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Abstract

This paper describes a physics-guided Bayesian framework for identifying the milling stability boundary and system parameters through iterative
testing. Prior uncertainties for the parameters are identified through physical simulation and literature reviews, without physical testing of the
actual milling system. Those uncertainties are then propagated to the stability map using a physics-based stability model, which is used to suggest
a test point. The uncertainties are updated based on the new information acquired from the cutting test to form a new probability distribution,
called the posterior. Finally, the posterior are compared to measured values for the stability boundary and system parameters to evaluate the
approach. Based on experimental observations, the advantages and disadvantages of using a physics-guided model are discussed.
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1. Introduction

Nomenclature

b Axial depth of cut The importance. of consi_d.ering the system’s vibration
Bum Predicted limiting depth of cut response When selc.ectmg machining parameters has been Wel'l-
c Flexure viscous damping coefficient established in the literature (see [1], for example). If the tool tip
k Flexure stiffness and workpiece dynamics are not taken into account, then
K, Normal cutting force coefficient chatt.er may resglt, where regenerative vibrations are caused by
k Tangential cutting force coefficient varying chip thickness. Stability maps are a powerful tool for
n:C Flexure mass selecting the highest productivity milling parameters, where
M Once-per-tooth stability metric the rotating tool’s tooth passing frequency is an integer fraction
0 Prob -tl))'l'- distributi Y ¢ ot . of the natural frequency that corresponds to the most flexible
Rro all ! 1tfy 18 r1-;1 ton of nput parameters vibration mode. Frequency domain methods for calculating the

w esults of a specific cutting test stability maps using the tool tip frequency response function
n and cutting force coefficients have been presente -2].

f; Flexure ngtural frequepcy . (FRF) and cutting ft ffici have been p d[1-2]
¢ Flexure viscous damping ratio However, finding the FRF and cutting force coefficients can be

challenging, requiring specialized tools and an experienced
operator to perform the measurements. These requirements
have prevented industry-wide adoption of the stability map
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method for parameter selection.

Several papers have studied stability map identification
through iterative testing without the need for direct
measurements. Karandikar ez al. described Bayesian updating
methods based on Brownian motion random walks or Gaussian
processes to update the probability of stability using test
results, as well as algorithms for selecting test parameters based
on a probabilistic stability map [3]-[4]. The random walk
Bayesian updating method gives fast convergence and is
computationally efficient, but does not provide information
about the underlying system parameters, including the FRF and
cutting force coefficients. Furthermore, the method is not
physics-based and incorporates only minimal domain
knowledge in its updating. Li et al. developed another Bayesian
method based on propagating and updating input uncertainties
using an ensemble Markov Chain Monte Carlo technique [5].
However, their technique requires a large number of samples
which imposes significant calculation time. Additionally,
Suzuki et al. used stability testing in an inverse analysis to
identify the tool tip FRF [6].

This paper describes a unified framework for both
identifying the optimal milling parameters and improving the
milling model using a physics-based Bayesian updating
approach. The framework is described in Figure 1. The major
steps are summarized here.

e Establish the prior uncertainties for the FRF modal
parameters and cutting force coefficients using simulations
and literature reviews.

e Propagate the input uncertainties through the physics-
based model to create a probabilistic stability map.

e  Use the stability map to select a milling parameters to test.

e  Perform the cutting test and classify it as stable or unstable.

e Define a new posterior distribution based on the results of
the cutting test.

e Draw samples from the posterior distribution using a
Markov Chain Monte Carlo method.

e Update the model input distributions and calculate the
posterior stability map by propagating those samples
through the physics-based model.

Start

Define input uncertainties
and draw samples using
Monte Carlo sampling

Propagate uncertainties to
the stability map using the  [&—
physics model

Select a new cutting test
based on the probabilistic
stability map

Run the cutting test <

Classify the results of the
cutting test as stable or
unstable

Use Bayesian updating to
define a new probability
distribution

Apply Markov Chain Monte
Carlo sampling to sample ~ —1—
this new distribution

Manual operations Automated operations

Figure 1: Overview of the Bayesian stability framework.

This paper provides four novel contributions.

e Prior uncertainties are established based on objective
analysis, via uncertainty propagation or literature review.
This reduces the need for user guidance or expertise in
prior selection.

e A combination of rejection sampling and adaptive
proposal Markov Chain Monte Carlo sampling is used to
approximate the posterior distribution. This method
improves mixing and achieves convergence in a smaller
number of samples, increasing computational efficiency.

e Using a physics-guided model to propagate uncertainty
and an expected-value algorithm for test selection results
in faster convergence to the optimal milling parameters.

e The posterior estimates for the FRF and cutting
coefficients are compared to measured values to evaluate
whether the posterior distributions of the FRF and cutting
force parameters converge towards their measured values.

