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Abstract 

This paper describes a physics-guided Bayesian framework for identifying the milling stability boundary and system parameters through iterative 
testing. Prior uncertainties for the parameters are identified through physical simulation and literature reviews, without physical testing of the 
actual milling system. Those uncertainties are then propagated to the stability map using a physics-based stability model, which is used to suggest 
a test point. The uncertainties are updated based on the new information acquired from the cutting test to form a new probability distribution, 
called the posterior. Finally, the posterior are compared to measured values for the stability boundary and system parameters to evaluate the 
approach. Based on experimental observations, the advantages and disadvantages of using a physics-guided model are discussed. 
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1. Introduction 

The importance of considering the system’s vibration 
response when selecting machining parameters has been well-
established in the literature (see [1], for example). If the tool tip 
and workpiece dynamics are not taken into account, then 
chatter may result, where regenerative vibrations are caused by 
varying chip thickness. Stability maps are a powerful tool for 
selecting the highest productivity milling parameters, where 
the rotating tool’s tooth passing frequency is an integer fraction 
of the natural frequency that corresponds to the most flexible 
vibration mode. Frequency domain methods for calculating the 
stability maps using the tool tip frequency response function 
(FRF) and cutting force coefficients have been presented [1-2]. 
However, finding the FRF and cutting force coefficients can be 
challenging, requiring specialized tools and an experienced 
operator to perform the measurements. These requirements 
have prevented industry-wide adoption of the stability map 
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method for parameter selection. 
Several papers have studied stability map identification 

through iterative testing without the need for direct 
measurements. Karandikar et al. described Bayesian updating 
methods based on Brownian motion random walks or Gaussian 
processes to update the probability of stability using test 
results, as well as algorithms for selecting test parameters based 
on a probabilistic stability map [3]-[4]. The random walk 
Bayesian updating method gives fast convergence and is 
computationally efficient, but does not provide information 
about the underlying system parameters, including the FRF and 
cutting force coefficients. Furthermore, the method is not 
physics-based and incorporates only minimal domain 
knowledge in its updating. Li et al. developed another Bayesian 
method based on propagating and updating input uncertainties 
using an ensemble Markov Chain Monte Carlo technique [5]. 
However, their technique requires a large number of samples 
which imposes significant calculation time. Additionally, 
Suzuki et al. used stability testing in an inverse analysis to 
identify the tool tip FRF [6]. 

This paper describes a unified framework for both 
identifying the optimal milling parameters and improving the 
milling model using a physics-based Bayesian updating 
approach. The framework is described in Figure 1. The major 
steps are summarized here. 
• Establish the prior uncertainties for the FRF modal 

parameters and cutting force coefficients using simulations 
and literature reviews. 

• Propagate the input uncertainties through the physics-
based model to create a probabilistic stability map.  

• Use the stability map to select a milling parameters to test. 
• Perform the cutting test and classify it as stable or unstable. 
• Define a new posterior distribution based on the results of 

the cutting test. 
• Draw samples from the posterior distribution using a 

Markov Chain Monte Carlo method. 
• Update the model input distributions and calculate the 

posterior stability map by propagating those samples 
through the physics-based model. 

 

Figure 1: Overview of the Bayesian stability framework. 

 
This paper provides four novel contributions. 

• Prior uncertainties are established based on objective 
analysis, via uncertainty propagation or literature review. 
This reduces the need for user guidance or expertise in 
prior selection. 

• A combination of rejection sampling and adaptive 
proposal Markov Chain Monte Carlo sampling is used to 
approximate the posterior distribution. This method 
improves mixing and achieves convergence in a smaller 
number of samples, increasing computational efficiency. 

• Using a physics-guided model to propagate uncertainty 
and an expected-value algorithm for test selection results 
in faster convergence to the optimal milling parameters. 

• The posterior estimates for the FRF and cutting 
coefficients are compared to measured values to evaluate 
whether the posterior distributions of the FRF and cutting 
force parameters converge towards their measured values. 

The new Bayesian updating method is applied to an 
example machining setup on a Haas VF-4, shown in Figure 2. 
The cutting tool was a single flute inserted endmill 
(Kennametal part number M1D062E1401W075L150, 15.88 
mm cutting diameter, 19.05 mm shank diameter) with a coated 
carbide insert (part number EC1402FLDJ). The 6061-T6 
aluminum workpiece was mounted on a parallelogram-type 
flexure, shown in Figure 2. The flexure’s displacement during 
cutting was measured using a capacitance probe and tool 
rotation was measured with a laser tachometer. All test cuts 
were performed with a fixed radial stepover of 5 mm and a feed 
per tooth of 0.1 mm. The spindle speed and depth of cut were 
varied from 2500 rpm to 7000 rpm and 0 mm to 10 mm, 
respectively. 

 

 

Figure 2: Machining test set up with capacitance probe (CP) and laser 
tachometer (LT).  

The paper is organized as follows: 
• In section 2, the prior uncertainties are established and 

propagated through the physics model to create a prior 
probabilistic stability map. This prior is compared to the 
results of an experimental grid test. 

• Section 3 describes how Bayesian updating can be used to 
evaluate the posterior distribution based on cutting test 
results. The prior distributions are updated based on the 
experimental grid test using rejection sampling 
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• Section 4 details the adaptive proposal Markov Chain 
Monte Carlo technique used to sample the posterior 
distribution. This is applied to generate samples from the 
target posterior distribution after grid testing is completed. 

• Section 5 describes the expected value method used to 
select test parameters. 

• Section 6 presents the results of the Bayesian optimization 
framework with the automated test selection. 

• Section 7 discusses the results, advantages, and limitations 
of the physics-guided model. 

