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2 I The Cost of High Performance Computing
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CI Supercomputers are increasingly
limited by power consumption.

CIExascale systems are forecast to be
o —100MW

❑ Neuromorphic could be a radical
advance for HPC.



3 I Beyond Machine Learning/Deep Learning
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inspired neural

algorithms

Machine
Learning /
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Imagine fully integrated
neuromorphic chips on
H PC platforms.

Neural-implemented
numerical and

scientific computing



4 Leveraging Spiking Neuromorphic to Solve Differential
Equations
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atu(t, x, y, z) = aVu(t,x,y,z), (x , y , z) c S 2
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I5 Random Walks and the Heat Equation

CI Random walk methods for PDEs stem
from the heat equation:

a 1 a2

atu = 2 ax2 u, u(x , 0) = f(x)

CI Let Wt be a standard Brownian motion.
Then Wt is normally distributed and

1  f 
f (y) exp 
( (Y — x)2)

E[f(Wt)1147o = x] = dy .
rt 2 t

This is the solution to the heat equation.

..,



6 Spiking Networks and Random Walks

❑ In previous work (Severa et al. 2018) we
efficiently implemented a density-based
approach to calculating random walks.

■ Each vertex encodes density of particles in
the internal potential of certain nodes

■ Each time step "hands off" particles to
connected vertices according to probabilistic
maps

Density Method

Circuit per position

Measure Cost (for k locations,
simulating N walkers; I -D
case)

Walker memory

Connection memory

Total neurons

0(1)

O(k)

O(k)

Time per physical timestep

Position energy per timestep

Update energy per timestep

0(max(p,)), where p, is the
density of walkers at each
location

O(N)

O(N)



7 A Specific Problem: Steady-State Heat Conduction

/  /

T=0

1

u(0) = 0
u'(0) = 0

/ Length -e

CI Taking a(x) = — F (e — x) , the situation can be described by the PDE
0 = d u — F (-e — x) , x E [0, -e] ,

dx2
Lt(0) = 0,

1.1! (0) = 0.

LI This problem has an easy to obtain analytic solution. Can it be solved via random
walks on spiking networks?

Ft' F
u(x) = — 

2 6 
x2 — —x3



I8 A Probabilistic Solution for a Class of Steady-State PDEs

CI Under certai
d
n conditions and assumptions (Grigoriu 2013), the PDE

a2u(x)V
0 = 

aLl(x) 1 
lai(x) +  + p(x), x0DcIRdax,

2 LJ 13Ij (x) oXi oXii=1 i
u(x) = (x), x E ap 0.

,j=1

has local solution given by
T

u(x) = IE k(X(T)) + f p(X(s))dd X0 = xl
o 

,

dXt = cc(Xt)dt + o-(Xt)diNt,
T = inf{t > OIXt 0 D} .

CI This particular result doesn't apply directly to our chosen problem because:
• Our boundary condition is only specified for a part of our boundary (u(0) = 0). We do
not specify anything for x = f.

• We have a mixed condition and require u'(0) = 0 as well.



9 A Probabilistic Solution for Our Steady-State Equation

U Absorb u' (0) = 0 into the random process.

• Make Xt a reflective process at zero.

U After making zero reflecting, we can't evaluate IE WX(T)) Ixo =

• We only know the value of at zero, and the process will no longer exit at
zero.

CI We still must enforce u(0) = O.

• Define

uo = IE 1— F(e — x(s))(isxo
0

• Then, the probabilistic solution to our heat transport equation is

u(x) = IE 1— F(e — x(s))ddxo = xl— uo,
0

where Xt is a process reflecting at zero and has law

dXt = -\/c1Wt

elsewhere.

= 01 .



io Defining a Random Walk from Xt

U To define a random walk from the process Xt, we:

• Choose a spatial discretization unit Ax;

• Choose a time discretization size At so that we can be reasonably sure the process Xt will
not move further than 3Ax/2 to the left or right during the increment;

• Calculate the transition probabilities, taking care when dealing with the reflective boundary
at zero.

U Random walks are assumed to occupy the midpoint of the divisions.

U Random walks must continue until they reach the absorption position.

• • •

0 Ax 20x 30x f — 20x -e - Ax -e

•



ii I Calculating u(x) from samples of Xt

1) For a position xi on the mesh, initialize
M random walkers at xi.

