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Competing Data Fusion Models
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7 I Entropy Minimization

* Entropy is a measure of the ‘uncertainty’ in
a random variable

uncertaint

H(X)=— ) pilog(p;)
i€t

05
PriX =1)
» Link individual models together during training by minimizing the entropy of their outputs for a given input

. ZH‘EG[M] p(y‘xm)
- M

p(X)

Use Entropy of the averaged distribution as a
conjugate loss term

Z(y,y) = ( ) CE(}E)’?H)) +vH(X)

me [M]



s | Megascene Testbed

Large simulated hyperspectral
scene using DIRSIG model

2 Sensors with ‘varying’ spectral
resolutions

o AVIRIS-like sensor synthetically split
> Very Near InfraRed (VNIR)

o 0.4-0.9 um 10nm resolution

> Short Wave InfraRed (SWIR)

° 0.9-2.5 um 10 nm resolution

Green Discs inserted as targets
> ~3.5 million pixels
o <.1% targets
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9 I Megascene Testbed
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0 I EMIN performance W.R.T. Data Availability
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11 I EMIN performance W.R.T. Data Availability
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12 | EMIN Performance W.R.T. Sensor Resolution
s

Decreasing SWIR Sensor Resolution
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Performance increase from EMIN becomes larger
with more realistic operating conditions




13 | Conclusions

* We outline a new method for multimodal data fusion based on minimizing
entropy
* Method is flexible to any model with a gradient based update scheme
« Hypothesize co-information sharing allows for higher performing
individual models

« Using a synthetic target detection dataset, EMIN outperforms FMO and FMI
while maintaining flexible inference

* Next steps:
* More extensive characterization of EMIN effects
« Real world datasets
« Sensor networks of scale