2. Establishing the prior 

The first requirement for establishing a Bayesian model is 
to determine the prior. The prior represents one’s current 
beliefs about the variables using all available information 
before any new cutting tests have been performed. Five inputs 
with associated uncertainties are considered in this effort: 
• tangential cutting force coefficient 𝑘𝑘𝑡𝑡𝑡𝑡, 
• normal cutting force coefficient 𝑘𝑘𝑛𝑛𝑛𝑛, 
• flexure stiffness 𝑘𝑘, 
• flexure mass 𝑚𝑚, and 
• flexure viscous damping coefficient 𝑐𝑐. 

Uncertainty distributions were established for each of the 
variables. Each uncertainty was defined as a normal 
distribution. The parameters and their measured values are 
listed in Table 1. These were obtained using the following 
approaches. These methods were selected to demonstrate how 
a prior can be established without calibration experiments, but 
other methods can be used depending on what information is 
known about the system. 
• The priors for the cutting force coefficients were found 

from a literature review of reported force coefficients for 
milling 6061-T6 aluminum. Twenty different sets of 
coefficients were taken from five different sources, and the 
means and standard deviations for 𝑘𝑘𝑡𝑡𝑡𝑡 and 𝑘𝑘𝑛𝑛𝑛𝑛 were used 
as the initial prior [7]-[11]. The “true” values were 
measured using a cutting force dynamometer by 
performing a linear regression to the mean cutting force at 
different feed per tooth values. 

• The priors for the flexure mass 𝑚𝑚  and stiffness 𝑘𝑘  were 
determined through: 1) beam theory predictions for 
parallelogram, leaf-type flexures [12]; and 2) Monte Carlo 
sampling to incorporate uncertainties in the analytical 
model inputs, including flexure dimensions (thickness and 
length of each of the flexure leaves), elastic modulus, and 
density. The true values were measured by tap testing with 
an instrumented hammer and low-mass accelerometer. 

• The viscous damping coefficient 𝑐𝑐  distribution was 
selected based on experience with similar flexures. It was 
calculated by assuming a mean viscous damping ratio of 
1.4% with a standard deviation of 0.14% and propagating 
that uncertainty to the damping coefficient via Monte 
Carlo sampling of the mass and stiffness distributions. The 
true value was measured by tap testing. 

Table 1: Input uncertainties 

Parameter 
Prior 

distribution 
(μ ± 1σ) 

Measured 
value 

Basis for the 
prior 

𝑘𝑘𝑡𝑡𝑡𝑡  ( N
mm2) 734 ± 83.4 903.9 Literature 

review 

𝑘𝑘𝑛𝑛𝑛𝑛  ( N
mm2) 346 ± 67.3 534.5 Literature 

review 

𝑘𝑘 ( N
μm) 2.17 ± 0.266 1.64 Monte Carlo 

sampling 

𝑚𝑚 (kg) 2.75 ± 0.057 2.51 Monte Carlo 
sampling 

𝑐𝑐 (N ⋅ s
m ) 68.3 ± 6.47 114 

Author 
experience, 

Monte Carlo 
sampling 

 
The Table 1 entries can be thought of as a series of five 

univariate normal distributions with standard deviations 
𝜎𝜎1, 𝜎𝜎2, … , 𝜎𝜎5  and mean values 𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇5 . Sampling from 
each of these distributions gives a series of values 𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃5. 
However, it is more useful to consider the inputs as a single 
five dimensional multivariate normal distribution 
𝜽𝜽~Normal5(𝝁𝝁, 𝑺𝑺) with mean vector 𝜇𝜇 , covariance matrix 𝑆𝑆, 
and output vector 𝜃𝜃: 

 

 𝜽𝜽 = [
𝜃𝜃1
⋮

𝜃𝜃5
] , 𝝁𝝁 = [

𝜇𝜇1
⋮

𝜇𝜇5
] , 𝑺𝑺 = [

𝜎𝜎1
2 0 0

0 ⋱ 0
0 0 𝜎𝜎5

2
] , (1) 

 
where 𝑆𝑆 is a symmetric matrix which defines the variance and 
covariance of the output vector 𝜃𝜃 . The diagonal of the 
covariance matrix defines the variance (which is the standard 
deviation squared) for each component in the output vector. 
The other components give the covariance between the 
different elements: for example, 𝑺𝑺12 is the covariance between 
components 1 and 2 (and since the matrix is symmetric, 𝑺𝑺12 =
𝑺𝑺21 ). This covariance defines the correlation between the 
components: a positive value indicates that higher values of 𝜃𝜃1 
tend to be correlated with higher values of 𝜃𝜃2, while a negative 
value for 𝑺𝑺12 would indicate that as 𝜃𝜃1 increases, 𝜃𝜃2 tends to 
decrease. Since all non-diagonal components are 0 in 𝑺𝑺, this 
indicates that each element of 𝜃𝜃  is independent; there is no 
correlation between them.  

One thousand (1000) samples were drawn from this input 
distributions. Figure 3 shows the distributions and correlations 
of the individual variables listed in Table 1 after 1000 samples 
𝜃𝜃1  through 𝜃𝜃1000  were drawn from the prior. Since the non-
diagonal elements of the covariance matrix were zero, the 
distributions of the variables are independent. 
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Figure 3: Initial distributions for the input variables. The diagonal plots show 
the histograms for each individual variable, while each of the non-diagonal 
subplots plots two of the variables against each other. Red dots and lines 
show the measured values for each of the variables. The measured values for 
most of the variables are far away from the prior means. 

Once these samples are taken, they can be propagated to 
the stability map using the Monte Carlo procedure described by 
Duncan et al. [13]. The frequency domain, zero-order 
approximation stability algorithm described by Altintas and 
Budak was applied here [2]. While the full algorithm is not 
presented here since it has already been well-established in 
literature (consult [2] for a full explanation), a brief summary 
of the method is presented to establish how the different 
variables contribute to calculating the stability map. 

