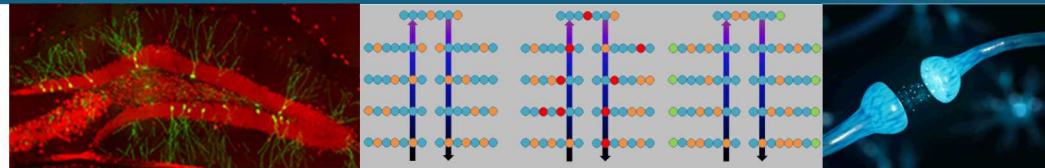


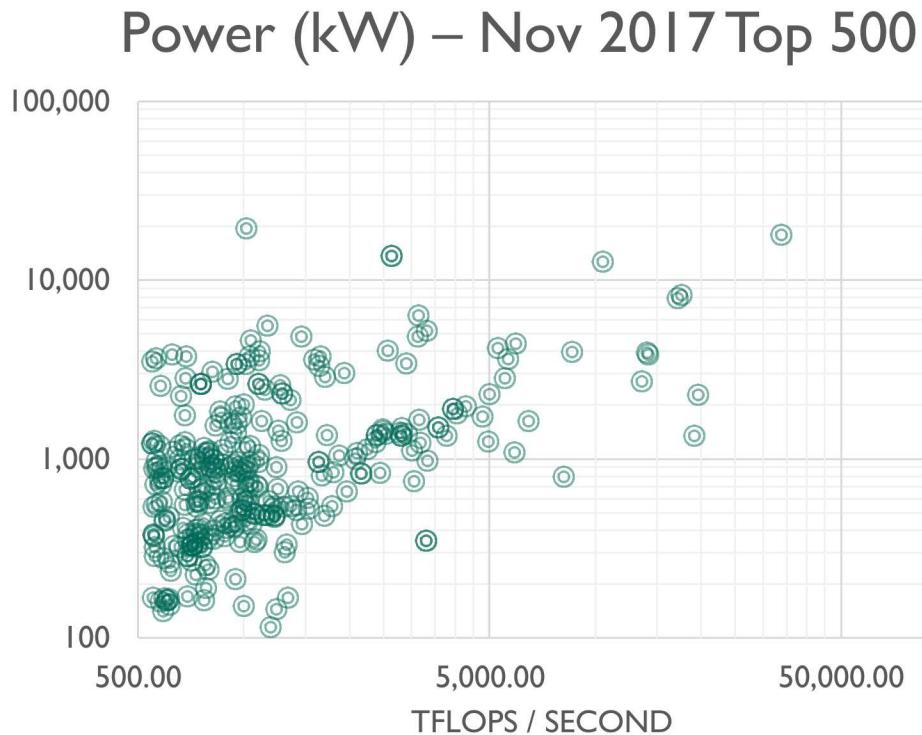
Solving a Steady-State PDE using Spiking Networks and Neuromorphic Hardware



Presented by

**J. Darby Smith, William Severa, Aaron Hill, Leah Reeder, Brian Franke,
Richard Lehoucq, Ojas Parekh, Brad Aimone**

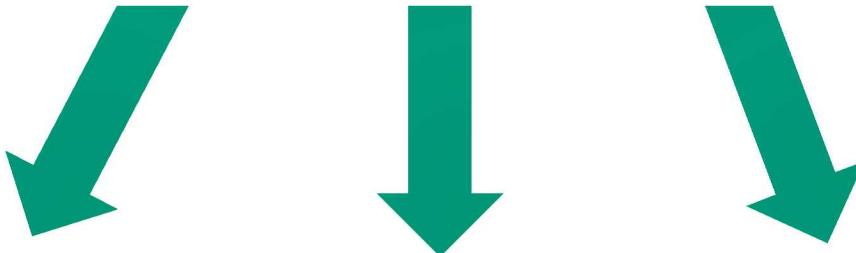
The Cost of High Performance Computing



- Supercomputers are increasingly limited by power consumption.
- Exascale systems are forecast to be ~100MW
- Neuromorphic could be a radical advance for HPC.

Beyond Machine Learning/Deep Learning

Imagine fully integrated neuromorphic chips on HPC platforms.



*Biological-
inspired neural
algorithms*

*Machine
Learning /
Deep Learning*

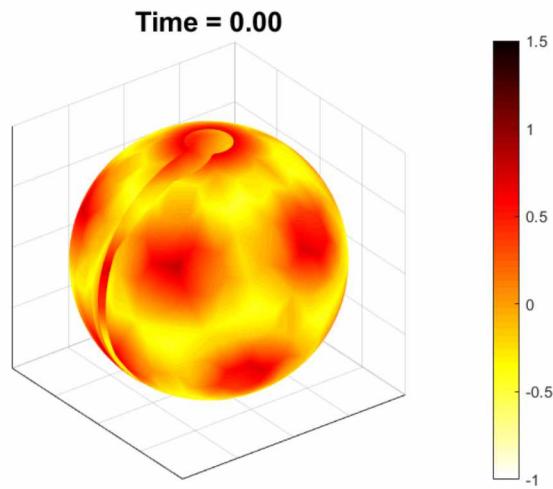
*Neural-implemented
numerical and
scientific computing*

Leveraging Spiking Neuromorphic to Solve Differential Equations

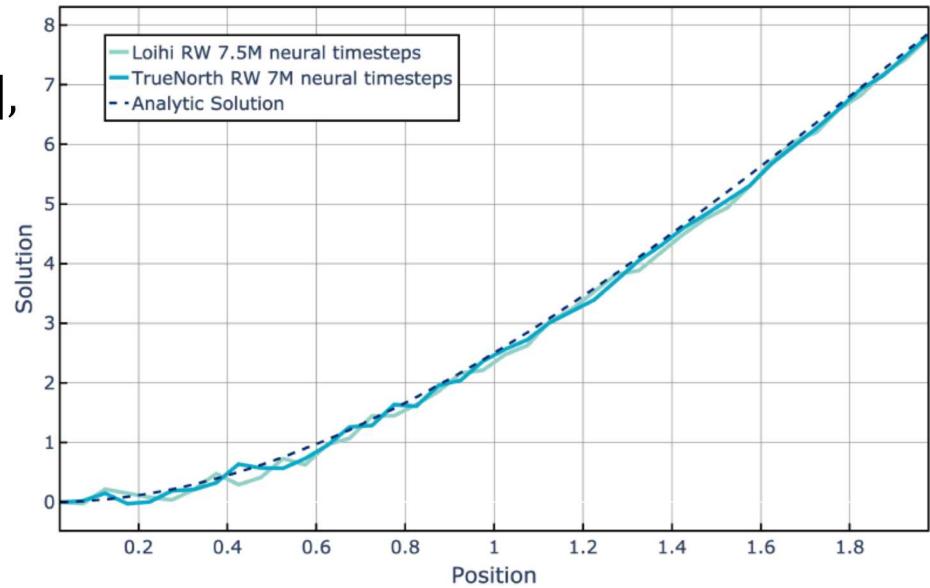
$$0 = \frac{d}{dx^2} u - F(\ell - x), \quad x \in [0, \ell],$$