The new Bayesian updating method is applied to an
example machining setup on a Haas VF-4, shown in Figure 2.
The cutting tool was a single flute inserted endmill
(Kennametal part number M1D062E1401W075L150, 15.88
mm cutting diameter, 19.05 mm shank diameter) with a coated
carbide insert (part number EC1402FLDJ). The 6061-T6
aluminum workpiece was mounted on a parallelogram-type
flexure, shown in Figure 2. The flexure’s displacement during
cutting was measured using a capacitance probe and tool
rotation was measured with a laser tachometer. All test cuts
were performed with a fixed radial stepover of 5 mm and a feed
per tooth of 0.1 mm. The spindle speed and depth of cut were
varied from 2500 rpm to 7000 rpm and 0 mm to 10 mm,
respectively.

Figure 2: Machining test set up with capacitance probe (CP) and laser
tachometer (LT).

The paper is organized as follows:

e In section 2, the prior uncertainties are established and
propagated through the physics model to create a prior
probabilistic stability map. This prior is compared to the
results of an experimental grid test.

e Section 3 describes how Bayesian updating can be used to
evaluate the posterior distribution based on cutting test
results. The prior distributions are updated based on the
experimental grid test using rejection sampling



762

e Section 4 details the adaptive proposal Markov Chain
Monte Carlo technique used to sample the posterior
distribution. This is applied to generate samples from the
target posterior distribution after grid testing is completed.

e Section 5 describes the expected value method used to
select test parameters.

e Section 6 presents the results of the Bayesian optimization
framework with the automated test selection.

e Section 7 discusses the results, advantages, and limitations
of the physics-guided model.

2. Establishing the prior

The first requirement for establishing a Bayesian model is
to determine the prior. The prior represents one’s current
beliefs about the variables using all available information
before any new cutting tests have been performed. Five inputs
with associated uncertainties are considered in this effort:

e tangential cutting force coefficient k.,
e normal cutting force coefficient k.,

e flexure stiffness k,

e flexure mass m, and

o flexure viscous damping coefficient c.

Uncertainty distributions were established for each of the
variables. Each uncertainty was defined as a normal
distribution. The parameters and their measured values are
listed in Table 1. These were obtained using the following
approaches. These methods were selected to demonstrate how
a prior can be established without calibration experiments, but
other methods can be used depending on what information is
known about the system.

e The priors for the cutting force coefficients were found
from a literature review of reported force coefficients for
milling 6061-T6 aluminum. Twenty different sets of
coefficients were taken from five different sources, and the
means and standard deviations for k. and k. were used
as the initial prior [7]-[11]. The “true” values were
measured using a cutting force dynamometer by
performing a linear regression to the mean cutting force at
different feed per tooth values.

e The priors for the flexure mass m and stiffness k were
determined through: 1) beam theory predictions for
parallelogram, leaf-type flexures [12]; and 2) Monte Carlo
sampling to incorporate uncertainties in the analytical
model inputs, including flexure dimensions (thickness and
length of each of the flexure leaves), elastic modulus, and
density. The true values were measured by tap testing with
an instrumented hammer and low-mass accelerometer.

e The viscous damping coefficient c¢ distribution was
selected based on experience with similar flexures. It was
calculated by assuming a mean viscous damping ratio of
1.4% with a standard deviation of 0.14% and propagating
that uncertainty to the damping coefficient via Monte
Carlo sampling of the mass and stiffness distributions. The
true value was measured by tap testing.
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Table 1: Input uncertainties

Prior

Parameter distribution Mez;ufr:ed BaSISrfgrr the
(nt 10) valu p
N )
ko ( ) 734 + 83.4 903.9 thergture
mm? review
N .
ne ( ) 346 + 67.3 534.5 thergture
mm? review
N
k (—) 2.17 +£0.266 1.64 Monte Carlo
Hm sampling
m (kg) 2.75 + 0.057 251 Monte Carlo
sampling
Author
N's experience,
‘ (T) 08.3 % 647 114 Monte Carlo
sampling

The Table 1 entries can be thought of as a series of five
univariate normal distributions with standard deviations
01,0y, ..., 05 and mean values py, Uy, ..., s . Sampling from
each of these distributions gives a series of values 6, 0,, ..., 05.
However, it is more useful to consider the inputs as a single
five  dimensional  multivariate normal  distribution
6~Normalg (i, S) with mean vector y, covariance matrix S,
and output vector 6:

6, P g2 0 0
0=|:|,u= 5]'5= 0 -~ 0, D
95 HUs 0 0 052

where S is a symmetric matrix which defines the variance and
covariance of the output vector 6 . The diagonal of the
covariance matrix defines the variance (which is the standard
deviation squared) for each component in the output vector.
The other components give the covariance between the
different elements: for example, S, is the covariance between
components 1 and 2 (and since the matrix is symmetric, 1, =
S,1). This covariance defines the correlation between the
components: a positive value indicates that higher values of 6;
tend to be correlated with higher values of 6,, while a negative
value for §;, would indicate that as 6, increases, 6, tends to
decrease. Since all non-diagonal components are 0 in S, this
indicates that each element of 8 is independent; there is no
correlation between them.

One thousand (1000) samples were drawn from this input
distributions. Figure 3 shows the distributions and correlations
of the individual variables listed in Table 1 after 1000 samples
6, through 6,4, were drawn from the prior. Since the non-
diagonal elements of the covariance matrix were zero, the
distributions of the variables are independent.
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Figure 3: Initial distributions for the input variables. The diagonal plots show
the histograms for each individual variable, while each of the non-diagonal
subplots plots two of the variables against each other. Red dots and lines
show the measured values for each of the variables. The measured values for
most of the variables are far away from the prior means.

