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The phase-field method has emerged as a powerful and versatile computational approach for modeling
the coevolution of microstructure and properties in a wide variety of physical, chemical and biological
systems. Existing high-fidelity phase-field models describe these evolutionary processes by solving a
system of coupled partial differential equations for the evolution of continuous field variables, but such
simulations are inherently computationally expensive requiring high-performance computing resources
and sophisticated numerical integration schemes.

In this talk, | will discuss how to bypass these difficulties by directly learning the microstructure
evolution via a computationally inexpensive and accurate, data-driven surrogate model combining
phase-field and deep learning techniques. | will explain how to construct this surrogate model by
combining a statistically-representative, low-dimensional representation of the microstructure obtained
directly from phase-field simulations with either a Time-Series Multivariate Adaptive Regression Splines
(TSMARS) autoregressive algorithm or a Long Short-Term Memory (LSTM) network. | will then go over
our results to discuss the accuracy and computational efficiency of our machine-learned surrogate
model to predict the non-linear microstructure evolution during the spinodal decomposition of a two-
phase mixture using modest computational resources and without the need for “~“on-the-fly" solutions
of the phase-field equations-of-motion. | will finally conclude this talk with some thoughts on
opportunities such machine-learned model offer to discover and design new materials.



Problem you are trying to solve

* Existing high-fidelity mesoscale phase-field models are inherently
computationally expensive because they solve a system of coupled partial
differential equations for a set of continuous field variables that describe
these processes.
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Algorithmic approach of your solution
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* We reframe phase-field simulations as a multivariate time series problem
forecasting the microstructure evolution in a low-dimensional representation:
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* At equally spaced interval during the phase-field simulation, we first calculate the
microstructure 2pt. spatial autocorrelation to obtain a statistically representative

guantification of the microstructure
* We reduce the dimensionality via principal component analysis (PCA)

* We exploit the time-history of the PCA representation to predict the microstructure

evolution via TSMARS or LSTM

* Predictions from machine-learned surrogate can be used as input in a classical phase-
field simulation




Description of the data used
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* We use our in-house multi-physics phase-field code MEMPHIS to generate
5500 history-dependent microstructure evolution trajectories.

5,000 simulations are used as training data
* 500 simulations are used as testing data
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Results
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* LSTM neural network was chosen as. The primary machine-learning
architecture to accelerate phase-field predictions

e LSTM-based surrogate model yields better accuracy and long-term
predictability since it accounts for entire history of microstructure evolution

* Predictions of microstructure evolutions are performance in a fraction of a

second
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Conclusions

Indicate at which session you’d like to present
Unclassified Machine Learning Day or Deep Learning Day

What is the one-sentence summary of your work that you

would want a technical person to remember?

Our machine-learned phase-field framework accurately predicts the non-linear
microstructure evolution in a fraction of a second (as opposed to hours) by utilizing a history-
dependent machine learning approach to exploit information from the time-history of a low-
dimensional representation of the microstructure.

What is the one-sentence summary of your work that you

would want a manager or program developer to remember?

Our machine-learned mesoscale phase-field framework opens a promising path forward to
novel uses of predictive modeling algorithms for discovering, understanding, and predicting
processing-microstructure-performance relationships relevant to SNL mission.

Do you prefer an oral or a poster presentation?
Oral
If oral, indicate presentation time between 15 and 30 minutes

or a 5-minute spotlight.
15 or 20 mins.