$$u(0) = 0,$$

$$u'(0) = 0.$$



Loihi Approximate Solution



$$\frac{\partial}{\partial t} u(t, x, y, z) = \alpha \nabla u(t, x, y, z), \quad (x, y, z) \in \mathcal{S}^2$$

$$u(0, x, y, z) = g(x, y, z)$$

Random Walks and the Heat Equation

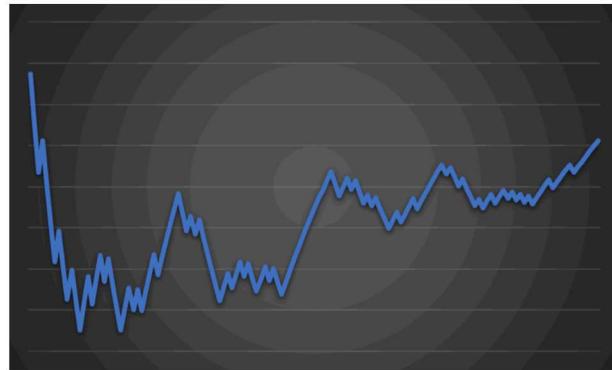
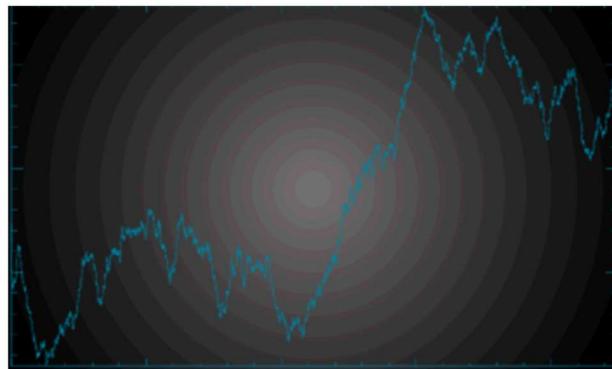
- Random walk methods for PDEs stem from the heat equation:

$$\frac{\partial}{\partial t} u = \frac{1}{2} \frac{\partial^2}{\partial x^2} u, \quad u(x, 0) = f(x)$$

- Let W_t be a standard Brownian motion. Then W_t is normally distributed and

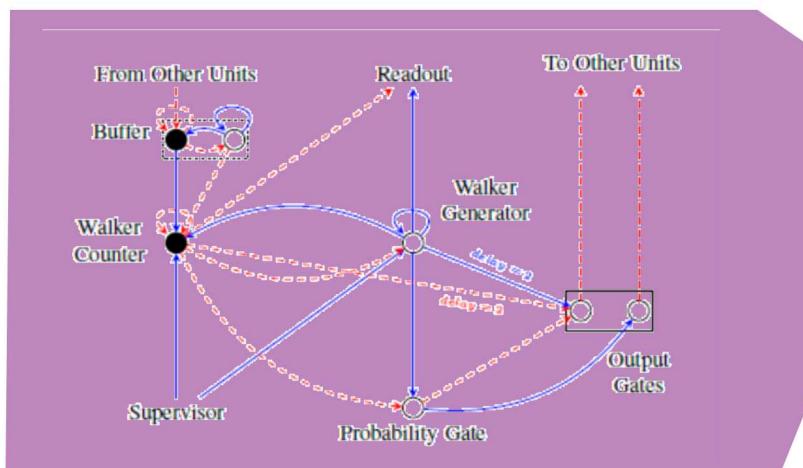
$$\mathbb{E}[f(W_t) | W_0 = x] = \frac{1}{\sqrt{2\pi t}} \int f(y) \exp\left(-\frac{(y-x)^2}{2t}\right) dy.$$

This is the solution to the heat equation.



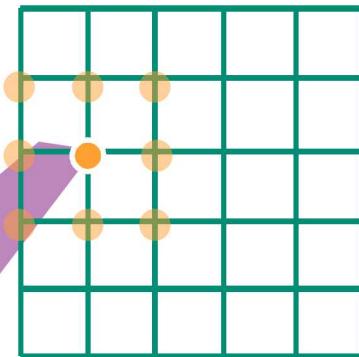
Spiking Networks and Random Walks

- In previous work (Severa et al. 2018) we efficiently implemented a density-based approach to calculating random walks.
 - Each vertex encodes density of particles in the internal potential of certain nodes
 - Each time step “hands off” particles to connected vertices according to probabilistic maps



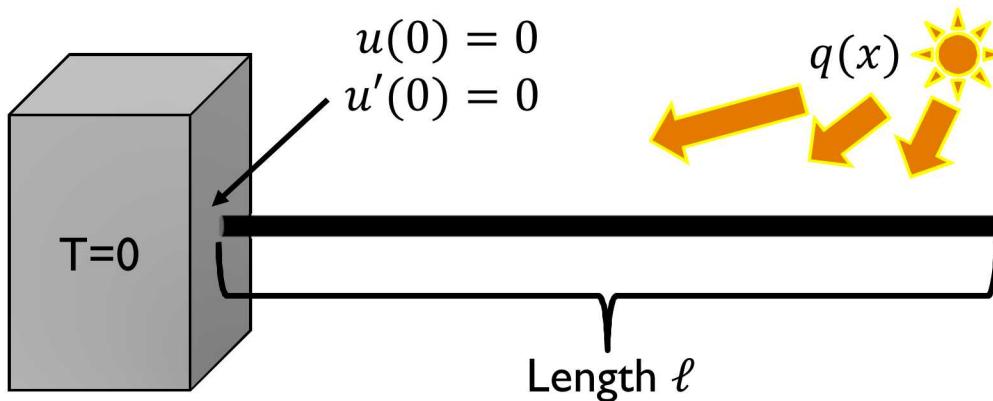
Density Method

Circuit per position



Measure	Cost (for k locations, simulating N walkers; 1-D case)
Walker memory	$O(l)$
Connection memory	$O(k)$
Total neurons	$O(k)$
Time per physical timestep	$O(\max(\rho_i))$, where ρ_i is the density of walkers at each location
Position energy per timestep	$O(N)$
Update energy per timestep	$O(N)$

A Specific Problem: Steady-State Heat Conduction



- Taking $q(x) = -F(\ell - x)$, the situation can be described by the PDE

$$0 = \frac{d}{dx^2} u - F(\ell - x), \quad x \in [0, \ell],$$

$$u(0) = 0,$$

$$u'(0) = 0.$$

- This problem has an easy to obtain analytic solution. Can it be solved via random walks on spiking networks?

$$u(x) = \frac{F\ell}{2}x^2 - \frac{F}{6}x^3$$

A Probabilistic Solution for a Class of Steady-State PDEs

□ Under certain conditions and assumptions (Grigoriu 2013), the PDE

$$0 = \sum_{i=1}^d \alpha_i(\mathbf{x}) \frac{\partial u(\mathbf{x})}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^d \beta_{ij}(\mathbf{x}) \frac{\partial^2 u(\mathbf{x})}{\partial x_i \partial x_j} + p(\mathbf{x}), \quad \mathbf{x} \in D \subset \mathbb{R}^d$$

$$u(\mathbf{x}) = \xi(\mathbf{x}), \quad \mathbf{x} \in \partial D.$$

has local solution given by

$$u(\mathbf{x}) = \mathbb{E} \left[\xi(\mathbf{X}(T)) + \int_0^T p(\mathbf{X}(s)) ds \middle| \mathbf{X}_0 = \mathbf{x} \right],$$

$$d\mathbf{X}_t = \boldsymbol{\alpha}(\mathbf{X}_t) dt + \boldsymbol{\sigma}(\mathbf{X}_t) d\mathbf{W}_t,$$

$$T = \inf\{t > 0 | \mathbf{X}_t \notin D\}.$$

□ This particular result doesn't apply directly to our chosen problem because:

- Our boundary condition is only specified for a part of our boundary ($u(0) = 0$). We do not specify anything for $x = \ell$.
- We have a mixed condition and require $u'(0) = 0$ as well.

