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2 Multimodal Data Fusion
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3 I Data Fusion Models
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4 I Competing Data
Fusion Models
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6 Competing Data Fusion Models
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7 I Entropy Minimization

• Entropy is a measure of the 'uncertainty' in
a random variable 
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• Link individual models together during training by minimizing the entropy of their outputs for a given input

Lin C[M] P 
p(X)

Xin

Use Entropy of the averaged distribution as a
conjugate loss term

-F(Y79) = E CE(yocn)) 71--/(X)
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8 Megascene Testbed

Large simulated hyperspectral
scene using DIRSIG model

2 Sensors with 'varying' spectral
resolutions

AVIRIS-like sensor synthetically split

Very Near InfraRed (VNIR)
0.4-0.9 um lOnm resolution
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0.9-2.5 um 10 nm resolution

Green Discs inserted as targets
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9 I Megascene Testbed
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10 EMIN performance W.R.T. Data Availability
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11 EMIN performance W.R.T. Data Availability
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12 I EMIN Performance W.R.T. Sensor Resolution
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1 3 Conclusions

• We outline a new method for multimodal data fusion based on minimizing
entropy
• Method is flexible to any model with a gradient based update scheme
• Hypothesize co-information sharing allows for higher performing

individual models

• Using a synthetic target detection dataset, EMIN outperforms FMO and FMI
while maintaining flexible inference

• Next steps:
• More extensive characterization of EMIN effects
• Real world datasets
• Sensor networks of scale