1. The cutting force coefficients 𝑘𝑘𝑡𝑡𝑡𝑡, 𝑘𝑘𝑛𝑛𝑛𝑛  are used to 
determine the dynamic cutting force coefficients as a 
function of cutter rotation. This is approximated as a 
Fourier series, using only the first (DC) component. 
Those dynamic cutting force coefficients are then 
used to calculate the total cutting force vector as a 
function of relative tool displacement. 

2. The frequency response function (FRF) is determined 
from the modal parameters 𝑘𝑘, 𝑚𝑚, 𝑐𝑐 (see [1]). The FRF 
is used to calculate how much the tool will vibrate 
during each tooth-passing period as a function of force 
and chatter frequency. 

3. That vibration is plugged into the displacement term 
of the cutting force function, which is the 
characteristic equation of the tool motion as a function 
of chatter frequency. 

4. The eigenvalues of that function are used to calculate 
the limiting axial depth of cut for every chatter 
frequency. Depths of cut above this limit will chatter, 
while below will be stable. 

5. The spindle speed associated with each chatter 
frequency is calculated by finding the appropriate 
tooth-passing period. This calculation is repeated for 
every lobe of the stability map. 

 
This algorithm calculates the limiting axial depth without 

chatter, 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙, for some combination of input parameters 𝜽𝜽 and 
spindle speed Ω as 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(Ω, 𝜽𝜽). Calculating this value for all 
samples and spindle speeds in the testing range yields the 
probabilistic stability map shown Figure 4. The grey-scale level 
of each point {Ω, 𝑏𝑏}  is the probability of stability, which is 
based on how many of the sampled stability maps predict that 

a cut at that point will be stable: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏, Ω) = 1
𝑛𝑛 ∑ 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 (Ω, 𝜽𝜽𝑖𝑖

𝑛𝑛

𝑖𝑖=1
) < 𝑏𝑏 (2) 

where 𝑛𝑛 is the total number of sampled 𝜽𝜽 values. If all the 
stability maps predict that a point {Ω, 𝑏𝑏} will chatter, then that 
point is coloured black (zero probability of stability). If all the 
sampled stability maps predict that point will be stable, then the 
point is white (100% probability). Intermediate shades of grey 
represent different expected probabilities of stability. The 
probabilistic stability map shown in Figure 4 represents the 
prior. 

 

Figure 4: Prior probability of stability map. The more likely it is that a given 
point is stable, the closer it is to white, while darker points are expected to be 
more likely to chatter. 

Once the probabilistic stability map has been predicted, it 
can be validated using a grid-type pattern of tests over evenly 
spaced axial depths of cut and spindle speeds. For this project, 
tests were performed in increments of 1000 rpm in spindle 
speed and 2 mm in axial depth, from 2500 rpm to 7500 rpm and 
2 mm to 8 mm. Tests at a given spindle speed were 
discontinued when fully-developed chatter was observed. 

The grid-type stability tests were performed and the 
flexure displacement signal was recorded during cutting. The 
tachometer pulse was used to sample the displacement once per 
tooth passage; see Figure 5. Because there was a single tooth, 
this resulted in once-per-revolution sampling. 

 

Figure 5: Displacement signal for an unstable test (test 13 at 5500 rpm, 6 mm 
axial depth in Table 3). The solid blue line represents the displacement signal, 
while the red circles are the once per tooth samples used to determine stability. 
For a stable cut, the displacement should repeat every tooth passage.  
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These once-per-tooth samples were classified as either 
stable or unstable using the sampling metric established by 
Honeycutt and Schmitz [11]: 

 

𝑀𝑀 = ∑
|𝒙𝒙𝑠𝑠(𝑖𝑖) − 𝒙𝒙𝑠𝑠(𝑖𝑖 − 1)|

𝑁𝑁

𝑁𝑁

𝑖𝑖=2
, (3) 

 
where 𝒙𝒙𝑠𝑠  is a vector containing the once-per-tooth passage 
samples from the flexure displacement signal, and 𝑁𝑁  is the 
length of the 𝒙𝒙𝑠𝑠  vector. In a stable cut, the flexure vibration 
repeats with each tooth passage, meaning that 𝒙𝒙1:𝑁𝑁 = 𝑀𝑀 =
0 µm ideally. In contrast, the samples vary from tooth to tooth 
for an unstable cut (chatter), so 𝑀𝑀 > 0. A threshold of 𝑀𝑀 =
10 μm was selected for automated stability labelling: any cuts 
with 𝑀𝑀 ≤ 10 μm were classified as stable, while cuts where 
𝑀𝑀 > 10 μm were classified as chatter. Figure 6 compares the 
surfaces from tests 7 (𝑀𝑀 = 21 µm ) and 12 (𝑀𝑀 = 10 µm ). 
While both surfaces show noticeable tool marks (due to the low 
stiffness of the flexure), the tool marks for test 7 are not evenly 
spaced, which is a key signifier of chatter. In contrast, the tool 
marks for test 12 are, while large, evenly and regularly spaced, 
indicating a stable cut (albeit one with large surface 
dislocation.) While 𝑀𝑀 = 10 µm  was used for these tests, 
different cutoffs may be required for different systems or 
desired surface quality. 

Table 2: Grid test points1 

Test 
Number 

Spindle 
speed 
(rpm) 

Axial 
depth 
(mm) 

𝑀𝑀 (µm) Stability 
result 

1 2500 2 3 Stable 
2 3500 2 104 Unstable 
3 4500 2 2 Stable 
4 5500 2 2 Stable 
5 6500 2 17 Unstable 
6 7500 2 3 Stable 
7* 2500 4 21 Unstable 
8 4500 4 5 Stable 
9 5500 4 79 Unstable 
10 6500 4 229 Unstable 
11 7500 4 1 Stable 
12 4500 6 10 Stable 
13 5500 6 127 Unstable 
14* 4500 8 269 Unstable 

 

 
 
1 For cutting tests marked with *, it was observed that the tool shank 

contacted the part during large vibrations. 
 