A Probabilistic Solution for Our Steady-State Equation

- Absorb $u'(0) = 0$ into the random process.
 - Make X_t a reflective process at zero.
- After making zero reflecting, we can't evaluate $\mathbb{E}[\xi(X(T))|X_0 = x]$.
 - We only know the value of ξ at zero, and the process will no longer exit at zero.
- We still must enforce $u(0) = 0$.
 - Define

$$u_0^* = \mathbb{E} \left[- \int_0^T F(\ell - X(s)) ds \middle| X_0 = 0 \right].$$

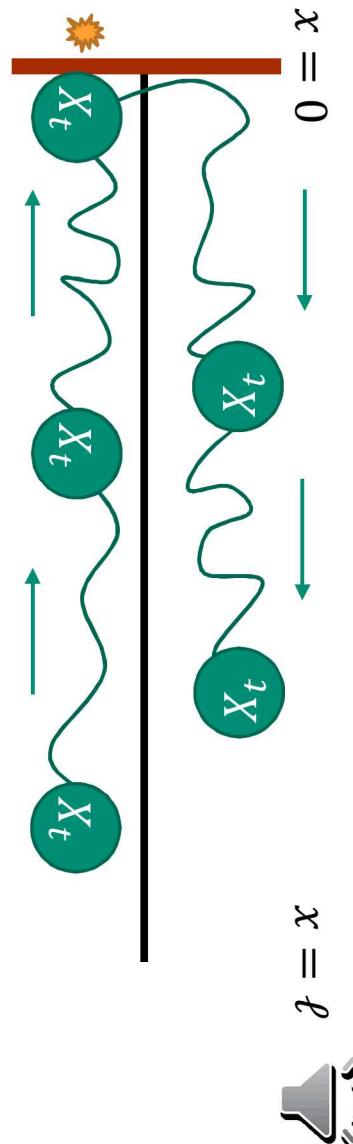
- Then, the probabilistic solution to our heat transport equation is

$$u(x) = \mathbb{E} \left[- \int_0^T F(\ell - X(s)) ds \middle| X_0 = x \right] - u_0^*,$$

where X_t is a process reflecting at zero and has law

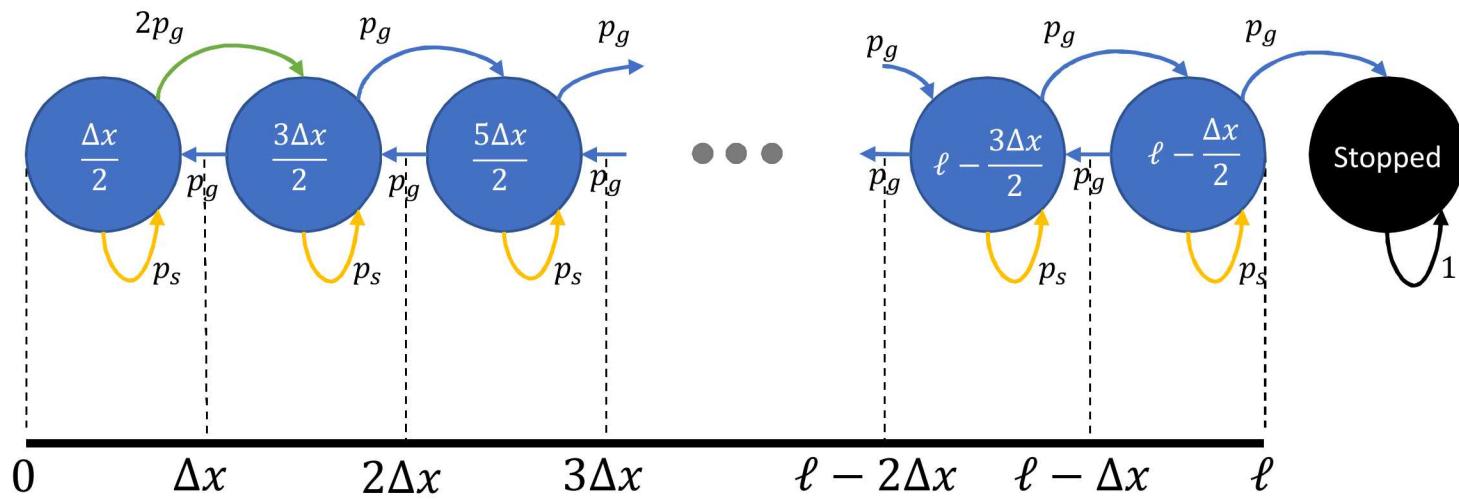
$$dX_t = \sqrt{2} dW_t$$

elsewhere.



Defining a Random Walk from X_t

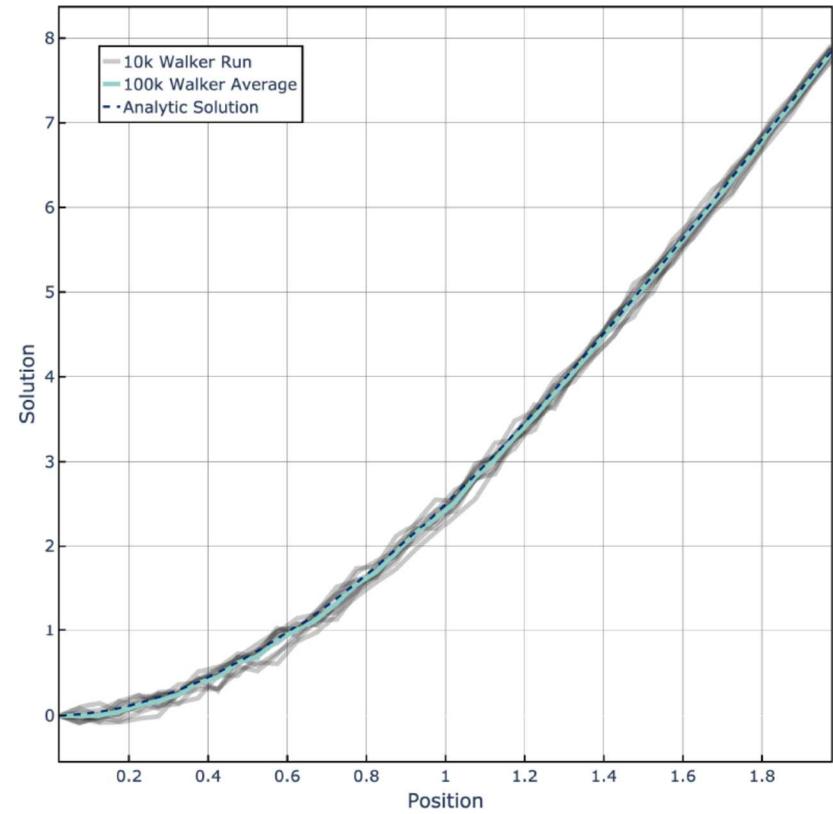
- To define a random walk from the process X_t , we:
 - Choose a spatial discretization unit Δx ;
 - Choose a time discretization size Δt so that we can be reasonably sure the process X_t will not move further than $3\Delta x/2$ to the left or right during the increment;
 - Calculate the transition probabilities, taking care when dealing with the reflective boundary at zero.
- Random walks are assumed to occupy the midpoint of the divisions.
- Random walks must continue until they reach the absorption position.



