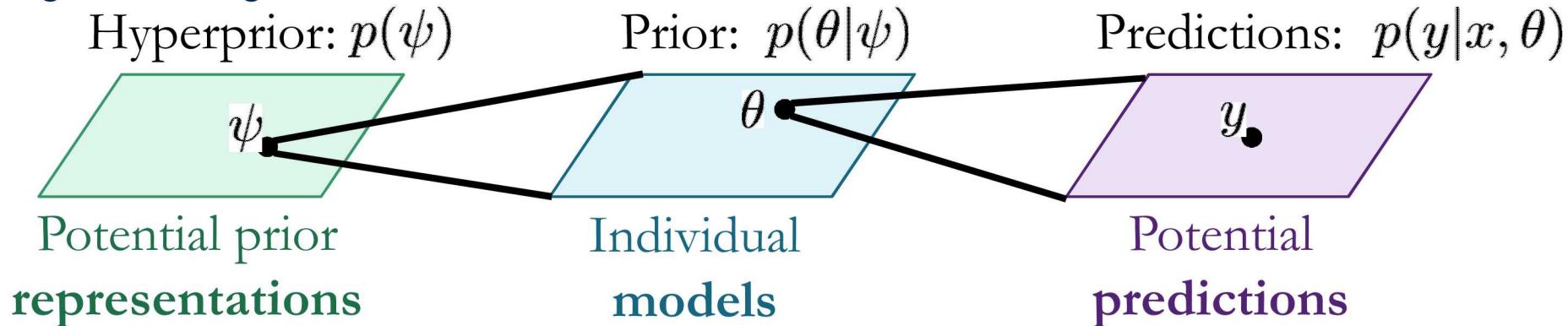
- Occam's Razor expresses a belief that similar models should be preferred over complex models.
- This is a type of prior. We a priori believe that predictions can be learned from the data because the relationship is relatively simple.
- Prior belief should be consistent with the minimum number of bits i.e. information needed to represent the model (Solomonov, 1960-1964; Rissanen, 1983).

$$p(\psi) \propto 2^{-\chi(\psi)}$$

- This leads to parsimonious inference: Bayesian inference with a prior that limits model complexity, including both source-coding information in the symbolic representations and information in inference

Parsimonious inference

Our theory regards changes in three kinds of belief:



We derive the following optimization objective from the total information, change in belief, that occurs when we observe the data and construct a predictive model.

$$\omega(\check{\psi}) = \underbrace{\mathbb{E}_{p(\theta|\check{y}, \check{\psi})} \mathbb{I}_{r(y|\check{y})} [p(y|\theta) \parallel q_0(y)]}_{\text{complexity terms}} - \underbrace{\mathbb{I}_{p(\theta|\check{y}, \check{\psi})} [p(\theta|\check{y}, \check{\psi}) \parallel p(\theta|\check{\psi})]}_{- \mathbb{I}_{p(\theta|\check{y}, \check{\psi})} [p(\theta|\check{y}, \check{\psi}) \parallel p(\theta|\check{\psi})]} - \underbrace{\mathbb{I}_{r(\psi|\check{\psi})} [r(\psi|\check{\psi}) \parallel p(\psi)]}_{- \mathbb{I}_{r(\psi|\check{\psi})} [r(\psi|\check{\psi}) \parallel p(\psi)]}.$$

Expected info gained about data.

