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The Cost of High Performance Computing
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Beyond Machine Learning/Deep Learning

Imagine fully integrated
neuromorphic chips on
HPC platforms.
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Leveraging Spiking Neuromorphic to Solve Differential

Equations
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0=——u—F(t—x), x€[0¢] | [~
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Random Walks and the Heat Equation

] Random walk methods for PDEs stem
from the heat equation:

d 1 92
T L u(x,0) = f(x)
L Let W; be a standard Brownian motion.
Then Wy is normally distributed and

_ 2
E[f (W)W, = x] = \/%ff(y) exp <— £ th) )dy-

This 1s the solution to the heat equation.
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Spiking Networks and Random Walks

U In previous work (Severa et al. 2018) we
efficiently implemented a density-based
approach to calculating random walks.

= Each vertex encodes density of particles in

the internal potential of certain nodes

Each time step “hands off™ particles to
connected vertices according to probabilistic
maps
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Density Method

Circuit per position

Cost (for k locations,

simulating N walkers; 1-D
case)

Walker memory o(l)
Connection memory O(k)
Total neurons O(k)

Time per physical timestep O(max(p))), where p; is the

density of walkers at each

location
Position energy per timestep O(N)
Update energy per timestep O(N)



7 I A Specific Problem: Steady-State Heat Conduction

u(0) =0 q(x) -@-

u'(0)=0 ’,l

Length ¢

[ Taking q(x) = —F (€ — x), the situation can be described by the PDE

d
0=-——=u—F({—x), x € [0,7],
dx

u(0) =0,
u'(0) = 0.

O This problem has an easy to obtain analytic solution. Can it be solved via random

walks on spiking networks?
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8 ‘ A Probabilistic Solution for a Class of Steady-State PDEs

[ Under certain conditions and assumptions (Grigoriu 2013), the PDE
d d

du(x) 1 92u(x)
OZZCZL'(.X) ;xi +§Z ,Bij(x)m+p(x), x €D c R4
u(x) = f_(x), x € 0D.

,j=1

has local solution given by
T

u(x) = IE[E(X(T))+ f p(X(s))ds

0
dXt — a(Xt)dt + O'(Xt)th,
T =inf{t > 0|X,; & D}.

onx],

[ This particular result doesn’t apply directly to our chosen problem because:

= Our boundary condition is only specified for a part of our boundary (u(0) = 0). We do
not specify anything for x = €.

= We have a mixed condition and require u'(0) = 0 as well.
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s 1 A Probabilistic Solution for Our Steady-State Equation

1 Absorb u’(0) = 0 into the random process.

" Make X; a reflective process at zero.

1 After making zero reflecting, we can’t evaluate E[E(X(T))|Xo = x].

= We only know the value of ¢ at zero, and the process will no longer exit at
ZEero.

] We still must enforce u(0) = 0.
" Define

T
uy = E [—j F(¢—X(s))ds
0
" Then, the probabilistic solution to our heat transport equation is
T
u(x) =E [—f F(¢—X(s))ds
0

where X; is a process reflecting at zero and has law

dXt - \/det

X():O]

Xo = x] — U,

elsewhere.
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o I Defining a Random Walk from X,

4 To define a random walk from the process X¢, we:
= Choose a spatial discretization unit Ax;

= Choose a time discretization size At so that we can be reasonably sure the process X; will
not move further than 3Ax/2 to the left or right during the increment;

= Calculate the transition probabilities, taking care when dealing with the reflective boundary
at zero.

(] Random walks are assumed to occupy the midpoint of the divisions.

d Random walks must continue until they reach the absorption position.




Calculating u(x) from samples of X;

1)

2)

3)
4

5)

For a position X; on the mesh, initialize
M random walkers at X;.

Simulate each of the M walkers, keeping
track of the cumulative number n;; of
walkers on node X; that began on X;.
End when all have absorbed. Do not
include the initialization as part of
the cumulative count.

Repeat or parallelize for all positions X;.

Use a right end-point approximation to

assign

T FAt
E —Ff f—X(S) ds| = —7 nl]({’—xj) = U;.
4 7

Then,
u(x;) = u; — up.