Calculating $u(x)$ from samples of X_t

- 1) For a position x_i on the mesh, initialize M random walkers at x_i .
- 2) Simulate each of the M walkers, keeping track of the cumulative number n_{ij} of walkers on node x_j that began on x_i . End when all have absorbed. **Do not include the initialization as part of the cumulative count.**
- 3) Repeat or parallelize for all positions x_i .
- 4) Use a right end-point approximation to assign
$$\mathbb{E} \left[-F \int_0^\ell \ell - X(s) \, ds \right] \approx -\frac{F\Delta t}{M} \sum_j n_{ij}(\ell - x_j) := u_i.$$
- 5) Then,

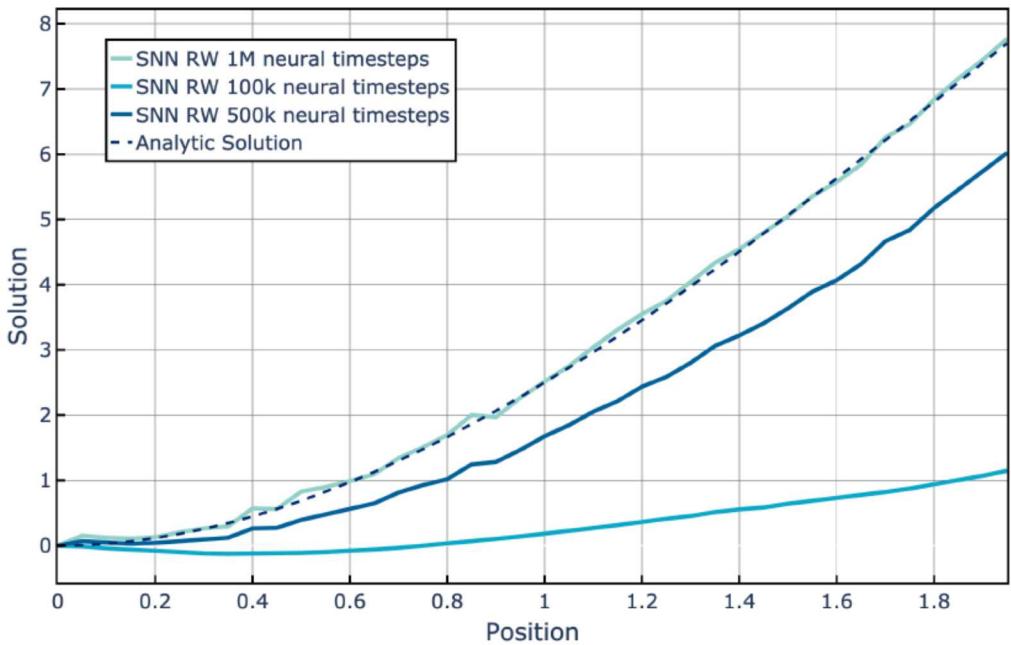
$$u(x_i) \approx u_i - u_0.$$



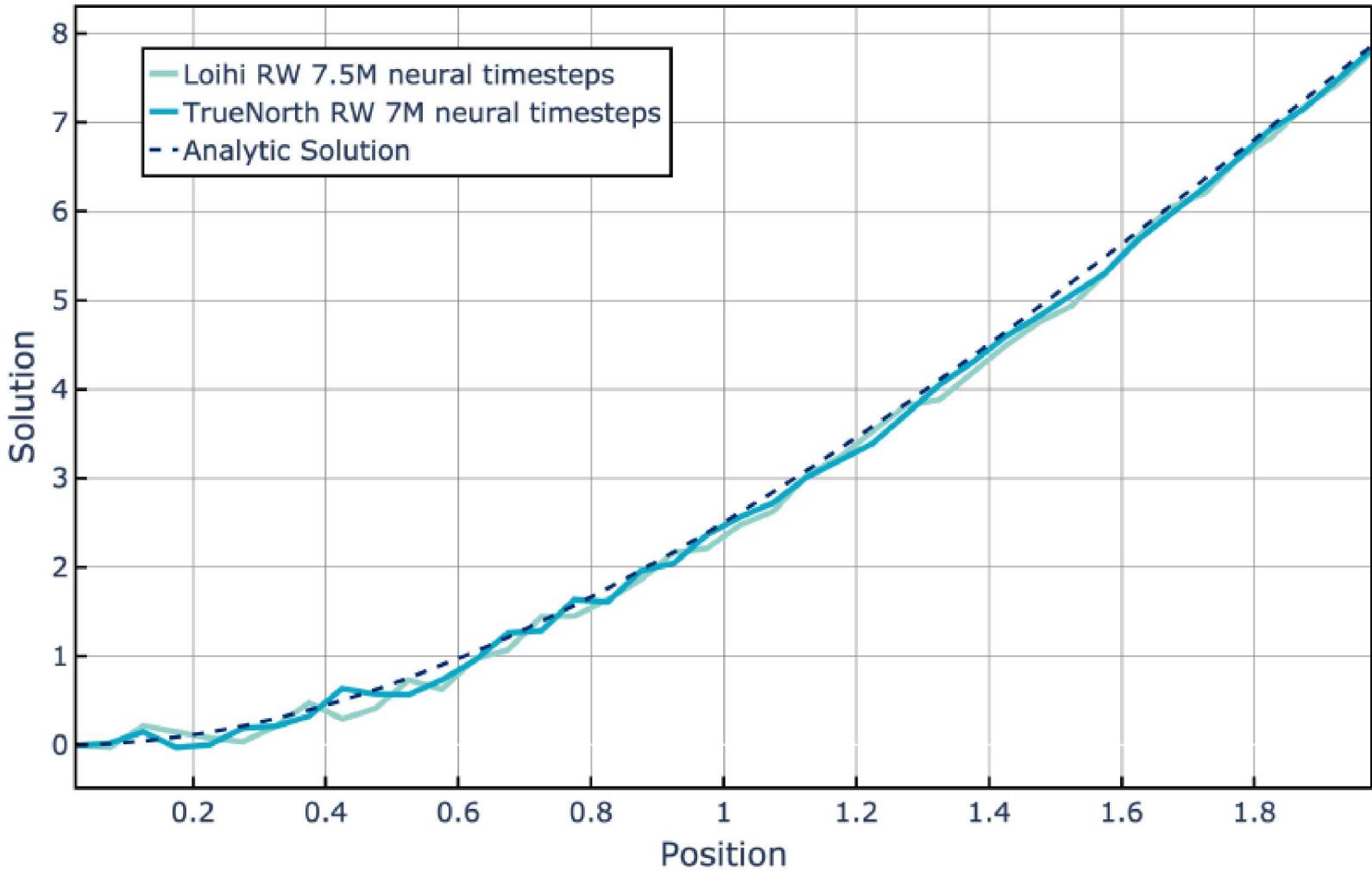
Matlab implementation of ten runs with $M = 10,000$, $F = 3$, $\ell = 2$, $\Delta x = 0.05$, and $\Delta t = 0.0001$.