2 𝑃𝑃(𝜽𝜽|𝜔𝜔) is proportional to 𝑃𝑃(𝜔𝜔|𝜽𝜽) ⋅ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜽𝜽) since, for it to be a valid 

probability density function, ∫ 𝑃𝑃(𝜽𝜽|𝝎𝝎) 𝑑𝑑𝜽𝜽𝜃𝜃  must be equal to 1. There is 

 
(a) 

 
(b) 

Figure 6: Cut surfaces for (a) grid test 7 (𝑀𝑀 = 21 µm) and (b) grid test 
12 (𝑀𝑀 = 10 µm). Note the uneven spacing of the cutter marks in (a), while in 

(b) all the tool marks are generally evenly spaced, indicating a stable cut  

4. Bayesian updating 

Once a cutting test is completed and new information is 
obtained, the posterior is calculated. The posterior is a new 
probability distribution which incorporates the new 
information that’s been gained from the outcome of the test cut 
into the prior. Probability distributions are defined by their 
probability density function (PDF). This is a function which 
defines how likely it is for a specific value of 𝜃𝜃 to be obtained. 
For example, the PDF of the prior distribution is:  

 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜽𝜽) = PDFNormal5(𝜽𝜽, 𝝁𝝁, 𝑺𝑺) 

= 1
(√2𝜋𝜋)5√det(𝑺𝑺)

exp (− 1
2 (𝜽𝜽 − 𝝁𝝁)𝑇𝑇 𝑺𝑺−1(𝜽𝜽 − 𝝁𝝁)) , (4) 

 
where det (𝑺𝑺)  is the determinant of the covariance matrix 
𝑺𝑺 .The goal is to find a new function which defines the 
probability of any value of 𝜽𝜽 after taking into account the new 
information acquired from the results of the test cut. Formally, 
the posterior distribution can be written as 𝑃𝑃(𝛉𝛉|ω) , the 
probability of the input values 𝜽𝜽 conditioned on the test result 
𝜔𝜔. This can be calculated using Bayes’ rule2: 

 
𝑃𝑃(𝜽𝜽|𝜔𝜔) ∝ 𝑃𝑃(𝜔𝜔|𝜽𝜽) ⋅ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜽𝜽), (5) 

 
where 𝑃𝑃(𝜔𝜔|𝜽𝜽)  is the probability of observing a test result 
conditioned on the input values, i.e., how likely it is that a set 
of input values that say a given stable test will actually be stable 
or a given unstable test will actually be unstable. The test 
results 𝜔𝜔 contain three pieces of information: the test spindle 
speed Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , the test axial depth of cut 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , and whether the 
cut was stable or not. Using this information, 𝑃𝑃(ω|𝛉𝛉)  is 
defined with two piecewise Gaussian dropoff functions, 
depending on the test cut result. If 𝜔𝜔 was stable, then: 

 

therefore some normalization factor that would have to be added to compensate 
for this to satisfy 𝑃𝑃(𝜽𝜽|𝜔𝜔) = 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ⋅ 𝑃𝑃(𝜔𝜔|𝜽𝜽) ⋅ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜽𝜽) . In practice, this 
normalization factor is both difficult and, as will be seen, unnecessary to 
calculate. 
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𝑃𝑃(𝜔𝜔|𝜽𝜽) ∝ {
1 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(Ωtest, 𝜽𝜽) > 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑒𝑒−0.5(𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝜽𝜽)−𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎 )

2

otherwise
(6) 

 
If 𝜔𝜔 was unstable, then: 
 

𝑃𝑃(𝜔𝜔|𝜽𝜽) ∝ {
1 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(Ωtest, 𝜽𝜽) < 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑒𝑒−0.5(𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝜽𝜽)−𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎 )

2

otherwise
(7) 

 
If the 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 value calculated by 𝜽𝜽 at the test spindle speed 

correctly predicts the results of the test cut, then 𝑃𝑃(ω|𝛉𝛉) = 1. 
This occurs if the cut was stable and 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 was above the test 
depth of cut, or if the cut was unstable and 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 was below the 
test depth of cut. If 𝜽𝜽 incorrectly predicts the test result, then 
𝑃𝑃(ω|𝛉𝛉) < 1 . The further away 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔, 𝜽𝜽)  is from correctly 
predicting the test results, the lower 𝑃𝑃(𝜔𝜔|𝜽𝜽) is, with the rate of 
drop off set by 𝜎𝜎 . For this paper, a drop off value of 𝜎𝜎 =
0.125 mm was used. This is depicted in Figure 7, which shows 
the probability density function that results from a stable test 
cut at a 5 mm axial depth. 

 

Figure 7: 𝑃𝑃(𝜔𝜔|𝜽𝜽) for a stable test result at 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5 mm with varying values 
of the dropoff parameter 𝜎𝜎. Any value of 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 above 5 mm has a probability of 
1 since it predicts that test should be stable. If 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 < 5 mm , then the 
probability density decreases, with the rate of decrease set by 𝜎𝜎: the lower 𝜎𝜎 is, 
the faster the probability decreases. If the cut was unstable, then the chart would 
be mirrored horizontally around 𝑏𝑏 = 5 mm. 

An equation which is proportional to 𝑃𝑃(𝜽𝜽|𝜔𝜔)  has now 
been established. Samples taken from the prior distribution 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜽𝜽) can then be updated via rejection sampling [14]. The 
required steps follow. For each sample: 
• calculate 𝑃𝑃(𝜔𝜔|𝜽𝜽) 
• select a random value from the distribution Uniform(0,1) 
• if the random value is less than 𝑃𝑃(𝜔𝜔|𝜽𝜽), then discard 𝜽𝜽 
• otherwise, accept it. 

