This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 7042C

Brief Announcement: Provable Neuromorphic Advantages for
Computing Shortest Paths

James B. Aimone”
Sandia National Laboratories
Albuquerque, NM, USA
jbaimon@sandia.gov

Cynthia A. Phillips®
Sandia National Laboratories
Albuquerque, NM, USA
caphill@sandia.gov

Yang Ho"
Sandia National Laboratories
Albuquerque, NM, USA
yho@sandia.gov

Ali Pinar*
Sandia National Laboratories
Livermore, CA, USA
apinar@sandia.gov

Ojas Parekh”
Sandia National Laboratories
Albuquerque, NM, USA
odparek@sandia.gov

William Severa*
Sandia National Laboratories
Albuquerque, NM, USA
wmsever@sandia.gov

Yipu Wang
University of Illinois
Urbana-Champaign, IL, USA
ywang298@illinois.edu

ABSTRACT

Neuromorphic computing offers the potential of an unprecedented
level of parallelism at a local scale. Although in their infancy, cur-
rent first-generation neuromorphic processing units (NPUs) deliver
as many as 128K artificial neurons in a package smaller than cur-
rent laptop CPUs and demanding significantly less energy. Neu-
romorphic systems consisting of such NPUs and offering a total
of 100 million neurons are anticipated in 2020. NPUs were envi-
sioned to accelerate machine learning, and designing neuromorphic
algorithms to leverage the benefits of NPUs in other domains re-
mains an open challenge. We design and analyze neuromorphic
graph algorithms, focusing on shortest path problems. Our neuro-
morphic algorithms are packet-passing algorithms relying on data
movement for computation, and we develop data-movement lower
bounds for conventional algorithms. A fair and rigorous compari-
son with conventional algorithms and architectures is paramount,
and we prove a polynomial-factor advantage even when we assume
an NPU with a simple grid-like network of neurons. To the best
of our knowledge, this is one of the first examples of a provable
asymptotic computational advantage for neuromorphic computing.

CCS CONCEPTS

« Theory of computation — Shortest paths; - Hardware —
Neural systems; - Computing methodologies — Massively
parallel algorithms.

“This research was supported by the Laboratory Directed Research and Development
program at Sandia National Laboratories, a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07...$15.00
https://doi.org/10.1145/3350755.3400258

KEYWORDS

neuromorphic computing, neuromorphic complexity, spiking neu-
ral networks, graph algorithms, shortest paths

ACM Reference Format:

James B. Aimone, Yang Ho, Ojas Parekh, Cynthia A. Phillips, Ali Pinar,
William Severa, and Yipu Wang. 2020. Brief Announcement: Provable Neu-
romorphic Advantages for Computing Shortest Paths. In Proceedings of the
32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
"20), July 15-17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3350755.3400258

1 NEUROMORPHIC COMPUTING AND
ALGORITHMS

The brain has been proposed as a potential inspiration for parallel
computing since the earliest days of computer science. Efforts to
emulate the brain’s architecture, known as neuromorphic comput-
ing, began in the 1980s. Recently, there are increasingly large-scale
efforts, including industrial efforts from IBM (TrueNorth) and In-
tel (Loihi), and academic efforts including SpiNNaker, NeuroGrid,
and BrainScales (see [8] for a survey). Most neuromorphic systems
employ a hierarchical architecture, with local cores containing up
to 1K highly interconnected neurons and many cores networked
together on each neuromorphic processing unit (NPU). Neuromor-
phic systems with 100 million total neurons are expected to debut
in 2020 [6].

While neuromorphic hardware seems naturally suited to emerg-
ing cognitive and artificial intelligence applications [2, 8], there
has been growing interest in more general computational appli-
cations. Yet it remains unclear what, if any, theoretical advantage
neuromorphic computation provides. There are isolated examples
where the neuromorphic approach has a provable advantage. For in-
stance Parekh et. al [7] recently gave a constant-time neuromorphic-
compatible threshold-gate algorithm for matrix multiplication us-
ing a sub-cubic number of neurons, while conventional parallel
algorithms require logarithmic time. Threshold-gate algorithms are
not entirely satisfying as examples of neuromorphic algorithms

since they do not leverage some of the features of current spiking
neuromorphic architectures (SNAs) such as neuron dynamics or re-
current computation. Thus it remains an open question if the power
of SNAs can be harnessed to demonstrate rigorous neurmorphic
resource advantages over conventional computing systems.