Spiking Net Simulator Results

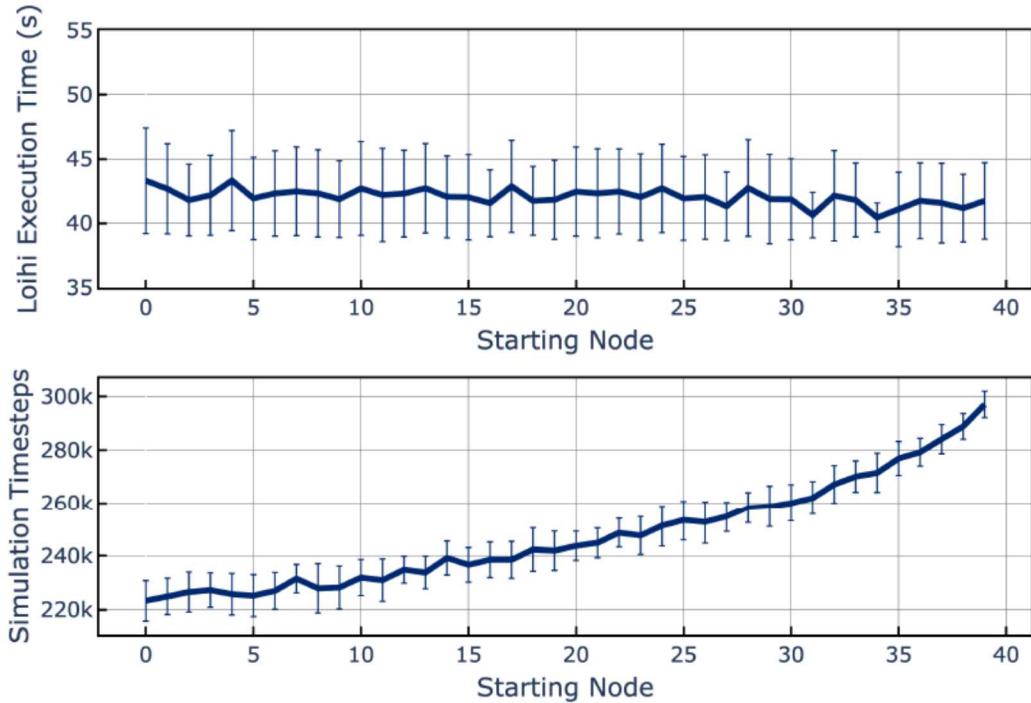
- We run for a fixed number of neural timesteps.
- Any walkers not finished by then increase the error of approximation.



Loihi and TrueNorth Results



Loihi Implementation



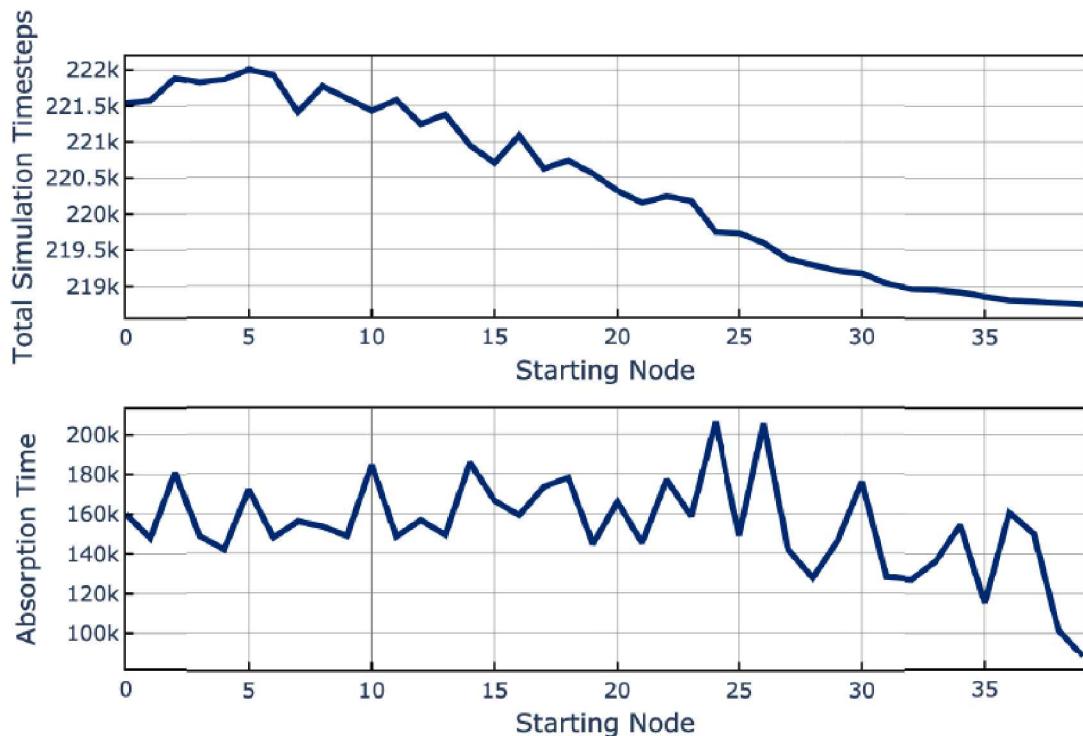
Top: Execution time for 250 walkers/starting location for 7.5 million neural timesteps.

Bottom: Number of simulation timesteps gained from 7.5 million neural timesteps per starting location.

- We deployed a neural circuit representing this random walk onto an 8-chip Nahuku platform.
- Walkers are removed from simulation once they reach the absorption node.

TrueNorth Implementation

- ❑ We implemented the random walk on a single chip of the TrueNorth hardware.
- ❑ Walkers are not removed once they reach the absorption node.

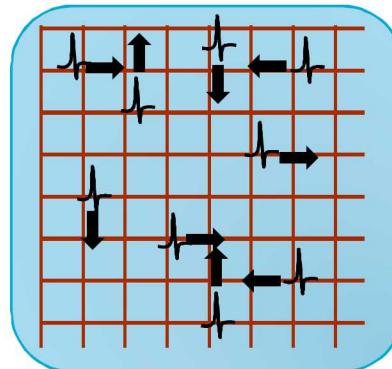
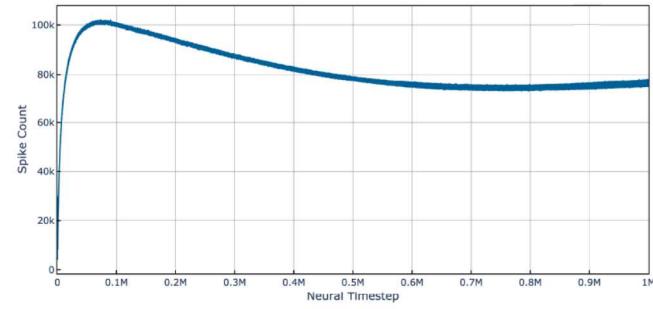


Top: Number of simulation timesteps gained from 7 million neural timesteps per starting position.

