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2 | Classical Model Reduction Overview
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Classical Model Reduction Overview
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Classical Model Reduction Overview

dx

High-Fidelity ¢4 =60 f Solution WM =UZXV*| @ Principal Truncated
Model (FOM) Snapshots | Components Basis
r(x™") =0
n= 1’ e, T

Approximate FOM State
x(t; i) = T(t; i) = Px(t; [)

1




Classical Model Reduction Overview
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3 | Highly effective for diffusion dominated problems

 ROM methods are highly effective at reducing cost
in (nonlinear) conduction problems.

« Easily applied to complex geometries.

« Hyper-reduction promises further performance
benefits.

Comparison between FOM (left) and
ROM (right) with only 4 modes retained.
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4 | Kolmogorov-width limitation

“*Linear trial subspace sufficient for problems where the singular
values of M decay rapidly (i.e. diffusion dominated problems).

“*For other problems the singular values decay slowly and many
of the columns from U are required to be retained in @ to
achieve accurate solutions.

“*ROM computational cost is closely tied to the number of
modes retained

* Newton-Raphson iteration costs scale quadratically with the trial
subspace dimension

Linear trial subspace Nonlinear trial manifold
range(®) := {®dx| x € RP} S :={g(X) |x € RP}
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Nonlinear Model Reduction Overview
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s | Nonlinear Model Reduction Overview
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¢ I Manifold Projection ROMs

For advection dominated
flows, nonlinear manifold
projection techniques have
been shown to consistently
outperform linear subspace
methods.
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7 I Autoencoders for Manifold Learning

. . Latent
Unsupervised learning method Encoder Decoder

Space

h:x F— /. (henc (x)) —) -—>

Two parts:
Encoder h,,,.: R™ — Rz
Decoder /1, :R™ — R™x

Each layer consists of a dense
matrix-vector product and a
non-linear activation function.

Large state space dimension
(R™x) leads to impractically
large number of parameters.

Restricted to small states

Input Data Encoded Data Reconstructed Data




s | Convolutional Autoencoders

Low-level feature Mid-level feature High-level feature

Network architecture common in
computer vision.

Reduces cost by sharing learned
weights across the domain.

Matrix products are now sparse rather
than dense.

Source : Deep Learning ina Mutshell: Core Concepts, Mvidia
https:/ /devblogs. mvidia.com/parallelforall /d eep-learning- nutshell-core-oncepts,f
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9 I Convolutional Layers for Unstructured Data

Vy Vy A
. 1 0 1 1 4 1 1 -1 1
Commonly learned filters are
often clqsely related to 2l ol a s bslo 1 | g 1
differential operators
-1 0 1 -1 -4 -1 -1 -1 -1
x- Sobel Filter y- Sobel Filter Edge Detection

Use differential operators defined by the underlying

O—O0O—0O0—0—0—=0

I I spatial discretization to propagate information.
Oo—O O O
o0—O % O % O Operators can be computed offline or on-the-fly.
T I T I 7 Resulting learned weights will be discretization
O—0 I Q I Q independent.
O—O0—0—0—0—=0

Drop-in replacement for convolutional layers in
autoencoder networks.



0 | Results (Transient Advection-Diffusion)
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11 | Results (Incompressible Navier-Stokes)
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12 | Results (Navier-Stokes cont’d)
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Results (Inviscid Euler) M, = 2.25
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Questions?
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22 | Pressio Integration Status

Pressio integration is functional provided:

1. The model is generated/trained using
PyTorch exported through
TorchVision

2. A finite difference decoder Jacobian is
sufficient

I’'ve encountered some difficulties
exporting the more complex decoders with
TorchVision, so 1 is not a given.
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