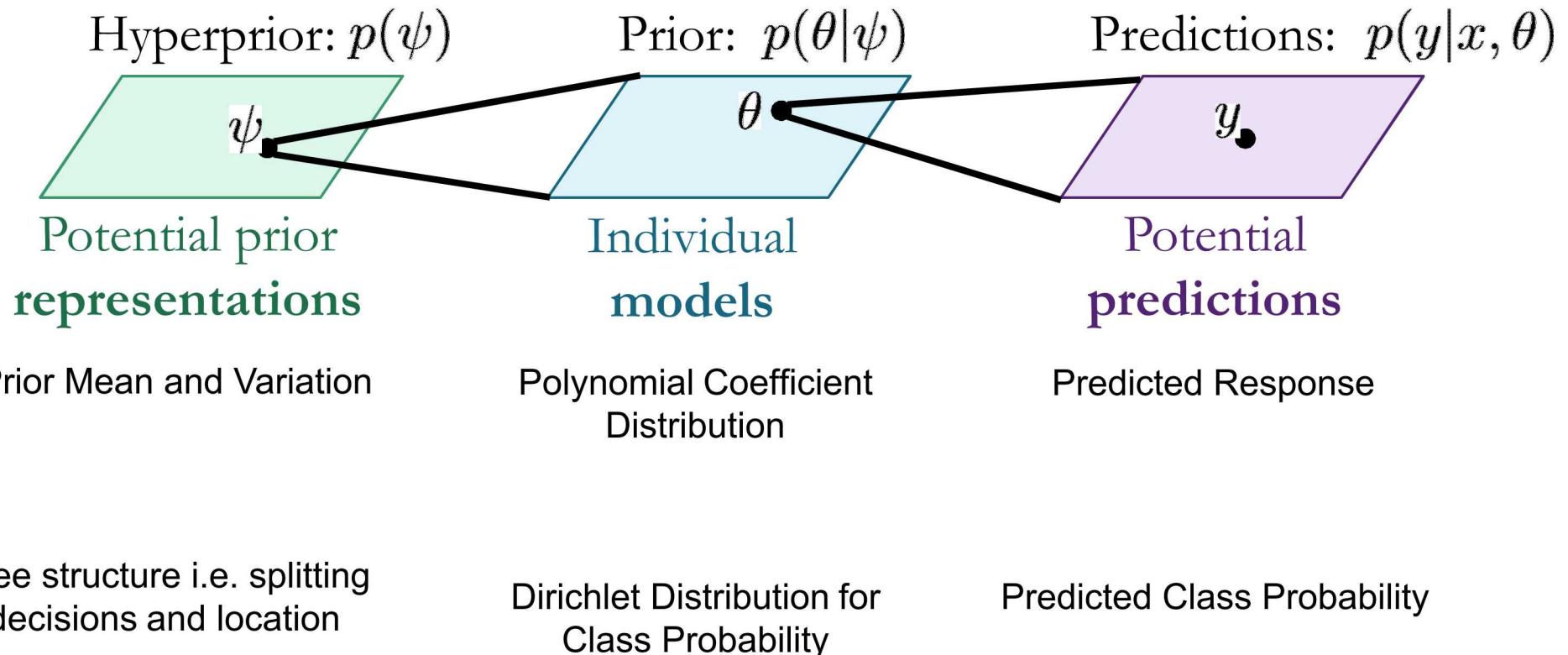
Model info due to inference.

Representation info due to selection.

$$= \log \underbrace{(p(\check{\psi}|\check{y}))}_{\text{Representation posterior.}} + \mathbb{I}_{r(y|\check{y})} [p(y) \parallel q_0(y)].$$

Parsimonious inference

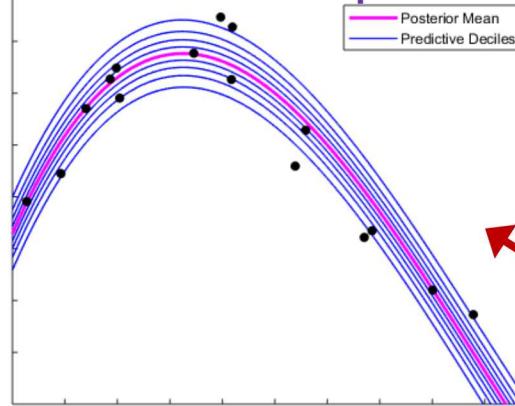
Examples:



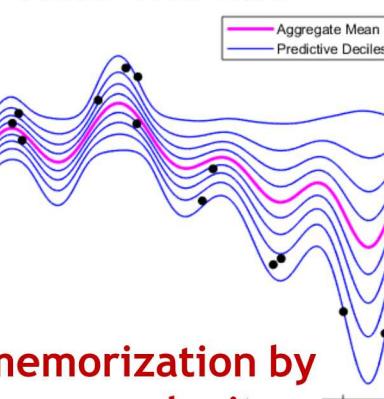
Parsimonious inference

Parsimonious inference (PI) extracts simple regression models even if we train with 20th degree polynomials