Once these samples are taken, they can be propagated to
the stability map using the Monte Carlo procedure described by
Duncan et al. [13]. The frequency domain, zero-order
approximation stability algorithm described by Altintas and
Budak was applied here [2]. While the full algorithm is not
presented here since it has already been well-established in
literature (consult [2] for a full explanation), a brief summary
of the method is presented to establish how the different
variables contribute to calculating the stability map.

1. The cutting force coefficients k., k,. are used to
determine the dynamic cutting force coefficients as a
function of cutter rotation. This is approximated as a
Fourier series, using only the first (DC) component.
Those dynamic cutting force coefficients are then
used to calculate the total cutting force vector as a
function of relative tool displacement.

2. The frequency response function (FRF) is determined
from the modal parameters k, m, ¢ (see [1]). The FRF
is used to calculate how much the tool will vibrate
during each tooth-passing period as a function of force
and chatter frequency.

3. That vibration is plugged into the displacement term
of the cutting force function, which is the
characteristic equation of the tool motion as a function
of chatter frequency.

4. The eigenvalues of that function are used to calculate
the limiting axial depth of cut for every chatter
frequency. Depths of cut above this limit will chatter,
while below will be stable.

5. The spindle speed associated with each chatter
frequency is calculated by finding the appropriate
tooth-passing period. This calculation is repeated for
every lobe of the stability map.

This algorithm calculates the limiting axial depth without
chatter, by;,,, for some combination of input parameters € and
spindle speed Q as by;;, (0, @). Calculating this value for all
samples and spindle speeds in the testing range yields the
probabilistic stability map shown Figure 4. The grey-scale level
of each point {Q, b} is the probability of stability, which is
based on how many of the sampled stability maps predict that

a cut at that point will be stable:

n
1

Prane®,®) == bum (2,60 <b (@)

i=1
where n is the total number of sampled 0 values. If all the
stability maps predict that a point {Q, b} will chatter, then that
point is coloured black (zero probability of stability). If all the
sampled stability maps predict that point will be stable, then the
point is white (100% probability). Intermediate shades of grey
represent different expected probabilities of stability. The
probabilistic stability map shown in Figure 4 represents the

prior.
10 0%
20%
7
40%
4 60%

©

@

o o

Axial depth of cut (mm)

w

Expected probability of stability

2 80%
g

0 — 100%
2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

Spindle speed (rpm)

Figure 4: Prior probability of stability map. The more likely it is that a given
point is stable, the closer it is to white, while darker points are expected to be
more likely to chatter.

Once the probabilistic stability map has been predicted, it
can be validated using a grid-type pattern of tests over evenly
spaced axial depths of cut and spindle speeds. For this project,
tests were performed in increments of 1000 rpm in spindle
speed and 2 mm in axial depth, from 2500 rpm to 7500 rpm and
2 mm to 8 mm. Tests at a given spindle speed were
discontinued when fully-developed chatter was observed.

The grid-type stability tests were performed and the
flexure displacement signal was recorded during cutting. The
tachometer pulse was used to sample the displacement once per
tooth passage; see Figure 5. Because there was a single tooth,
this resulted in once-per-revolution sampling.

Flexure displacement signal
© __ Once per tooth samples

300

Displacement (;:m)

Time (s)

Figure 5: Displacement signal for an unstable test (test 13 at 5500 rpm, 6 mm
axial depth in Table 3). The solid blue line represents the displacement signal,
while the red circles are the once per tooth samples used to determine stability.
For a stable cut, the displacement should repeat every tooth passage.
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These once-per-tooth samples were classified as either
stable or unstable using the sampling metric established by
Honeycutt and Schmitz [11]:

& 2, (0) — x,(i — 1)
M =ZT ®3)

where x is a vector containing the once-per-tooth passage
samples from the flexure displacement signal, and N is the
length of the x; vector. In a stable cut, the flexure vibration
repeats with each tooth passage, meaning that x;.,y = M =
0 pm ideally. In contrast, the samples vary from tooth to tooth
for an unstable cut (chatter), so M > 0. A threshold of M =
10 um was selected for automated stability labelling: any cuts
with M < 10 um were classified as stable, while cuts where
M > 10 um were classified as chatter. Figure 6 compares the
surfaces from tests 7 (M =21 um) and 12 (M = 10 um).
While both surfaces show noticeable tool marks (due to the low
stiffness of the flexure), the tool marks for test 7 are not evenly
spaced, which is a key signifier of chatter. In contrast, the tool
marks for test 12 are, while large, evenly and regularly spaced,
indicating a stable cut (albeit one with large surface
dislocation.) While M = 10 um was used for these tests,
different cutoffs may be required for different systems or
desired surface quality.