 
The remaining samples will approximate the desired 

distribution 𝑃𝑃(𝜽𝜽|𝜔𝜔). This is called rejection sampling and it’s 
a common method for sampling from complex univariate 
probability distributions. Figure 8 displays the result of this 
updating when the first test from the grid at a 2500 rpm spindle 
speed and 2 mm axial depth is used to update the stability map. 
Only 75 of the 1000 samples were rejected, since the majority 

 
 
3 Note that the exact number and location of samples will vary if the 

updating process is run again, since both the Monte Carlo sampling and the 

of the prior sampled stability maps predicted that the test would 
be stable. This indicates that the test had low information value: 
there was little change in the posterior distribution, and, 
therefore, little new information was gained from the test. 

  

 

Figure 8: Posterior stability map and histograms after updating based on a 
stable test run at 2500 rpm, 2mm axial depth of cut. 8 of the samples were 
rejected because of the results of that test. There are 992 out of the original 
1000 samples remaining. This indicates that the test was of low value and 
demonstrates the inefficiency of the grid test: it was taken at a position which 
was already expected to be stable with high probability, and there is thus very 
little change in the stability map since not much has been learned. 

This rejection sampling method can be generalized to an 
arbitrary number of cutting tests by using the posterior of each 
cutting test 𝑃𝑃(𝜽𝜽|ωn) as the prior for the next update:  

𝑃𝑃(𝜽𝜽|𝜔𝜔1:𝑛𝑛) ∝ 𝑃𝑃(ωn|𝜽𝜽)𝑃𝑃(𝜽𝜽|𝜔𝜔1:𝑛𝑛−1) = 𝑃𝑃(𝜽𝜽) ∏ 𝑃𝑃(ωn|𝜽𝜽)
𝑁𝑁

𝑛𝑛=1
. (8) 

However, executing this strategy over multiple tests will 
quickly deplete the remaining number of samples. An example 
is provided in Figure 9, showing the posterior distribution after 
applying rejection sampling for the entire 14 cut grid test. After 
14 cutting tests, 998 of the original 1000 samples have been 
rejected. 3  The two remaining samples are not sufficient to 
accurately represent the full posterior distribution. 

rejection sampling are stochastic methods. 
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Figure 9: Example of sample depletion after running 14 cutting tests in a grid 
pattern. There are only two samples left. 

This sample depletion issue can be solved by generating 
more samples from the target distribution via the same rejection 
sampling method, but this is computationally inefficient. Since 
only 0.2% of the samples are accepted, approximately 500,000 
samples would have to be generated to yield 1000 samples in 
the posterior. 

A better option is to sample directly from the target 
distribution. However, doing so is non-trivial since there’s no 
closed-form integral for the PDF. Numerically approximating 
the cumulative density function would require integrating over 
the entire five-dimensional parameter space. This is 
computationally infeasible; even a low-resolution integration 
with 100 samples per dimension would require a total of 
1005 = 1010 samples (which would take roughly three years 
to calculate at 100 samples per second). Therefore, an 
alternative to direct sampling is required. 

5. Markov Chain Monte Carlo sampling 

One way to efficiently sample the posterior distribution is 
to use a Markov Chain Monte Carlo (MCMC) method. MCMC 
methods are a family of techniques used for taking samples 
from complex high-dimensional distributions and are 
commonly applied to calculate posteriors for Bayesian 

 
 
4 Specifically, it is a variation on the original Metropolis algorithm, a 

simpler version of Metropolis-Hastings algorithm which requires symmetric 
proposal distributions. The Haario algorithm is asymptotically symmetric: 

inference [15]. Rather than generating each sample 
independently, they generate samples as a Markov chain where 
every sample is generated based on the previous sample in the 
chain. While each sample is correlated with the previous 
sample, the distribution will eventually converge to the target 
distribution as sufficient samples are taken. 

The specific method used in this paper is a greedy adaptive 
MCMC method from Haario et al. [16]. The adaptive MCMC 
method is a variation on the classic Metropolis-Hastings (MH) 
algorithm, which accepts or rejects samples based on the ratio 
of their probability to the previous value in the Markov Chain 
[17]. 4  This method offers several advantages over simpler 
sampling methods like rejection sampling or traditional MH. 
• Unlike directly sampling the distribution, MH does not 

require that the probability distribution be normalized; it is 
sufficient to have a function that is proportional to the true 
PDF. This is critical, since calculating the appropriate 
normalization factor to ensure that the PDF integrates to 1 
would require numerically integrating over the entire five-
dimensional parameter space. 

• MCMC methods have higher acceptance rates than simple 
rejection sampling, especially in high-dimension 
probability spaces. This is because the Markov chain tends 
to congregate in areas with high probability and spends 
less time in areas with lower probability. Thus, the MCMC 
method will waste fewer samples on areas of the parameter 
hyper-space where 𝑃𝑃(𝜽𝜽|𝜔𝜔1:𝑁𝑁) ≈ 0. 

• Rather than using the same proposal distribution every 
time like MH, Haario’s algorithm updates its proposal 
distribution after every sample based on the estimated 
covariance matrix defined by all accepted samples up to 
that point. Selecting an appropriate proposal distribution 
for MH is both critical and challenging. If the proposal 
distribution proposes steps which are very far away from 
the last accepted sample, then the acceptance rate will be 
low. However, if the proposal distribution suggests small 
steps, then the correlation between subsequent samples 
will be high and more samples will be required to fully 
explore the parameter space. The adaptive MCMC method 
ensures that the proposal is always appropriate for the 
target distribution, and thus provides faster convergence. 

The MCMC process for sampling the target distribution is 
described here. 
1. Collect all samples of 𝜽𝜽  that remain after the rejection 

sampling process described previously. These will be 
referred to as 𝜽𝜽∗  and provide a more accurate initial 
estimate of the target covariance matrix. This improves 
convergence since the adaptive algorithm starts with a 
reasonably good guess for the optimal proposal 
distribution. 