Our results. We propose neuromorphic algorithms for the k-hop
shortest path problem, where (single-source) paths can have at
most k edges. We show a polynomial-factor advantage over classi-
cal conventional algorithms and architectures. Our neuromorphic
algorithms pass packets, relying on data movement for computa-
tion. The algorithms resemble conventional algorithms such as
Floyd-Warshall. We observe that SNAs are a natural computing
model for graph algorithms. A fair and rigorous comparison with
conventional algorithms and architectures is paramount and chal-
lenging, so we consider all aspects of the implementation and their
impact on execution time, including I/O costs, data movement, and
topological restrictions of SNAs. We prove a polynomial-factor ad-
vantage over classical conventional algorithms for shortest paths,
as presented in Table 1, even when we assume an SNA with a sim-
ple grid-like network of neurons. Our algorithms use a number
of neurons polynomial in the size of the input graph. To the best
of our knowledge, this is one of the first examples of a provable
asymptotic computational advantage for neuromorphic computing.

1.1 Assessing neuromorphic advantages

We seek to understand and quantify potential computational advan-
tages offered by SNAs over conventional hardware, hampered by
the apparent demise of Moore’s Law and Dennard Scaling. The neu-
ron density of the current infant-generation neuromorphic hard-
ware is promising and suggests that neuron scalability is more
akin to logic gates than to general-purpose CPUs. For example,
Intel’s Loihi NPUs each contain 128K neurons, with a board of
size approximately 6"x6" having capacity for 4M neurons [6]. As a
physical existence proof, adult human brains contain analog neu-
romorphic circuits with about 100 billion neurons and maximum
degree about 10,000 in the cortex [4]. Moreover, NPUs can be sev-
eral orders of magnitude more power efficient than CPUs. Thus to
obtain as fair a comparison as possible between conventional and
neuromorphic computing, we compare neuromorphic algorithms
with conventional serial algorithms, rather than conventional par-
allel algorithms. One could argue that a shared-memory parallel
system might also serve as a fair point of comparison, especially
given the connections between other circuit models such as NC
and shared-memory models such as PRAM. However, asymptoti-
cally, neuromorphic systems are expected to be more scalable than
shared-memory systems and are considered a viable beyond-Moore
model of computing. Moreover, the lightweight communication of
neuromorphic systems may allow them to offer a greater degree
of parallelizability than conventional distributed-memory parallel
systems. Thus we focus on comparing algorithms executed on a
single NPU with those executed on a single CPU, where both may
be aggregated in a similar fashion to form larger parallel systems.
Data movement. Our neuromorphic algorithms critically em-
ploy both computation and communication to provide asymptotic
speedups over the best-known conventional serial counterparts.