Bottom: Number of simulation timesteps until absorption of all walkers per starting position.

Steady-State Heat Transport as a Neuromorphic Benchmark

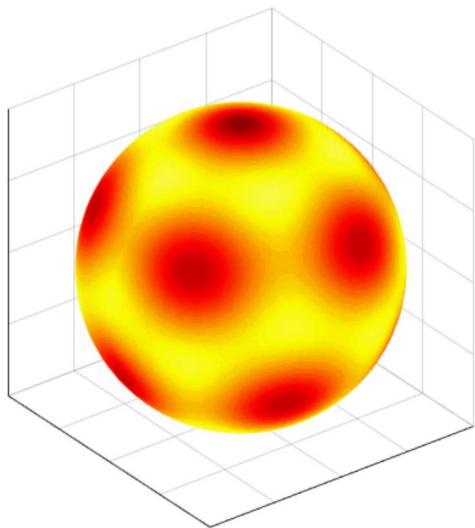
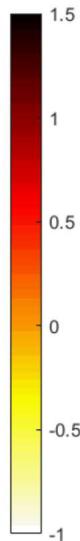
- ❑ Fully self-contained.
- ❑ Has an easy-to-grasp analytic solution.
- ❑ Low requirements on the neuron model.
- ❑ Scales in the number of nodes (neurons) and the number of walkers (spikes).
- ❑ Connectivity is local.
- ❑ Simple pattern.



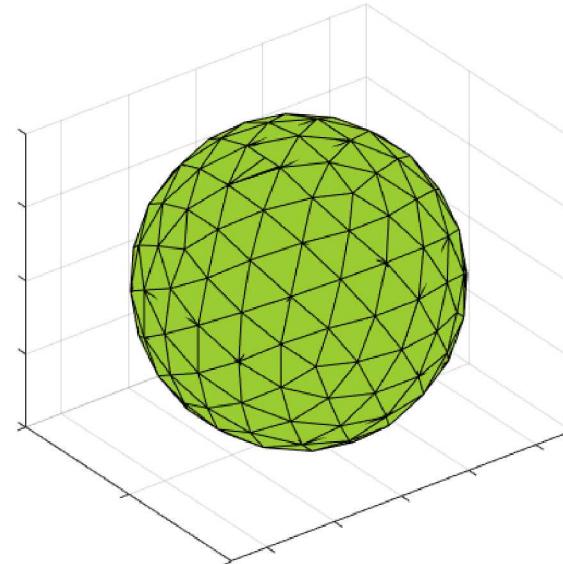
Ongoing Work and Future Directions

Non-Euclidean Heat Flow

- How would we calculate the flow over the surface of the sphere with this initial condition?



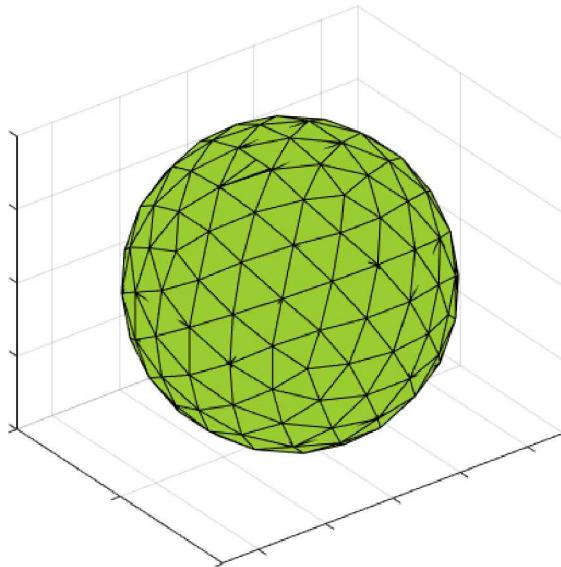
- Discretize the sphere into roughly equal pieces



$$\begin{aligned}\frac{\partial}{\partial t} u(t, x, y, z) &= \alpha \nabla u(t, x, y, z), & (x, y, z) \in \mathcal{S}^2 \\ u(0, x, y, z) &= g(x, y, z)\end{aligned}$$

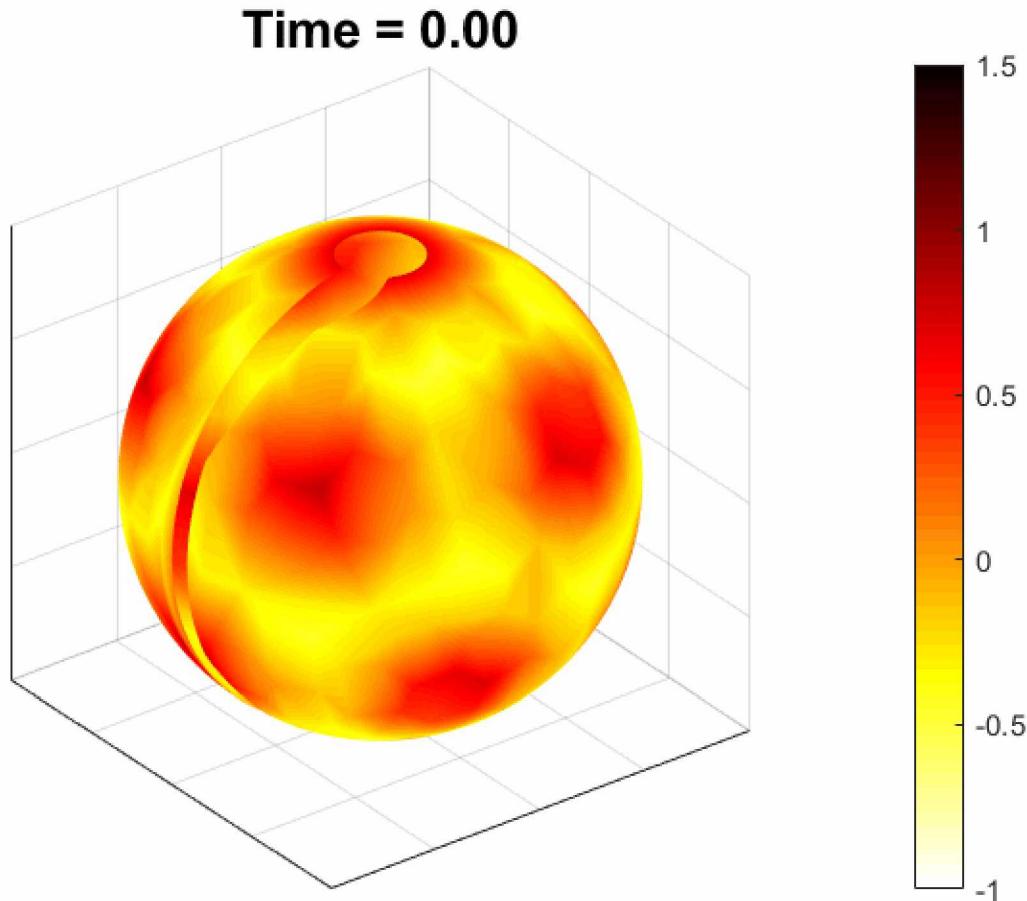
Non-Euclidean Heat Flow

- The solution is given by
 $u(t, x, y, z) = \mathbb{E}[g(\mathbf{X}_t) | \mathbf{X}_0 = (x, y, z)].$
- But what is the appropriate process for \mathbf{X}_t ?