2.  Calculate the covariance matrix of all the samples in the 
union of the starting sample set, 𝑺𝑺𝟎𝟎 = Cov(𝜽𝜽∗). 

while the proposal distribution does technically change as each new sample is 
added, the change is small enough that it can be ignored. 
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3. Select one of the samples in the starting sample set as the 
starting point for the Markov chain. Designate this as 𝜽𝜽0.5 

4. Set the sample tracker 𝑛𝑛 = 1. 
5. Create a proposal distribution 𝜽𝜽proposal~(1 −

𝛽𝛽) 𝑁𝑁𝑑𝑑(𝜽𝜽𝑛𝑛−1, (2.38)2𝑺𝑺𝑛𝑛−1/𝑑𝑑) + 𝛽𝛽 𝑁𝑁(𝜽𝜽𝑑𝑑−1, (0.1)2𝑰𝑰𝑑𝑑/
𝑑𝑑 ) . 6  The first term is the adaptive normal distribution 
centered around the last accepted point. The second term 
is added to help ensure that the parameter space is fully 
explored even when 𝜽𝜽∗ is not a good representation of the 
actual desired probability distribution [15]. Also, 𝛽𝛽  is a 
weighting value in the range 0 < 𝛽𝛽 ≪ 1. Here, a value of 
𝛽𝛽 = 0.1 was used. 

6. Draw a sample 𝜽𝜽𝑛𝑛 from 𝜽𝜽proposal. 
7. Calculate 𝑃𝑃(𝜽𝜽𝑛𝑛|𝜔𝜔1:𝑁𝑁) and compare it to a random value 𝑥𝑥 

drawn from a uniform distribution between zero and one. 

If 𝑥𝑥 > 𝑃𝑃(𝜽𝜽𝑛𝑛|𝜔𝜔1:𝑁𝑁)
𝑃𝑃(𝜽𝜽𝑛𝑛−1|𝜔𝜔1:𝑁𝑁) , then return to step 5 to draw a new 

candidate 𝜽𝜽𝑛𝑛. Otherwise, continue to the next step. 
8. Increment 𝑛𝑛  by one. If 𝑛𝑛 > 1000 , then return 𝜃𝜃1:1000 . 

Otherwise, calculate the new covariance matrix 𝑆𝑆𝑛𝑛 =
Cov(⋃ 𝜽𝜽∗, 𝜽𝜽1:𝑛𝑛) and return to step 4.7 

This MCMC method is applied after each new test point is 
added and the resulting samples are then used as the prior for 
the next test. Figure 10 shows the posterior distribution after all 
the grid tests are included. Overall, the results agree with those 
obtained through rejecting samples, demonstrating that both 
methods give equivalent results. However, the MCMC method 
has many more samples and better approximates the target 
distribution 𝑃𝑃(𝜽𝜽|𝜔𝜔) (note how the larger number of samples in 
the distributions gives a better idea of the distribution shape). 

 

 
 
5 The exact starting position does not matter provided it is of relatively 

high probability with respect to the number of samples taken. For example, it 
could be acceptable to start with a point with a probability of 10−3 provided 
that 106 samples are taken, since it’s expected that 1000 such samples would 
appear over the entire run. This same starting point would not be acceptable if 
only 100 samples are taken since such a point should be unlikely to appear. 
Often, a burn-in cycle is used to help ensure this, running a fixed number of 
throwaway samples to let the Markov chain move into a higher probability 
area. For this application, however, this isn’t necessary: any of the samples 
which were retained should be of sufficiently high probability to not bias the 
Markov chain by starting in a very low probability region [18]. If, however, a 
test point is added which results in no samples remaining, a burn-in cycle could 
be used to find an appropriate starting point.  

 

Figure 10: Posterior after the grid tests, using the Markov Chain Monte Carlo 
method to generate more samples after every test. The red x represents an 
unstable result, while a green dot represents a stable cut. 

There are two interesting things to note about the results in 
Figure 10. First, the individual values in the posterior 
distribution are no longer independent. For example, the 
distributions for 𝑘𝑘𝑛𝑛𝑛𝑛  and 𝑘𝑘𝑡𝑡𝑡𝑡  are positively correlated, as 
shown by the slope of the samples when the two variables are 
plotted against each other (first column, second row from top.)  

Second, the posterior distributions are not necessarily 
normal. This can be seen by examining the correlation between 
𝑘𝑘 and 𝑚𝑚. The samples from a multivariate normal distribution 
will take on an elliptical shape. However, the distribution of 𝑘𝑘 
and 𝑚𝑚 takes on something more like a wedge, with a tighter 
correlation at smaller values of 𝑘𝑘 and a wider distribution at 
higher values of 𝑘𝑘.  

6. Expected value test selection 

Taking machines out of production to run cutting tests is 
expensive. Therefore, the goal of the testing is to identify the 
best operating parameters in as few tests as possible. As has 
been demonstrated, grid tests are an inefficient way to select 
test points; many tests often give little or no information. Other 
test points are of low value since they have low material 
removal rate, such as the test at 2500 rpm, 4 mm. 

By examining Figure 8, it is clear that some areas are more 
useful to test than others. Running a test at 6500 rpm, 10 mm , 
for example, is likely not valuable since it is expected to be 
unstable with high probability. Similarly, testing at 2500 rpm, 
1 mm is also not valuable since it has low material removal rate.  

6 The choice of the constant 2.382

𝑑𝑑  has been demonstrated to be close to 
optimal when both the proposal distribution and target distribution are 
Gaussian [19]. That assumption does not hold here: the proposal distribution is 
Gaussian, but the posteriors is not. However, much of the time they are 
sufficiently close to normal for that constant to give sufficient mixing. 
Empirically, sufficient mixing is achieved even when the posterior has multiple 
modes [16]. 