Our algorithms neuromorphically simulate propagation of informa-
tion in the input graph. The more closely the SNA’s neuromorphic
circuit resembles the input graph, the more efficient our algorithms,
as dense neuromorphic circuits allow for faster data movement.
To be fair, we assume a grid-like model of data storage and
movement for both neuromorphic and conventional algorithms.
For the former, we only assume access to neuromorphic circuits
on a 2-d grid-like crossbar, and we employ a linear-time embed-
ding algorithm allowing us to simulate neuromorphic algorithms
designed for arbitrary graphs on (commonly supported) neuromor-
phic crossbar circuits. This embedding has been adapted from a
similar scheme used in other contexts [9]. The embedding cost
is nontrivial, and in the worst case it adds a linear multiplicative
factor to the running time of our neuromorphic algorithms. This
is because two adjacent nodes in the input graph may have to
communicate using a long path in a grid-like neurmorphic circuit,
incurring communication cost proportional to the path length.
Our grid-like data storage and movement assumption takes a
different form for conventional algorithms. Local data movement
within a CPU core is typically ignored as an O(1) execution-time
cost, although this is technically not true [1]. Yet, the type of data
movement leveraged for our neuromorphic graph algorithms oc-
curs at the same intra-core scale, hence we consider it explicitly
as an algorithmic cost for both platforms. Local data movement
can be energy intensive for conventional systems, while neuromor-
phic hardware is extremely energy efficient in moving data. Data
movement is worth consideration because of its overall impact; in-
deed, the standard O(n?) algorithm for computing a matrix-vector
product with an n x n matrix becomes O(n?) if data movement is
taken into account in a model similar to ours, while a neuromorphic
implementation remains an O(n?) algorithm [1].
Data-movement lower bounds. We propose a data-movement
model for conventional serial algorithms and provide lower bounds
for implementations of the best-known conventional shortest-path
algorithms within it. These bounds arise from the assumption that
memory is laid out in 2-d (or perhaps a constant number of 2-d
layers), which we believe is reasonable for contemporary memory
systems. Most current commercial neurmorphic systems use the
same basic electronic technologies as conventional systems. If data-
movement costs are ignored, then our neuromorphic algorithms,
which critically rely on data movement to perform computation,
exhibit even more advantage. In our data-movement model, a con-
ventional algorithm takes Q(m3/ 2) time just to read an O(m)-sized
input. Our neuromorphic k-hop shortest-path algorithms exhibit
an advantage against any conventional algorithm that only reads
the input graph, where the best-known conventional algorithms
take k iterations over the input (precise assumptions given in Ta-
ble 1). This illustrates the severity of data-movement bottlenecks
and why data-movement-efficient computation, such as neuromor-
phic computing, is important. Future neuromorphic systems might
be analog (as the brain) or designed to mitigate data-movement
costs (as conventional systems do with memory hierarchies).

1.2 Neuromorphic circuits for shortest paths

A directed network of leaky integrate-and-fire neurons and synap-
tic connections form a spiking circuit. Directed loops (recurrent

Table 1: Comparison of run-time complexities of neuromorphic and conventional algorithms for single-source shortest path
(SSSP) problems. The number of nodes and edges are denoted by n and m, respectively. L is the length of the shortest k -hop
path, U is an upper bound on the edge lengths, and o is the number of edges in the shortest s-t path. The m in the lower bounds
can be replaced with the total number of bits in the input, taking edge lengths into account.

Problem Data-movement lower bound Data-movement lower bound for Neuromorphic | Neuromorphic is better than
for only reading input best-known conventional algorithm best conventional when:
Polynomial Complexity
SSSP Q(m3/?) Q(m3/?) O(malog(nU)) logU = O(logn) &
a = o(vm)
k-hop SSSP Q(m3/2) Q(km3/?) O(mk log*(nU)) log U = O(log n)
Pseudopolynomial Complexity
SSSP Q(m?'?) Q(m3/?) O(nL + m) L =o(m*?/n)
k-hop SSSP Q(m3/2) Q(km3/?) O(mLlog? k) L = o(kym/log? k)

connections) are allowed, making spiking circuits more general
than threshold-gate circuits. Circuit computation is initiated by the
simultaneous spiking of a designated set of start neurons. Execution
proceeds for a fixed amount of time or until a designated terminal
neuron first spikes. The output is typically the state of the set of
output neurons at termination. For a more precise abstract model,
see the recent work of Kwisthout and Donselaar [5].

Delays and synchronization. We assume that there is minimum
programmable delay, J, a hardware-specific constant. A synapse
from neuron i to j has delay d;; = I3, for a positive integer I. Delays
of 0 are prohibited, as inherent latency when a spike traverses
a synapse is a reasonable physical assumption respecting data-
movement costs. Delays can be simulated using extra neurons in
SNAs that do not natively support delays.

Spikes and packets. Instead of sending a single spike between
neurons, we abstractly send a packet of information. We replace
each neuron with ¢ copies and send ¢ spikes in parallel to represent
a binary value.

Neuromorphic memory. Our algorithms store information using
neurons with no leakage or recurrent loops to preserve state.
Neuromorphic computational primitives. Our algorithms use
basic computational primitives on packets, such as summing values
or taking the minimum or maximum over several packets. We
develop implementations of such circuits offering new tradeoffs.