Table 2: Grid test points'

Test Spindle - Axial Stability
Number speed depth M (pm) result
(rpm)  (mm)
1 2500 2 3 Stable
2 3500 2 104 Unstable
3 4500 2 2 Stable
4 5500 2 2 Stable
5 6500 2 17 Unstable
6 7500 2 3 Stable
7* 2500 4 21 Unstable
8 4500 4 5 Stable
9 5500 4 79 Unstable
10 6500 4 229 Unstable
11 7500 4 1 Stable
12 4500 6 10 Stable
13 5500 6 127 Unstable
14* 4500 8 269 Unstable

! For cutting tests marked with *, it was observed that the tool shank
contacted the part during large vibrations.

2 P(8|w) is proportional to P(w]@) - Pyy;o, (6) since, for it to be a valid
probability density function, fe P(B|lw) dB must be equal to 1. There is

@

(b)
Figure 6: Cut surfaces for (a) grid test 7 (M = 21 pm) and (b) grid test

12 (M = 10 pm). Note the uneven spacing of the cutter marks in (a), while in
(b) all the tool marks are generally evenly spaced, indicating a stable cut

4. Bayesian updating

Once a cutting test is completed and new information is
obtained, the posterior is calculated. The posterior is a new
probability  distribution which incorporates the new
information that’s been gained from the outcome of the test cut
into the prior. Probability distributions are defined by their
probability density function (PDF). This is a function which
defines how likely it is for a specific value of 8 to be obtained.
For example, the PDF of the prior distribution is:

Ppriar (0) = PDFNormals (0, 123 S)
1
—56-w"'57(0 - u)) O]

1
T e <

where det(S) is the determinant of the covariance matrix
S .The goal is to find a new function which defines the
probability of any value of @ after taking into account the new
information acquired from the results of the test cut. Formally,
the posterior distribution can be written as P(0|w), the
probability of the input values @ conditioned on the test result
w. This can be calculated using Bayes’ rule?:

P(Blw) & P(w|6) : Pp‘riar(e)r (5)

where P(w|@) is the probability of observing a test result
conditioned on the input values, i.e., how likely it is that a set
of input values that say a given stable test will actually be stable
or a given unstable test will actually be unstable. The test
results w contain three pieces of information: the test spindle
speed Qg , the test axial depth of cut by, and whether the
cut was stable or not. Using this information, P(w|0) is
defined with two piecewise Gaussian dropoff functions,
depending on the test cut result. If w was stable, then:

therefore some normalization factor that would have to be added to compensate
for this to satisfy P(8lw) = Crorm * P(@|0) - Pprior(8) . In practice, this
normalization factor is both difficult and, as will be seen, unnecessary to
calculate.



Aaron Cornelius et al. / Procedia Manufacturing 53 (2021) 760-772 765

1 blim(Qtestr 9) > btest
P(w|6) o 0.5 i Qs )=brese) ©®)
e 4 otherwise
If w was unstable, then:
1 blim(ﬂtestr 9) < btest
P(wle) * -0 5(_blim(9test:9)—btest)z (7)
e 4 otherwise

If the by;,,, value calculated by 0 at the test spindle speed
correctly predicts the results of the test cut, then P(w|0) = 1.
This occurs if the cut was stable and by;,,, was above the test
depth of cut, or if the cut was unstable and b;;,,, was below the
test depth of cut. If 8 incorrectly predicts the test result, then
P(w|0) < 1. The further away by, (w, @) is from correctly
predicting the test results, the lower P(w|8) is, with the rate of
drop off set by o. For this paper, a drop off value of 0 =
0.125 mm was used. This is depicted in Figure 7, which shows
the probability density function that results from a stable test
cut at a 5 mm axial depth.

1

0.9 |
4
08 |
s |
—07 [
o I
&
5086 { I‘
2 |
305 |
= |
= |
o4 |
© |
2 i
203 |
o / |
/ |
02t / | 7=0.125 mm
e | 20250 mm
0.1 ‘;' =0,500 mm
/ =1.000 mm
o L oL 1 1 L
3 35 4 45 5 55 6 6.5

Axial depth of cut b (mm)

Figure 7: P(w|@) for a stable test result at b,o;, = 5 mm with varying values
of the dropoff parameter o. Any value of b;,,, above 5 mm has a probability of
1 since it predicts that test should be stable. If by, <5mm, then the
probability density decreases, with the rate of decrease set by o the lower o is,
the faster the probability decreases. If the cut was unstable, then the chart would
be mirrored horizontally around b = 5 mm.

An equation which is proportional to P(@|w) has now
been established. Samples taken from the prior distribution
Pyrior (@) can then be updated via rejection sampling [14]. The
required steps follow. For each sample:

e calculate P(w|@)

e select a random value from the distribution Uniform(0,1)
e if the random value is less than P(w|@), then discard 6

e otherwise, accept it.

The remaining samples will approximate the desired
distribution P(8@|w). This is called rejection sampling and it’s
a common method for sampling from complex univariate
probability distributions. Figure 8 displays the result of this
updating when the first test from the grid at a 2500 rpm spindle
speed and 2 mm axial depth is used to update the stability map.
Only 75 of the 1000 samples were rejected, since the majority

* Note that the exact number and location of samples will vary if the
updating process is run again, since both the Monte Carlo sampling and the

of the prior sampled stability maps predicted that the test would
be stable. This indicates that the test had low information value:
there was little change in the posterior distribution, and,
therefore, little new information was gained from the test.