Parsimonious optimum



Hold-one-out

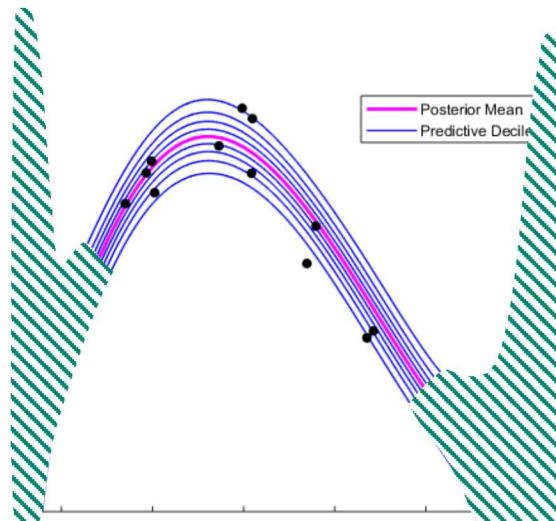


vs

PI avoids memorization by controlling complexity

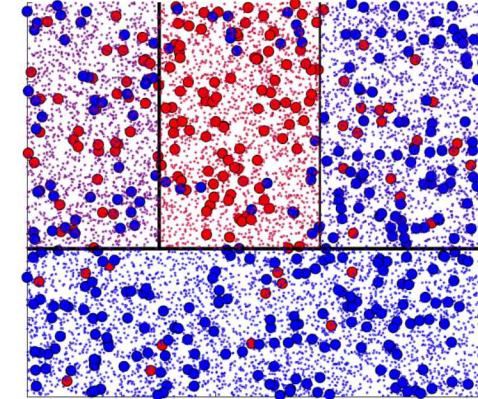
Natural extrapolation uncertainty

Aggregated predictions over 60 plausible models

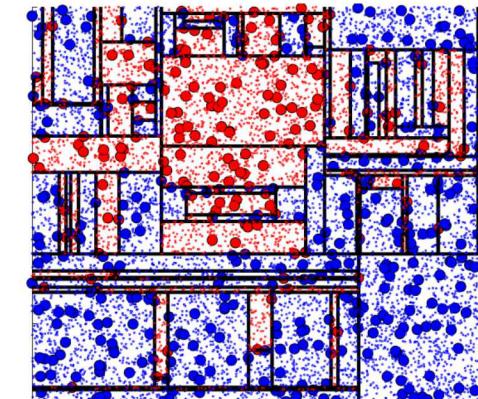


PI also learns simpler decision trees than standard approaches

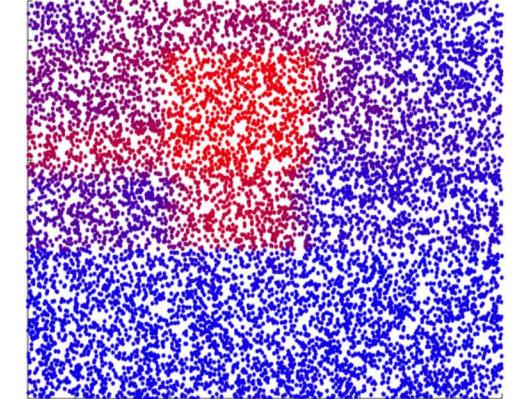
Parsimonious tree



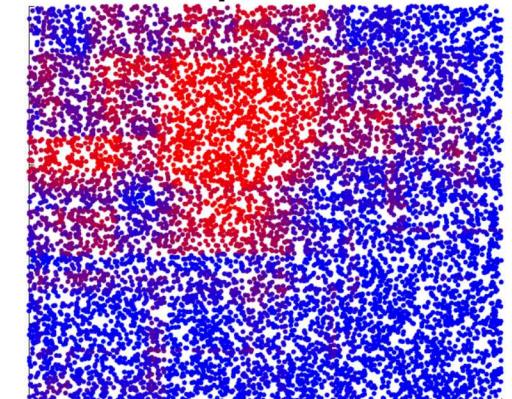
Standard information-based decision tree



Parsimonious aggregate



Bootstrap aggregate forest predictions



Why do we need UQ for ML?

- Applications where highly confident predictions are needed
- Layering ML models together which magnifies errors and requires a notion of a model's operational envelope
- Designing for specification instead of what the data is capable of
- How to improve a prediction model by augmenting the model structure or gathering new data

Key Challenges for Bayesian UQ for ML

- Representing a probability distribution over models
- Choosing a prior and space of model architectures
- Solving the inference problem and computing information in high dimensions