7 Note that none of the retained samples are kept. This is to minimize 
correlation of the samples with the prior: if there were 990 samples retained 
and MCMC was used to generate 10 new samples to get back to 1000, those 
10 samples would be heavily correlated with the starting point since the 
Markov chain wouldn’t be long enough to converge to the target distribution. 
Therefore, 1000 new samples are always generated. 
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One effective method to select the new test point is to 
choose the point which gives the largest expected value, as 
described by Karandikar  et al. [3]: 

 
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡{Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡} = max(𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⋅ 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), 0) (9)  

 
This calculates the expected improvement in material 

removal rate for some test point {Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}. The Ω𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⋅ 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
term represents a proxy for material removal rate 𝑀𝑀𝑀𝑀𝑀𝑀. Since 
it is assumed the radial depth is constant and that the feedrate 
is proportional to spindle speed, MRR𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∝ Ωtest ⋅ 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  
is the best identified material remove rate (Ω ⋅ 𝑏𝑏) that has been 
identified so far. For this paper, 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is initially set to zero, 
indicating that no milling parameters have been confirmed to 
be stable by testing. This method is suitable if there is no prior 
information on the tool performance available, like when a new 
model of cutting tool is being used. If there are known stable 
operating parameters (for example, if a tool was previously 
used to machine a part successfully), then those parameters can 
also be used as a starting point. 

As shown in Figure 11, this value is calculated for all 
points in the stability map and the position with the highest 
expected value is selected as the next test point. For the prior 
here, the first recommended test point is at {Ω =
4567 rpm, 𝑏𝑏 = 9.8 mm} at the top center of the map. 

 

Figure 11: Expected value of the initial (i.e., prior) stability map. 

7. Test results 

A series of tests were completed using the results from 
each test to update the probability distribution and form a new 
posterior. This posterior was approximated using the MCMC 
sampling technique, yielding a new probabilistic stability map. 
This stability map was used to select a new test, and so on. This 
process was iterated, resulting in the series of tests shown in 
Table 3. The posterior stability map and parameter distributions 
are shown in Figure 12. 

Table 3: Stability tests 

Test 
Number 

Spindle 
speed 
(rpm) 

Axial 
depth 
(mm) 

𝑀𝑀 (µm) Stability 
result 

1 4567 9.8 306 Unstable 
2 7500 9.8 10 Stable 

 

 

Figure 12: Stability probability map and distributions after two cutting tests. 

Testing was stopped after two tests since the expected 
value algorithm did not find any points which could 
significantly improve MRR. Figure 13 shows the expected 
value map used to select the third test point. Since the expected 
value algorithm will only selected test points which can 
improve the MRR, nearly the whole map has a value of zero. 
The maximum expected improvement in MRR is 1.1 m ⋅ rpm 
at 7500 rpm, 10 mm, which represents only a 1.4% 
improvement to the current best parameters. This is not a 
significant improvement so testing was stopped. 

This example demonstrates how the Bayesian updating 
framework can quickly converge to the best operating 
parameters. However, it did not meet the other goal: to reduce 
uncertainty for the input parameters 𝑘𝑘𝑡𝑡𝑡𝑡, 𝑘𝑘𝑛𝑛𝑛𝑛, 𝑘𝑘, 𝑚𝑚, and 𝑐𝑐. The 
distributions of the individual variables, as shown in the 
histograms and correlation plots, have not converged towards 
any specific values. There are many possible values for the 
input variables that could give the test results shown in Figure 
12. The ultimate goal for the framework is to identify the same 
values that can be obtained through direct measurement, which 
were listed in Table 1.  

 



	 Aaron Cornelius  et al. / Procedia Manufacturing 53 (2021) 760–772� 769
10 Schmitz et al./ Procedia Manufacturing 00 (2020) 000–000 

 

Figure 13: Expected value map after two tests. 

Therefore, a second set of tests was completed to evaluate how well the 
Bayesian updating framework can identify the true value of the parameters. 
The test setup was identical, except that the maximum spindle speed was 
reduced from 7500 rpm to 7000 rpm. This limit excluded the stable peak at 
7500 rpm, forcing the expected value algorithm to explore the solution space 
more thoroughly. This resulted in the test set summarized in Table 4.  

 

 
 
8 For cutting tests marked with *, it was observed that the tool shank 

 
Figure 14 shows the stability map distribution after each 

cutting test. Figure 15 compares the posterior stability map to 
the theoretical stability map calculated from the measured 
values, as well as comparing the posterior distributions to the 
measured values. 
 

Table 4: Stability tests8 

contacted the part during large vibrations. 
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Test 
Number 

Spindle 
speed 
(rpm) 

Axial 
depth 
(mm) 

 

𝑀𝑀 (µm) Stability 
result 

1 4567 9.8  306 Unstable 
2 4117 8.5  15 Unstable 
3 5233 9.8  185 Unstable 
4 7000 9.8  156 Unstable 
5* 4222 6  7 Stable 
6 3873 8.3  15 Unstable 
7 4252 9.7  16 Unstable 
8* 3920 7.6  8 Stable 
9* 3750 8.7  6 Stable 
10* 3679 9.4  10 Stable 
11 7000 5.9  142 Unstable 

 
 

 

 

 

 

Figure 14: Stability maps after every test in Table 4. The horizontal axis 
for each plot is the spindle speed in revolutions per minute. The vertical axis 

for each plot is axial depth of cut. Stable tests are shown in green, while 
unstable tests are red. 
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Figure 15: Posterior stability map and distributions after 11 cutting tests. The 
red solid line in the stability map is the stability map calculated from the 
measured values using the frequency domain stability limit model [2], while 
the red dots and lines in the distributions are the measured values. 

Table 5 compares the prior, marginal posterior, and 
measured values for each parameter. This table also includes 
the derived properties 𝑓𝑓𝑛𝑛, the flexure natural frequency, and 𝜁𝜁, 
the flexure damping ratio. The distributions of these derived 
properties were calculated by Monte Carlo sampling. The prior 
and posterior uncertainties in the modal parameters was 
propagated via Monte Carlo simulation to calculate those 
parameters. Ultimately, the posterior distribution did not 
converge to the measured values. Additionally, as shown in 
Figure 15, the posterior stability map did not converge to the 
stability map calculated from those measured values. 