Axial depth of cut (mm)
Expected probability of stability

10 0%
Z 20%
; 40%
j § 60%
3 L ] 1 80%

2

1

0 L
2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
Spindle speed (rpm)

¢ (N-s/m) m (kg k (N/um) k"((N“mm‘J k:‘ (N/mm*)
» ~N &=
8 w S wd 3
‘%
I
—
: ; %
g3 ?
P

50 | I
500 1000 200 400 2 3 25

5 100
k_(Nmm?)  k _(N/mm?) K (N/fum) m (kg)

¢ (N-s/m)

Figure 8: Posterior stability map and histograms after updating based on a
stable test run at 2500 rpm, 2mm axial depth of cut. 8 of the samples were
rejected because of the results of that test. There are 992 out of the original
1000 samples remaining. This indicates that the test was of low value and
demonstrates the inefficiency of the grid test: it was taken at a position which
was already expected to be stable with high probability, and there is thus very
little change in the stability map since not much has been learned.

This rejection sampling method can be generalized to an
arbitrary number of cutting tests by using the posterior of each
cutting test P(@|w,) as the prior for the next update:

N

P(B)w1.5) % P(wy|0)P(0wy.5-1) = P(O) nP(wnIB) -(8)

However, executing this strategy over multiple tests will
quickly deplete the remaining number of samples. An example
is provided in Figure 9, showing the posterior distribution after
applying rejection sampling for the entire 14 cut grid test. After
14 cutting tests, 998 of the original 1000 samples have been
rejected.® The two remaining samples are not sufficient to
accurately represent the full posterior distribution.

rejection sampling are stochastic methods.
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Figure 9: Example of sample depletion after running 14 cutting tests in a grid
pattern. There are only two samples left.

This sample depletion issue can be solved by generating
more samples from the target distribution via the same rejection
sampling method, but this is computationally inefficient. Since
only 0.2% of the samples are accepted, approximately 500,000
samples would have to be generated to yield 1000 samples in
the posterior.

A better option is to sample directly from the target
distribution. However, doing so is non-trivial since there’s no
closed-form integral for the PDF. Numerically approximating
the cumulative density function would require integrating over
the entire five-dimensional parameter space. This is
computationally infeasible; even a low-resolution integration
with 100 samples per dimension would require a total of
100° = 10 samples (which would take roughly three years
to calculate at 100 samples per second). Therefore, an
alternative to direct sampling is required.

5. Markov Chain Monte Carlo sampling

One way to efficiently sample the posterior distribution is
to use a Markov Chain Monte Carlo (MCMC) method. MCMC
methods are a family of techniques used for taking samples
from complex high-dimensional distributions and are
commonly applied to calculate posteriors for Bayesian

* Specifically, it is a variation on the original Metropolis algorithm, a
simpler version of Metropolis-Hastings algorithm which requires symmetric
proposal distributions. The Haario algorithm is asymptotically symmetric:

inference [15]. Rather than generating each sample
independently, they generate samples as a Markov chain where
every sample is generated based on the previous sample in the
chain. While each sample is correlated with the previous
sample, the distribution will eventually converge to the target
distribution as sufficient samples are taken.

The specific method used in this paper is a greedy adaptive
MCMC method from Haario et al. [16]. The adaptive MCMC
method is a variation on the classic Metropolis-Hastings (MH)
algorithm, which accepts or rejects samples based on the ratio
of their probability to the previous value in the Markov Chain
[17].# This method offers several advantages over simpler
sampling methods like rejection sampling or traditional MH.

e Unlike directly sampling the distribution, MH does not
require that the probability distribution be normalized; it is
sufficient to have a function that is proportional to the true
PDF. This is critical, since calculating the appropriate
normalization factor to ensure that the PDF integrates to 1
would require numerically integrating over the entire five-
dimensional parameter space.

e  MCMC methods have higher acceptance rates than simple
rejection sampling, especially in high-dimension
probability spaces. This is because the Markov chain tends
to congregate in areas with high probability and spends
less time in areas with lower probability. Thus, the MCMC
method will waste fewer samples on areas of the parameter
hyper-space where P(0|w;.y) = 0.

e Rather than using the same proposal distribution every
time like MH, Haario’s algorithm updates its proposal
distribution after every sample based on the estimated
covariance matrix defined by all accepted samples up to
that point. Selecting an appropriate proposal distribution
for MH is both critical and challenging. If the proposal
distribution proposes steps which are very far away from
the last accepted sample, then the acceptance rate will be
low. However, if the proposal distribution suggests small
steps, then the correlation between subsequent samples
will be high and more samples will be required to fully
explore the parameter space. The adaptive MCMC method
ensures that the proposal is always appropriate for the
target distribution, and thus provides faster convergence.

The MCMC process for sampling the target distribution is
described here.

1. Collect all samples of @ that remain after the rejection
sampling process described previously. These will be
referred to as 8" and provide a more accurate initial
estimate of the target covariance matrix. This improves
convergence since the adaptive algorithm starts with a
reasonably good guess for the optimal proposal
distribution.