2) Simulate each of the M walkers, keeping
track of the cumulative number nu of
walkers on node xi that began on X.
End when all have absorbed. Do not
include the initialization as part of
the cumulative count.

3) Repeat or parallelize for all positions xi.

4) Use a right end-point approximation to
assign

[IE FAt 
—F f e - X(s) dsI — 114 nij(e — xj) := ui.

5) Then,
/LOCO ui — /to.
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—10k Walker Run

—100k Walker Average
- -Analytic Solution
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Matlab implementation of ten runs with

M = 10,000, F = 3, -e = 2, Ax = 0.05,
and At = 0.0001.



I 2 Spiking Net Simulator Results

CI We run for a fixed number of
neural timesteps.

CI Any walkers not finished by then
increase the error of
approximation.

o
4

o
(J)

SNN RW 1M neural timesteps

—SNN RW 100k neural timesteps

—SNN RW 500k neural timesteps
- -Analytic Solution
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13 Loihi and TrueNorth Results
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14 Loihi Implementation
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Top: Execution time for 250 walkers/starting
location for 7.5 million neural timesteps.

Bottom: Number of simulation timesteps gained
from 7.5 million neural timesteps per
starting location.

•

CI We deployed a neural circuit
representing this random
walk onto an 8-chip Nahuku
platform.

CI Walkers are removed from
simulation once they reach
the absorption node.



I s TrueNorth Implementation

U We implemented the
random walk on a single
chip of the TrueNorth
hardware.

CI Walkers are not removed
once they reach the
absorption node.
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Top: Number of simulation timesteps gained
from 7 million neural timesteps per
starting position.

Bottom: Number of simulation timesteps until
absorption of all walkers per starting
position.



16 Steady-State Heat Transport as a Neuromorphic Benchmark

U Fully self-contained.

CI Has an easy-to-grasp analytic solution.

U Low requirements on the neuron model.

U Scales in the number of nodes (neurons) and the number of walkers (spikes).

U Connectivity is local.

CI Simple pattern.

4 
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17 Ongoing Work and Future Directions



18 Non-Euclidean Heat Flow

CI How would we calculate the
flow over the surface of the
sphere with this initial
condition?

o

dt 
u(t, x,y,z) = aVu(t,x,y,z),

u(0,x,y,z) = g(x,y,z)

(x,y,z) E S2

❑ Discretize the sphere into
roughly equal pieces



19 Non-Euclidean Heat Flow

CI The solution is given by
u (t, x,y,z) = IE [g (X t ) 1X0 = (x,y, z)].

CI But what is the appropriate process for
Xt?

U There are some options.
1. Use the von Mises-Fisher distribution.

k T
f (x; pi, k) = 

27(ek — e-k 
ex4
) 

x

2. Use spherical coordinates.

dOt = a cot 0 t + .NladWi.(t)

dcl: 0 t = V2a csc2 Ot dW2(t)

3. Project to the tangent plane.



20 Non-Euclidean Heat Flow

Time = 0.00

a
tu(t,x,y,z)= crVu(t,x,y,z),

u(0,x,y,z) = g(x,y,z)

1

(x,y,z) E

1

*result in preparation for future publicafron



2 I Non-Euclidean Heat Flow
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*result in preparation for future publican



22  Boltzmann Transport Equation for Simple Particle

rate ast P +1 —1)

a
at(p(t,11) 

=

+1 1

Absorbed

(act + as)(13(t, + as4:13(t, fl')PM' 11)cl,(1'

OM, 0) = gal) = 
5 if SI = 1
3 if SI = —1

1
g(1)(e—aat e—(0-a+o-s)t)

1
g(1)(e—acit — e—(0-a+o-s)t)

+ 
1 
—
2 
g(-1)(e—gat — e—(0-a+o-s)t)

+ 
1 
g(-1)(e—Crat e—(Cra+as)t)

if SI = 1

if SI = —1 id

\\I‘ ‘•••1



23 Boltzmann Transport Equation for Simple Particle

TrueNorth, 1000 Walkers Per Curve
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TrueNorth, 10000 Walkers Per Curve

1 2 3 4 5 0 1 2 3
Time Time

at
a 

cp(t = 0-0cp(t,11) + ascl)(t, fr)P(.0! WM!

15 if II = 1
3 if II = —1

O(SZ, 0) = g(fl) =

4 5

€:2„

*result in preparation for future publication
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