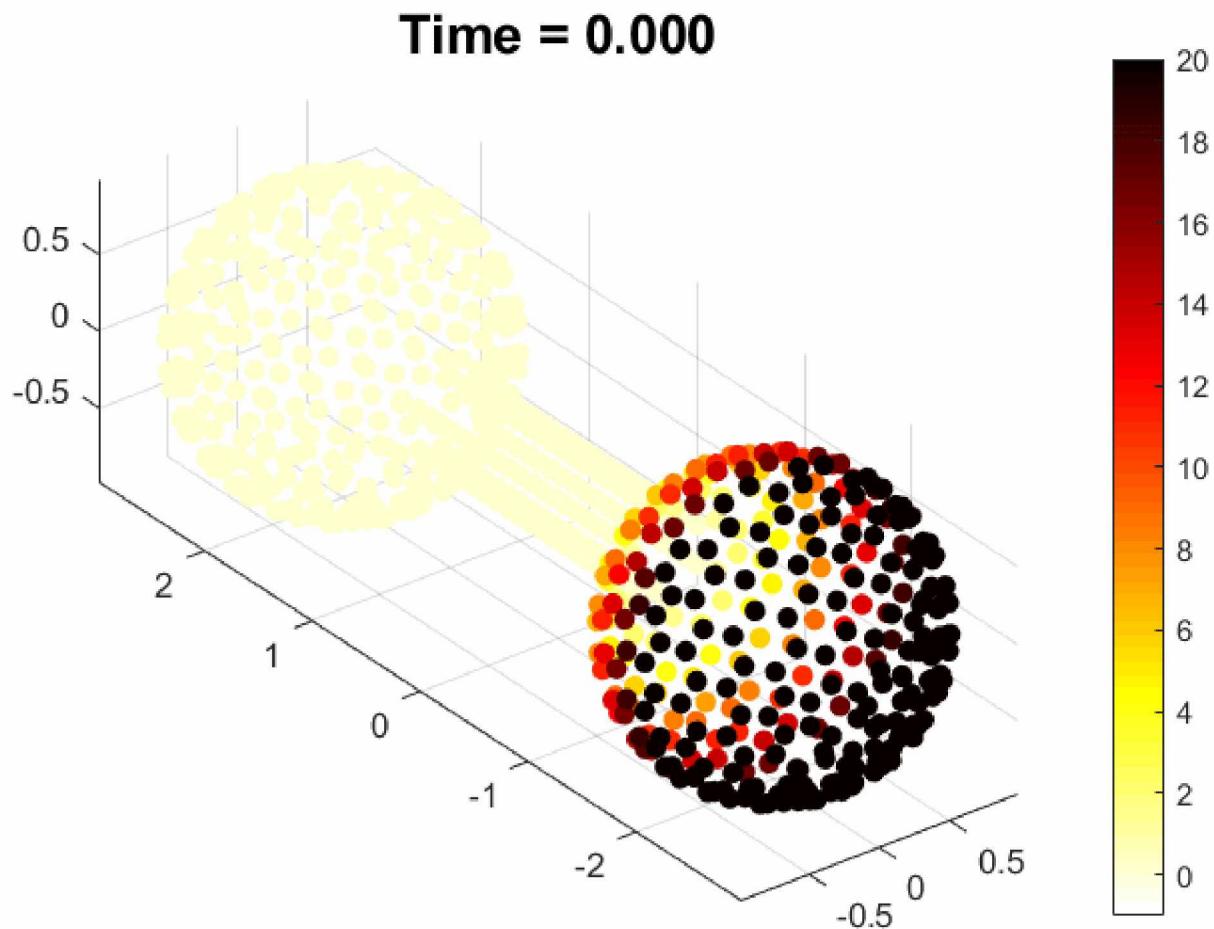
- There are some options.
 1. Use the von Mises-Fisher distribution.
$$f(\mathbf{x}; \boldsymbol{\mu}, k) = \frac{k}{2\pi(e^k - e^{-k})} e^{\boldsymbol{\mu}^\top \mathbf{x}}$$
 2. Use spherical coordinates.
$$d\Theta_t = \alpha \cot \Theta_t + \sqrt{2\alpha} dW_1(t)$$

$$d\Phi_t = \sqrt{2\alpha} \csc^2 \Theta_t dW_2(t)$$
 3. Project to the tangent plane.

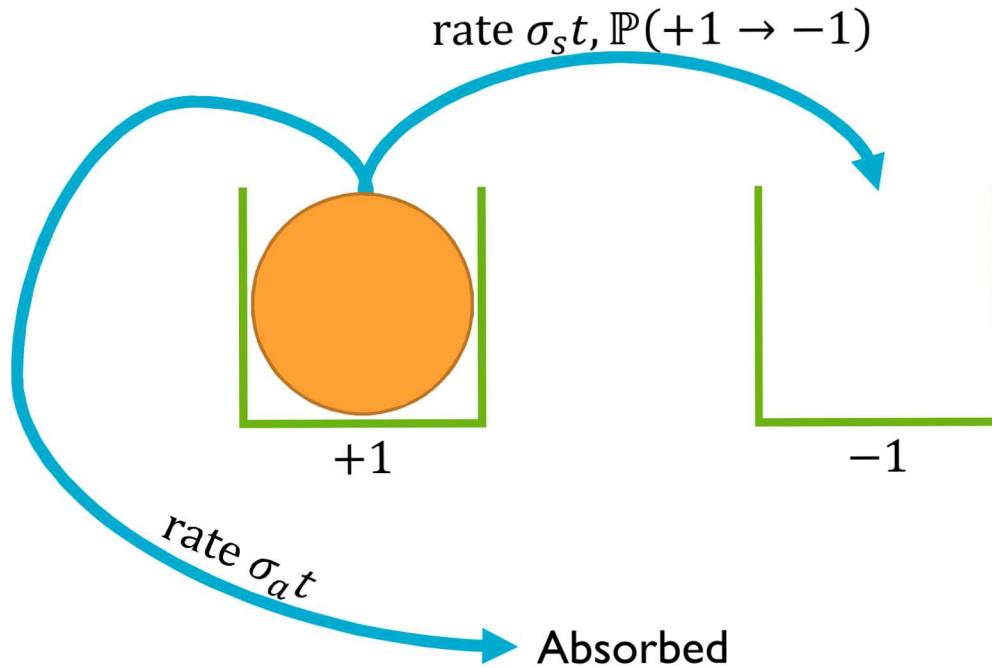


$$\frac{\partial}{\partial t} u(t, x, y, z) = \alpha \nabla u(t, x, y, z), \quad (x, y, z) \in \mathcal{S}^2$$
$$u(0, x, y, z) = g(x, y, z)$$