2. Calculate the covariance matrix of all the samples in the
union of the starting sample set, $¢ = Cov(0™).

while the proposal distribution does technically change as each new sample is
added, the change is small enough that it can be ignored.
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3. Select one of the samples in the starting sample set as the
starting point for the Markov chain. Designate this as 6,.°

4. Set the sample tracker n = 1.

5. Create a proposal distribution  @propesa~(1 —
B) No(B,1, (2.38)2S,_/d) + B N(By_y, (0.%14/
d).% The first term is the adaptive normal distribution
centered around the last accepted point. The second term
is added to help ensure that the parameter space is fully
explored even when 8” is not a good representation of the
actual desired probability distribution [15]. Also, S is a
weighting value in the range 0 < f < 1. Here, a value of
B = 0.1 was used.

6. Draw a sample 6,, from Opqp0sa1-

7. Calculate P(0,,|w,.y) and compare it to a random value x
drawn from a uniform distribution between zero and one.

_POn|wyn)

P(On-1lwin)’
candidate 6,,. Otherwise, continue to the next step.

8. Increment n by one. If n > 1000, then return 6;.14¢¢-
Otherwise, calculate the new covariance matrix S, =
Cov(U 6%, 0,.,,) and return to step 4.7

Ifx > then return to step 5 to draw a new

This MCMC method is applied after each new test point is
added and the resulting samples are then used as the prior for
the next test. Figure 10 shows the posterior distribution after all
the grid tests are included. Overall, the results agree with those
obtained through rejecting samples, demonstrating that both
methods give equivalent results. However, the MCMC method
has many more samples and better approximates the target
distribution P (#|w) (note how the larger number of samples in
the distributions gives a better idea of the distribution shape).

5

Axial depth of cul
2
Expected probability ¢

0 100%
2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
Spindle speed (rpm)

° The exact starting position does not matter provided it is of relatively
high probability with respect to the number of samples taken. For example, it
could be acceptable to start with a point with a probability of 10~ provided
that 10° samples are taken, since it’s expected that 1000 such samples would
appear over the entire run. This same starting point would not be acceptable if
only 100 samples are taken since such a point should be unlikely to appear.
Often, a burn-in cycle is used to help ensure this, running a fixed number of
throwaway samples to let the Markov chain move into a higher probability
area. For this application, however, this isn’t necessary: any of the samples
which were retained should be of sufficiently high probability to not bias the
Markov chain by starting in a very low probability region [18]. If, however, a
test point is added which results in no samples remaining, a burn-in cycle could
be used to find an appropriate starting point.
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Figure 10: Posterior after the grid tests, using the Markov Chain Monte Carlo
method to generate more samples after every test. The red x represents an
unstable result, while a green dot represents a stable cut.

There are two interesting things to note about the results in
Figure 10. First, the individual values in the posterior
distribution are no longer independent. For example, the
distributions for k,. and k.. are positively correlated, as
shown by the slope of the samples when the two variables are
plotted against each other (first column, second row from top.)

Second, the posterior distributions are not necessarily
normal. This can be seen by examining the correlation between
k and m. The samples from a multivariate normal distribution
will take on an elliptical shape. However, the distribution of k
and m takes on something more like a wedge, with a tighter
correlation at smaller values of k and a wider distribution at
higher values of k.

6. Expected value test selection

Taking machines out of production to run cutting tests is
expensive. Therefore, the goal of the testing is to identify the
best operating parameters in as few tests as possible. As has
been demonstrated, grid tests are an inefficient way to select
test points; many tests often give little or no information. Other
test points are of low value since they have low material
removal rate, such as the test at 2500 rpm, 4 mm.

By examining Figure 8, it is clear that some areas are more
useful to test than others. Running a test at 6500 rpm, 10 mm ,
for example, is likely not valuable since it is expected to be
unstable with high probability. Similarly, testing at 2500 rpm,
1 mm is also not valuable since it has low material removal rate.

2
6 The choice of the constant% has been demonstrated to be close to

optimal when both the proposal distribution and target distribution are
Gaussian [19]. That assumption does not hold here: the proposal distribution is
Gaussian, but the posteriors is not. However, much of the time they are
sufficiently close to normal for that constant to give sufficient mixing.
Empirically, sufficient mixing is achieved even when the posterior has multiple
modes [16].

7 Note that none of the retained samples are kept. This is to minimize
correlation of the samples with the prior: if there were 990 samples retained
and MCMC was used to generate 10 new samples to get back to 1000, those
10 samples would be heavily correlated with the starting point since the
Markov chain wouldn’t be long enough to converge to the target distribution.
Therefore, 1000 new samples are always generated.
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One effective method to select the new test point is to
choose the point which gives the largest expected value, as
described by Karandikar et al. [3]:

Vtest{QtestJ btest} = maX(Pstable (Qtest ' btest - Vbest)r 0) (9)

This calculates the expected improvement in material
removal rate for some test point {Qpg¢, Drese}- The Qipst * Drest
term represents a proxy for material removal rate MRR. Since
it is assumed the radial depth is constant and that the feedrate
is proportional to spindle speed, MRR ;o5 ¢ Qiest * Drest- Viest
is the best identified material remove rate ({1 - b) that has been
identified so far. For this paper, V. is initially set to zero,
indicating that no milling parameters have been confirmed to
be stable by testing. This method is suitable if there is no prior
information on the tool performance available, like when a new
model of cutting tool is being used. If there are known stable
operating parameters (for example, if a tool was previously
used to machine a part successfully), then those parameters can
also be used as a starting point.

