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2 Classical Model Reduction Overview
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2 Classical Model Reduction Overview
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2 Classical Model Reduction Overview
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3 I Highly effective for diffusion dominated problems

• ROM methods are highly effective at reducing cost
in (nonlinear) conduction problems.

• Easily applied to complex geometries.

• Hyper-reduction promises further performance
benefits.

100000

10000

2 
1000

ou_
> 

100

0_
z
7:1 10cu
cu
o_
cr)

1
0

1

❑ 0.1

❑

•••••

• 0.01

❑

0.001

0.0001

5 10 15

Number of Basis Vectors

20

500 
[480 

500-i
480 0— • 1 % Ru ntim e • 0.1 % Runtim e • 0.01 % Runtime5 % Runtim e

-1440 -7440 — • — 5 % Er ror —•—1 % Er ror —•—0.1 % Error —•—0.01 % Error

-1400 =400

=360 =360

[320 [320
300 300-

Comparison between FOM (left) and
ROM (right) with only 4 modes retained.

Er
ro

r 
vs

 F
O1

V1
 

E



4 I Kolmogorov-width limitation

+Linear trial subspace sufficient for problems where the singular
values of M decay rapidly (i.e. diffusion dominated problems).

+For other problems the singular values decay slowly and many
of the columns from U are required to be retained in cia to
achieve accurate solutions.

+ROM computational cost is closely tied to the number of
modes retained
• Newton-Raphson iteration costs scale quadratically with the trial

subspace dimension
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5 Nonlinear Model Reduction Overview
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5 Nonlinear Model Reduction Overview
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6 I Manifold Projection ROMs

For advection dominated
flows, nonlinear manifold
projection techniques have
been shown to consistently
outperform linear subspace
methods.
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7 I Autoencoders for Manifold Learning

Unsupervised learning method
h: x I- —> ( (x))

Two parts:
Encoder h„ r: Rnx —> R.712
Decoder : ll:Rn2 —> Rnx

Each layer consists of a dense
matrix-vector product and a
non-linear activation function.

Large state space dimension
(11:Rnx) leads to impractically
large number of parameters.

Restricted to small states
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8 I Convolutional Autoencoders

Network architecture common in
computer vision.

Reduces cost by sharing learned
weights across the domain.

Matrix products are now sparse rather
than dense.
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9 Convolutional Layers for Unstructured Data

Commonly learned filters are
often closely related to
differential operators
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y- Sobel Filter Edge Detection

Use differential operators defined by the underlying
spatial discretization to propagate information.

Operators can be computed offline or on-the-fly.

Resulting learned weights will be discretization
independent.

Drop-in replacement for convolutional layers in
autoencoder networks.



10 Results (Transient Advection-Diffusion)
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11 Results (Incompressible Navier-Stokes)

  D = 1

MOD4.4MOMDM  ■

MilniMME ..............

........ fiMMEMOMME .............. EMMEN. MMMMM MMMMM
MMMMMMMMMMMMMM MEMEMOMME MMMMMMMMMMMMMM MEMMUCSMEM MMMMMMMMM

OOOOOOOOOOOOOOOOOOOOOOOOOO IMODdiiie ............................. :::MiiieDDi MMMMMMMMMMMMMMMMMMM iDOOMMODGM.IMME

 MM OP  

.......
MMIESEDO MMMMMMMMMMMMMMMMMMM UMOMM.M.G.4.1.0

MMM MMMM MM ode.
..............
 .....................
  . .........

111.14  
011114  
P 
eq...   iiiiiI 4106 OM

OD FUNINpoup... 0
spa..    polloommarmamrammm
5.0,4  
WM.14 

au

at + oi • vw — vv211 = o
v • vt = o

MOOS 
FIFOROMPOOMMEMAMME



12 I Results (Navier-Stokes cont'd)
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13 I Results (Inviscid Euler)
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22 Pressio Integration Status

Pressio integration is functional provided:

1. The model is generated/trained using
PyTorch exported through
TorchVision

2. A finite difference decoder Jacobian is
sufficient

I've encountered some difficulties
exporting the more complex decoders with
TorchVision, so 1 is not a given.
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