Solution

10k Walker Run
100k Walker Average
- -Analytic Solution

0 @"/’"I‘
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Position

Matlab implementation of ten runs with

M = 10,000, F =3,¢ =2, Ax = 0.05,

and At = 0.0001.
N
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Spiking Net Simulator Results

d We run for a fixed number of
neural timesteps.

J Any walkers not finished by then
increase the error of
approximation.

Solution

SNN RW 1M neural timesteps
==SNN RW 100k neural timesteps
=—SNN RW 500k neural timesteps
- -Analytic Solution

Position




Loihi and TrueNorth Results

Loihi RW 7.5M neural timesteps /
7 = TrueNorth RW 7M neural timesteps

- -Analytic Solution

Solution
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4+ 1 Loihi Implementation
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3 Execution time for 250 walkers/starting

location for 7.5 million neural timesteps.

Bottom: Number of simulation timesteps gained

from 7.5 million neural timesteps per
starting location.

J We deployed a neural circuit
representing this random
walk onto an 8-chip Nahuku
platform.

) Walkers are removed from
simulation once they reach
the absorption node.

A
‘v ¢ O



s I TrueNorth Implementation

J We implemented the
random walk on a single

chip of the TrueNorth

hardware.

) Walkers are not removed
once they reach the
absorption node.

Total Simulation Timesteps

Absorption Time
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Number of simulation timesteps gained
from 7 million neural timesteps per
starting position.
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position. NJ =
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s | Steady-State Heat Transport as a Neuromorphic Benchmark | ’

[ Fully self-contained.

J Has an easy-to-grasp analytic solution.

J Low requitements on the neuron model.

J Scales in the number of nodes (neurons) and the number of walkers (spikes).
L Connectivity is local.

J Simple pattern.
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7 I Ongoing Work and Future Directions




18 I Non-Euclidean Heat Flow

d How would we calculate the U Discretize the sphere into
flow over the surface of the roughly equal pieces
sphere with this initial
condition?

- |

%u(t, x,v,z) = aVu(t, x, vy, z), (x,y,2z) € §2

u(0,x,v,z) =g(x,y,2)




s I Non-Euclidean Heat Flow

[ The solution is given by J There are some options.

u(t,x,y,z) = El[giX)|Xo = (x,y,2)]. 1. Use the von Mises—FIi(sher distribution.

[ But what is the appropriate process for fuk) = X e e’ X
X,? 2m(ek —e~k)

2. Use spherical coordinates.

dO; = acot®; + vV2adW,(t)
dd, = /2acsc? 0, dW,(t)
3. Project to the tangent plane.

S




20 | Non-Euclidean Heat Flow

Time = 0.00
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Eu(t, x,v,z) = aVu(t, x, vy, z), (x,y,2) € §2

u(0,x,y,z) = g(x,y,2)

=
~

S

o

*result in preparation for future publicatfon



2t I Non-Euclidean Heat Flow
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2 | Boltzmann Transport Equation for Simple Particle

d

d(t,Q) = ﬁ

9 o(t,0) = —(0, + c)d(t Q) + j 5, @ (t, Q)P - Q)dQ’

rate o.t, P(+1 - —1)

Absorbed

t

ifQ=1
®(0,0) = g(Q) = {g B

f

1 1
Eg(l)(e'“at + e~ (9atont) 4 Eg(—l)(e“’at —e~(@atodt) ifQ =1

1 1
ig(l)(e"’at — e~(@ata)t) 4 Eg(—l)(e“’at + e~ (9atodt) jfQ = —1
\




2 | Boltzmann Transport Equation for Simple Particle

TrueNorth, 1000 Walkers Per Curve . TrueNorth, 10000 Walkers Per Curve
_<I>TN(t,1 ) —<I>TN(t,1 )
_chN(t,-1) 4l _<I>TN(t,-1)

SO0 = (0 +0)0) + [ 0,06 2)P@ - )0’

ifQ=1
(2,0) = g(@) = {g B
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Time Time
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*result in preparation for future publlcatlon
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