As shown in Figure 11, this value is calculated for all
points in the stability map and the position with the highest
expected value is selected as the next test point. For the prior
here, the first recommended test point is at {Q =
4567 rpm, b = 9.8 mm} at the top center of the map.

10
9

8

Axial depth b (mm)
» ~

w

1

0
2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
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Figure 11: Expected value of the initial (i.e., prior) stability map.
7. Test results

A series of tests were completed using the results from
each test to update the probability distribution and form a new
posterior. This posterior was approximated using the MCMC
sampling technique, yielding a new probabilistic stability map.
This stability map was used to select a new test, and so on. This
process was iterated, resulting in the series of tests shown in
Table 3. The posterior stability map and parameter distributions
are shown in Figure 12.

Table 3: Stability tests

Test  opndle Al (o Sty
Number P P M result
(rpm)  (mm)
4567 9.8 306 Unstable
2 7500 9.8 10 Stable
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Figure 12: Stability probability map and distributions after two cutting tests.

Testing was stopped after two tests since the expected
value algorithm did not find any points which could
significantly improve MRR. Figure 13 shows the expected
value map used to select the third test point. Since the expected
value algorithm will only selected test points which can
improve the MRR, nearly the whole map has a value of zero.
The maximum expected improvement in MRR is 1.1 m - rpm
at 7500 rpm, 10 mm, which represents only a 1.4%
improvement to the current best parameters. This is not a
significant improvement so testing was stopped.

This example demonstrates how the Bayesian updating
framework can quickly converge to the best operating
parameters. However, it did not meet the other goal: to reduce
uncertainty for the input parameters k;., k,,., k, m, and c. The
distributions of the individual variables, as shown in the
histograms and correlation plots, have not converged towards
any specific values. There are many possible values for the
input variables that could give the test results shown in Figure
12. The ultimate goal for the framework is to identify the same
values that can be obtained through direct measurement, which
were listed in Table 1.
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Figure 13: Expected value map after two tests.

Therefore, a second set of tests was completed to evaluate how well the
Bayesian updating framework can identify the true value of the parameters.
The test setup was identical, except that the maximum spindle speed was
reduced from 7500 rpm to 7000 rpm. This limit excluded the stable peak at
7500 rpm, forcing the expected value algorithm to explore the solution space
more thoroughly. This resulted in the test set summarized in Table 4.

8 For cutting tests marked with *, it was observed that the tool shank

3

69

Prior Test 1
1( I(

-
a

0
3000 4000 5000 6000 7000 3000 4000 5000 6000 7000

Test 3

Test 2
1(

b (mm)

0
3000 4000 5000 6000 7000 3000 4000 5000 6000 7000

Test 4 Test 5

I(

b (mm)
a

0
3000 4000 5000 6000 7000 3000 4000 5000 6000 7000

Test 6 Test 7

0
3000 4000 5000 6000 7000 3000 4000 5000 6000 7000

Test 8 Test 9

b (mm)

(
3000 4000 5000 6000 7000 3000 4000 5000 6000 7000

Test 10 1 Test 11

b (mm)

3000 4000 5000 G000 7000 - 3000 4000 5000 6000 7000
Q (rpm) Q (rpm)

Figure 14 shows the stability map distribution after each
cutting test. Figure 15 compares the posterior stability map to
the theoretical stability map calculated from the measured
values, as well as comparing the posterior distributions to the
measured values.

Table 4: Stability tests®

contacted the part during large vibrations.
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Spindle  Axial .-
Nmber Peed depth mumy O

(rpm)  (mm)
1 4567 9.8 306 Unstable
2 4117 8.5 15 Unstable
3 5233 9.8 185 Unstable
4 7000 9.8 156 Unstable
5% 4222 6 7 Stable
6 3873 8.3 15 Unstable
7 4252 9.7 16 Unstable
8* 3920 7.6 8 Stable
9* 3750 8.7 6 Stable
10* 3679 9.4 10 Stable
11 7000 5.9 142 Unstable
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Figure 14: Stability maps after every test in Table 4. The horizontal axis
for each plot is the spindle speed in revolutions per minute. The vertical axis
for each plot is axial depth of cut. Stable tests are shown in green, while
unstable tests are red.
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Figure 15: Posterior stability map and distributions after 11 cutting tests. The
red solid line in the stability map is the stability map calculated from the
measured values using the frequency domain stability limit model [2], while
the red dots and lines in the distributions are the measured values.