Table 5: Comparison of the prior and posterior uncertainties. The posterior 
mean/standard deviation do not fully describe the posterior since the 
distributions of each individual variable are neither normal nor independent. 
However, they are useful as a point of comparison. 

Variable 
Prior 

distribution 
(μ ± 1σ) 

Posterior 
distribution 

(μ ± 1σ) 

Measured 
value 

𝑘𝑘𝑡𝑡𝑡𝑡  ( N
mm2) 734 ± 83.4 653 ±  53.8 903.9 

𝑘𝑘𝑛𝑛𝑛𝑛  ( N
mm2) 346 ± 67.3 387 ±  54.8 534.5 

𝑘𝑘 ( N
μm) 2.17 ± 0.266 1.65 ± 0.04 1.64 

𝑚𝑚 (kg) 2.75 ± 0.057 2.75 ± 0.060 2.51 

𝑐𝑐 (N ⋅ s
m ) 68.3 ± 6.47 66.9 ± 6.29 114 

𝑓𝑓𝑛𝑛 (Hz) 142 ± 8.7 123 ± 0.86 129 

𝜁𝜁 1.41 ± 0.16% 1.57 ± 0.15% 2.82% 

8. Discussion 

The framework was able to quickly identify the optimal 
milling parameters (i.e., the milling parameters with the highest 
MRR). On the first test set, the Bayesian framework identified 
the optimal parameters in two test cuts, outperforming other 
optimization techniques, such as the naïve Bayesian approach 
proposed by Karandikar et al. [3]-[4].  However, as shown in 
Figure 15, the stability map failed to converge towards the true 
values of the underlying parameters. More significantly, it did 
not converge towards the true shape of the stability map. 

This occurs due to limitations in the frequency domain, 
zero-order stability limit approximation. While the 
approximation is accurate for slotting, lower radial depths of 
cut yield bifurcations in the stability diagram [11]. These 
regions display period- 𝑛𝑛  stability, where cuts repeat their 
displacement profiles every 𝑛𝑛 tooth passes (i.e., they have 
periods that are integer multiples of the tooth period, rather than 
repeating every tooth period for forced vibration in stable cuts). 

This is illustrated in Figure 16, which compares the 
analytical stability boundary to time domain simulation results. 
In total, 400 time domain simulations were completed and the 
resulting displacement profiles were classified as either stable 
(period-1), period- 𝑛𝑛  (for 𝑛𝑛  values up to 10), or unstable 
(secondary Hopf bifurcation) based on subharmonic sampling 
[20]. This method is an adaptation of the earlier once-per-tooth 
sampling, except that the metric is calculated over samples 
taken every 𝑛𝑛th tooth passage: 
 

𝑀𝑀(𝑛𝑛) = ∑
|𝒙𝒙𝑠𝑠𝑠𝑠(𝑖𝑖) − 𝒙𝒙𝑠𝑠𝑠𝑠(𝑖𝑖 − 1)|

𝑁𝑁

𝑁𝑁

𝑖𝑖=2
, (10) 

 
where 𝒙𝒙𝑠𝑠𝑠𝑠 is the vector of samples taken from the displacement 
signal every 𝑛𝑛 tooth passages. 

The time domain simulations show a region of period-n 
and unstable behavior near 4500 rpm which splits the 
traditional stability lobe. While the analytical solution predicts 
that cuts in this region should be stable (for example, the test 
cut at 4567 rpm, 9.8 mm), both the time domain and actual test 
cuts are unstable. There is also an extra region of stable and 
points that weren’t predicted by the analytical solution at 
roughly 5200 rpm. 
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Figure 16: Comparison of analytical and time-domain stability. The numbers 
in the background provide the M values. Empty regions are predicted to be 
stable by the time domain simulation. A 2 indicates a period-2 instability, and 
so on. The dots represent a secondary Hopf bifurcation. The threshold 𝑀𝑀 value 
was 1 µm. The test cuts generally agree with the time domain simulation and 
the posterior stability map closely approximates the shape of the left side of the 
split stability lobe.  

Since this intermediate unstable lobe is not predicted by 
the frequency domain solution, the Bayesian model cannot 
predict its effects. The end result, as shown in Figure 16, is that 
the Bayesian method fits a stability lobe to one side of the 
bifurcated analytical lobe; here, it is observed on the left. This 
is the best solution given the model limitations. 

This illustrates how the choice of model changes the 
performance of the Bayesian updating and demonstrates the 
advantages and disadvantages of physics-guided models. A 
physics-guided model can converge towards the optimal 
operating parameters more quickly than a more naïve approach. 
However, it also limits the solutions that the model can identify. 
Since the frequency domain model does not account for the 
possibility of bifurcations at low radial engagement, the 
Bayesian model (which is driven by the frequency domain 
model) also cannot predict that behavior. In contrast, the naïve 
Bayesian approach used by Karandikar et al. may require more 
tests to converge, but because it is not physics-guided it does 
not depend on the assumptions injected from an underlying 
physics model. It will converge to the true stability map given 
a sufficient number of test points. Future work can incorporate 
alternative, more accurate models to reduce the effect of those 
approximations, such as using time domain simulations. Other 
areas for future investigation could be different test selection 
algorithms and expanding the method to other parameters for 
the stability map algorithm (such as helix angle, variable-pitch 
flutes, or tool runout.) 

 9. Conclusion 

This paper described a physics-guided framework for 
optimization and parameter identification of milling setups. 
Prior uncertainties for the FRF and cutting force coefficients 
were established through simulation and literature reviews and 
propagated to the stability map. The Bayesian updating 
framework was then applied to update those uncertainties 
based on the results of limited cutting tests. The posterior 

distributions for the stability map and input parameters were 
compared to measured values and the advantages and 
disadvantages of physics-guided frameworks were discussed. 
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