Our algorithm for finding the lengths of the shortest k-hop paths
from a source s builds on a pseudopolynomial-time SGA for comput-
ing regular single-source shortest paths [3]. In our algorithm, each
synapse has delay proportional to the length of the input-graph
edge it represents. Communication along a synapse involves pack-
ets of [log k] spikes that encode a time to live (TTL). At the start,
the node corresponding to s sends [log k] spikes to each neighbor
encoding the value k — 1. If node v receives a spike bundle encoding
the value k” at time ¢, then there is a path from source s to node v
of length ¢ that traverses k — k” edges.

For each non-source node v, the length of the shortest k-hop-
constrained path from s (if it exists) is the time the first spike arrives.
Nodes propagate spikes with remaining time to live to their neigh-
bors. Spikes that arrive at node v after the first, representing longer
paths to v, could have traversed fewer edges and have a longer
TTL. These could propagate further in the graph than previous

paths with shorter TTL. If multiple spikes arrive at a node at the
same time, the one with the largest TTL dominates the others as
a building block for other k-hop-constrained shortest paths. Thus
at each node, the circuit computes the largest TTL k’ from any of
the incoming spikes, and sends a spike encoding k’ — 1 to all its
neighbors if and only if k¢’ > 1. This yields a pseudopolynomial
algorithm; a polynomial algorithm is obtained by instead using
packets to encode and maintain the length of a shortest path from
s and executing k iterations of propagating packets.

The algorithms of this section only compute the length of the op-
timal shortest single-source (k-hop) paths. Constructing the paths
requires the algorithms to store additional information at each
graph node. For the k-hop algorithms, the extra storage requires a
multiplicative factor of O(k) additional neurons.

REFERENCES

[1] AcarwaL, S., QuacH, T.-T., PARekH, O., Hs1a, A. H., DEBENEDICTIS, E. P., JAMES,
C. D., MARINELLA, M.]., AND AIMONE, J. B. Energy scaling advantages of resistive
memory crossbar based computation and its application to sparse coding. Frontiers
in neuroscience 9 (2015).

[2] AiMoNE,]. B. Neural algorithms and computing beyond moore’s law. Communi-
cations of the ACM 62, 4 (2019), 110-110.

[3] AIMONE, J. B., PAREKH, O., PaiLLIPs, C. A., PINAR, A., SEVERA, W., AND XU, H.
Dynamic programming with spiking neural computing. In Proceedings of the
International Conference on Neuromorphic Systems (New York, NY, USA, 2019),
ICONS ’19, Association for Computing Machinery.

[4] AzeveDo, F. A. C., CARVALHO, L. R. B., GRINBERG, L. T., FARFEL,]. M., FERRETTI,
R. E. L, Lertg, R. E. P., JacoB FiLno, W., LENT, R., AND HERCULANO-HOUZEL,
S. Equal numbers of neuronal and nonneuronal cells make the human brain an
isometrically scaled-up primate brain. The Journal of Comparative Neurology 513,
5 (Apr. 2009), 532-541.

[5] KwisTHOUT, J., AND DONSELAAR, N. On the computational power and complexity
of Spiking Neural Networks. arXiv:2001.08439 [cs] (Jan. 2020). arXiv: 2001.08439.

[6] MooORE, S. Intel’s Neuromorphic System Hits 8 Million Neurons, 100 Million
Coming by 2020 - IEEE Spectrum. https://spectrum.ieee.org/tech-talk/artificial-
intelligence/embedded-ai/intels-neuromorphic- system-hits-8-million-neurons-
100-million-coming-by-2020.

[7] Parexs, O., PHiruips, C. A., JAMEs, C. D., AND AIMONE, J. B. Constant-depth and

subcubic-size threshold circuits for matrix multiplication. In Proceedings of the

30th on Symposium on Parallelism in Algorithms and Architectures (2018), ACM,

pp. 67-76.

ScauMAN, C. D, PoTok, T. E., PaTTON, R. M., BIRDWELL,]J. D., DEAN, M. E., ROSE,

G. S., AND PLANK, J. S. A survey of neuromorphic computing and neural networks

in hardware. arXiv preprint arXiv:1705.06963 (2017).

TrOMPSON, C. D. Area-time complexity for VLSL In Proceedings of the eleventh

annual ACM symposium on Theory of computing (Atlanta, Georgia, USA, Apr.

1979), STOC °79, Association for Computing Machinery, pp. 81-88.

&

=