Table 5 compares the prior, marginal posterior, and
measured values for each parameter. This table also includes
the derived properties f,,, the flexure natural frequency, and ¢,
the flexure damping ratio. The distributions of these derived
properties were calculated by Monte Carlo sampling. The prior
and posterior uncertainties in the modal parameters was
propagated via Monte Carlo simulation to calculate those
parameters. Ultimately, the posterior distribution did not
converge to the measured values. Additionally, as shown in
Figure 15, the posterior stability map did not converge to the
stability map calculated from those measured values.

Table 5: Comparison of the prior and posterior uncertainties. The posterior
mean/standard deviation do not fully describe the posterior since the
distributions of each individual variable are neither normal nor independent.
However, they are useful as a point of comparison.

N .
c (—S) 683+ 647 669+ 629 114
m
£, (Hz) 142 + 8.7 123 + 0.86 129
¢ 141+016% 157 +015%  2.82%

Prior Posterior M red
Variable distribution distribution ejj“ee
(u+10) (1 10) v
N
ke, ( 2) 734 + 83.4 653 + 53.8 903.9
mm
N
K, ( 2) 346 + 67.3 387 + 54.8 534.5
mm
N
k (—) 217+ 0266  1.65 + 0.04 1.64
um
m (kg) 2.75 4+ 0.057  2.75 4+ 0.060 2.51

8. Discussion

The framework was able to quickly identify the optimal
milling parameters (i.e., the milling parameters with the highest
MRR). On the first test set, the Bayesian framework identified
the optimal parameters in two test cuts, outperforming other
optimization techniques, such as the naive Bayesian approach
proposed by Karandikar et al. [3]-[4]. However, as shown in
Figure 15, the stability map failed to converge towards the true
values of the underlying parameters. More significantly, it did
not converge towards the true shape of the stability map.

This occurs due to limitations in the frequency domain,
zero-order  stability limit approximation. While the
approximation is accurate for slotting, lower radial depths of
cut yield bifurcations in the stability diagram [11]. These
regions display period-n stability, where cuts repeat their
displacement profiles every ntooth passes (i.e., they have
periods that are integer multiples of the tooth period, rather than
repeating every tooth period for forced vibration in stable cuts).

This is illustrated in Figure 16, which compares the
analytical stability boundary to time domain simulation results.
In total, 400 time domain simulations were completed and the
resulting displacement profiles were classified as either stable
(period-1), period-n (for n values up to 10), or unstable
(secondary Hopf bifurcation) based on subharmonic sampling
[20]. This method is an adaptation of the earlier once-per-tooth
sampling, except that the metric is calculated over samples
taken every nth tooth passage:

N ] '
M(n) = Z 1% (0) _;sn(l - 1| ’
=2

(10)

where X, is the vector of samples taken from the displacement
signal every n tooth passages.

The time domain simulations show a region of period-»
and unstable behavior near 4500 rpm which splits the
traditional stability lobe. While the analytical solution predicts
that cuts in this region should be stable (for example, the test
cut at 4567 rpm, 9.8 mm), both the time domain and actual test
cuts are unstable. There is also an extra region of stable and
points that weren’t predicted by the analytical solution at
roughly 5200 rpm.
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Figure 16: Comparison of analytical and time-domain stability. The numbers
in the background provide the M values. Empty regions are predicted to be
stable by the time domain simulation. A 2 indicates a period-2 instability, and
so on. The dots represent a secondary Hopf bifurcation. The threshold M value
was | um. The test cuts generally agree with the time domain simulation and
the posterior stability map closely approximates the shape of the left side of the
split stability lobe.

Since this intermediate unstable lobe is not predicted by
the frequency domain solution, the Bayesian model cannot
predict its effects. The end result, as shown in Figure 16, is that
the Bayesian method fits a stability lobe to one side of the
bifurcated analytical lobe; here, it is observed on the left. This
is the best solution given the model limitations.

This illustrates how the choice of model changes the
performance of the Bayesian updating and demonstrates the
advantages and disadvantages of physics-guided models. A
physics-guided model can converge towards the optimal
operating parameters more quickly than a more naive approach.
However, it also limits the solutions that the model can identify.
Since the frequency domain model does not account for the
possibility of bifurcations at low radial engagement, the
Bayesian model (which is driven by the frequency domain
model) also cannot predict that behavior. In contrast, the naive
Bayesian approach used by Karandikar et al. may require more
tests to converge, but because it is not physics-guided it does
not depend on the assumptions injected from an underlying
physics model. It will converge to the true stability map given
a sufficient number of test points. Future work can incorporate
alternative, more accurate models to reduce the effect of those
approximations, such as using time domain simulations. Other
areas for future investigation could be different test selection
algorithms and expanding the method to other parameters for
the stability map algorithm (such as helix angle, variable-pitch
flutes, or tool runout.)

9. Conclusion

This paper described a physics-guided framework for
optimization and parameter identification of milling setups.
Prior uncertainties for the FRF and cutting force coefficients
were established through simulation and literature reviews and
propagated to the stability map. The Bayesian updating
framework was then applied to update those uncertainties
based on the results of limited cutting tests. The posterior

distributions for the stability map and input parameters were
compared to measured values and the advantages and
disadvantages of physics-guided frameworks were discussed.
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