Non-Euclidean Heat Flow



Boltzmann Transport Equation for Simple Particle

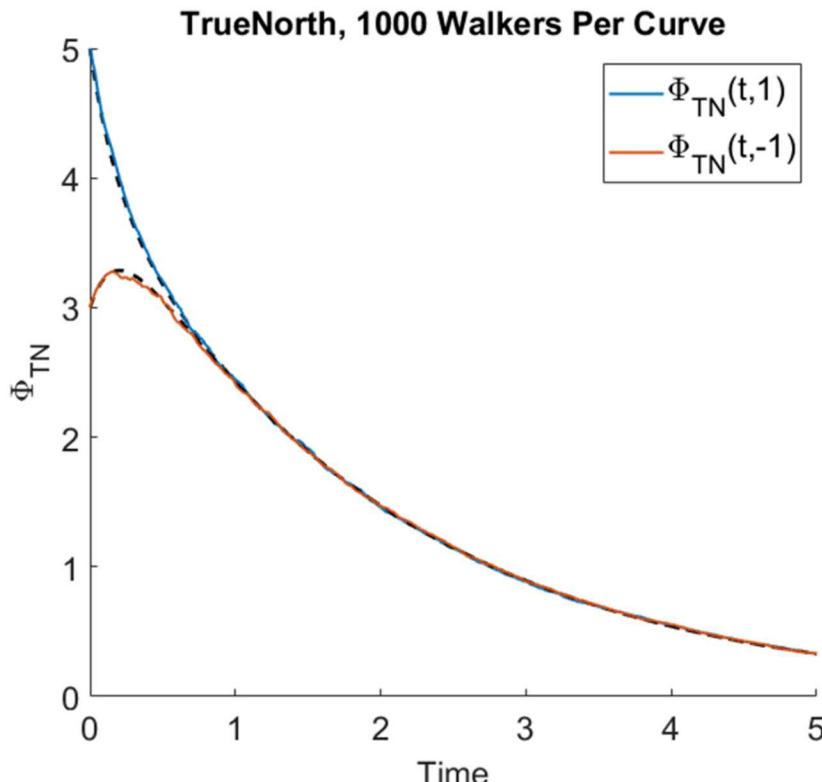
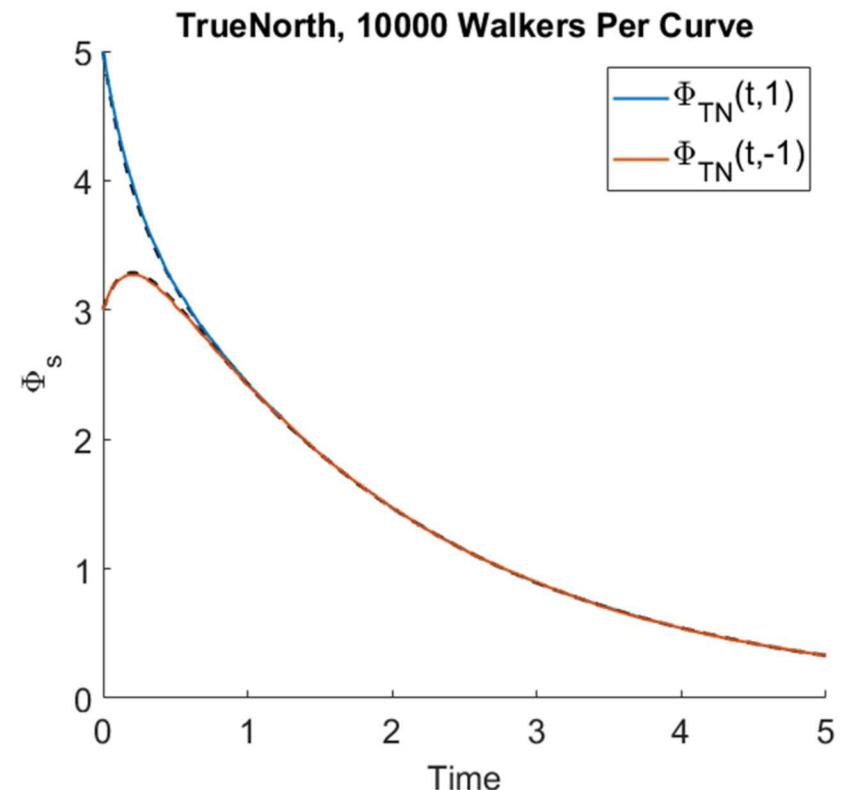


$$\frac{\partial}{\partial t} \Phi(t, \Omega) = -(\sigma_a + \sigma_s) \Phi(t, \Omega) + \int \sigma_s \Phi(t, \Omega') \mathbb{P}(\Omega' \rightarrow \Omega) d\Omega'$$

$$\Phi(\Omega, 0) = g(\Omega) = \begin{cases} 5 & \text{if } \Omega = 1 \\ 3 & \text{if } \Omega = -1 \end{cases}$$

$$\Phi(t, \Omega) = \begin{cases} \frac{1}{2} g(1) (e^{-\sigma_a t} + e^{-(\sigma_a + \sigma_s)t}) + \frac{1}{2} g(-1) (e^{-\sigma_a t} - e^{-(\sigma_a + \sigma_s)t}) & \text{if } \Omega = 1 \\ \frac{1}{2} g(1) (e^{-\sigma_a t} - e^{-(\sigma_a + \sigma_s)t}) + \frac{1}{2} g(-1) (e^{-\sigma_a t} + e^{-(\sigma_a + \sigma_s)t}) & \text{if } \Omega = -1 \end{cases}$$

Boltzmann Transport Equation for Simple Particle



$$\frac{\partial}{\partial t} \Phi(t, \Omega) = -(\sigma_a + \sigma_s) \Phi(t, \Omega) + \int \sigma_s \Phi(t, \Omega') \mathbb{P}(\Omega' \rightarrow \Omega) d\Omega'$$

$$\Phi(\Omega, 0) = g(\Omega) = \begin{cases} 5 & \text{if } \Omega = 1 \\ 3 & \text{if } \Omega = -1 \end{cases}$$

Selected References

■ Random Walks and the Steady-State Heat Equation

- Smith, J.D., Severa, W., Hill, A., Reeder, L., Franke, B., Lehoucq, R., Parekh, O., and Aimone, J.B., Solving a steady state PDE using spiking networks and neuromorphic hardware. In *International Conference on Neuromorphic Systems 2020 (ICONS 2020)*, ACM, 8 pages.
- This paper can already be found on arXiv!

■ Random Walks with Spiking Neuromorphic Hardware

- Severa, W., Lehoucq, R., Parekh, O. and Aimone, J.B., Spiking Neural Algorithms for Markov Process Random Walk. in 2018 *International Joint Conference on Neural Networks (IJCNN)* (2018), IEEE, 1-8.

■ Random Walk Methods for PDEs

- Grigoriu, M. (2013), *Stochastic Calculus: Applications in Science and Engineering*, Springer Science & Business Media.

■ Stochastic Calculus

- Protter, P. (1990), *Stochastic integration and differential equations: a new approach*, Springer-Verlag.
- Wiersema, U. F. (2008), *Brownian motion calculus*, John Wiley & Sons.

