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Machine Learning Everywhere

Machine Learning is becoming an integral part of everyday life



Top-Trending Machine Learning Architecture

How to achieve good performance on specialized architectures?
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1 Architecture-aware Machine Learning
Aspects of Performance
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FLOPs vs. Data movement1 nergy

FLOPs are free, but data movement is expensive

Minimization of data movement overheads is increasingly critical
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Architecture-avvare algorithm design 1Source: John L. Hennessy (Stanford) and David A. Patterson (UC Berkeley)
2Source: Jim Demmel (UC Berkeley) and John Shalf (LBL)



Non-negative Matrix Factorization (NMF)

Given a matrix A E Ikv+xp and latent variable K << min(V, D) ,

NMF estimates two rank-K matrices W E ile+x/( and H E ile_Pc° such that, 1
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NMF Applications

Node Embedding for Graph Mining

A /N./
eN„,/

V: number of unique nodes
D: number of unique nodes

V ><K1
4 D

H

Topics

gene 0.04
dna 0.02
genetic 0.01

. „

life 0.02
evolve 0.01

organism 0.01

• , ,

brain 0.04
neuron 0.02
nerve 0.01

data 0.02

number 0.02

computer 0.01

Documents
Topic proportions and

assignments

Seeking Life's Bare (Genetic) Necessities
COLD SPRING HARBOR, NEW YORK— "we not

genome :Le I 'I;
here IWORC111111, researchers with rash,*
diffewnt appnywhes presented compleme,
tary views of the Facie gene. needed for lth
One research team. using computer anrk
ses ro compare known gen. MI, concluded more
that todav'scan be sustained wiih sequel, c.i 
just 2 50 gears, air-h—s t at the earliest life fimus
required a lucre 128 gene. The Arcady Mushegian,
other resmircher mappixl genes ‘.„ lecular biologist at ilu
in a simple panwite and esti s, for Biotechnology !Mona E.
mated that for this organism. . in Bethesda. Mareland. Cer
BCCgenes am plenty mar the
ioh—hut that anything short
of IOC, wouldn't he enough.

Although the numbers don .1
march preciwdv, those pu I et* •wme

comparison to rd.

• Genorne Mapping and Segoonc.
mg. Gold Spring Harbor. Now York.
May 8 to 12

mine up ,k I.

Stripping down. Computer analysis Holds an em.
mete or the monimum menlem and anoent genomes

,IENCE • WE :7: • 24 MAY Pun.

A

Topic Modeling for Text Mining*
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NMF Algorithms

Objective function

1 1 vi
DF(Al IWH) = l IA — WHI IP = Z.,(A-vct (WH)vd )2

vd

Variants of NMF
Multiplicative Update (MU)
Additive Update (AU)
Alternating Non-negative Least Squares (ANLS)
Hierarchical Alternating Least Squares (HALS)



Performance Challenges in HALS-based NMF

Updating H

Updating W

input: A c likv_Exp: non-negative input matrix, E: machine epsilon

Initialize W c likv+x1( and H E KxD with random non-negative numbers
repeat

t R = ATW
S = WTW
for k = 0 to K — 1 do

Hk = max(E, Hk + Rk — HTSk)

ai
P = AHT
Q = HHT
for k = 0 to K — 1 do
Wk = max(E, WkQkk + Pk — WQk)

W 
Wk 

k = 
llWkll2

until convergence

The main data movement overhead is
associated with these k loops

* 91% of the combined fractional
data movement overhead

How to reduce data movement cost of these k loops?



HALS-based NMF

Interaction between different columns of W with iterative matrix-vector
multiplications

• original value

current value

• updated value
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an updated value



HALS-based NMF

Updating W with iterative matrix-vector multiplications

• original value

current value

updated value

k = t
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HALS-based NMF

Updating W with iterative matrix-vector multiplications

• original value

current value

updated value
k = t

W

k = t

**W

W
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Overview of Our Approach

Our goal is to minimize data movement cost
k= 0 k= 1
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transformation

Original HALS-based NMF
* The lower bound of data movement for

iterative matrix-vector multiplications

= VK2 + K2 +VK
where V: # rows in W

K: # columns in W, # rows and # columns in Q

tile id = I=1 tile_id = I=1
4-

tile_id = I=1
4-

k4)t

Our ALO-NMF
* The lower bound of data movement for
efficient tiled matrix-matrix multiplication*

2VK2

-af

I

1
where C: cache size

*Source: Julien Langou. "Communication Lower Bounds for Matrix-Matrix Multiplication". (2015)

How to reformulate the original iterative matrix-vector multiplications to

matrix-matrix multiplication?



Brand New ALO-NMF (Accelerated Locality-Optimized NMF)

Updating W with tiled matrix-matrix multiplications

K

K
W_old W_new

Phase 1
W_new[ : , 0 : xT-'1] -=
W_old[ : , xT : (r+1)xT-1]
x

W old / w
W-new "-new

Phase 2
W_new[ : , xT : (r+1)xT-1] -=
W[ : , XT : (r+1)xT-1] x
Q[1- xT : (r+1 )xT-1 , XT : (r+1 )xT-1]

Q

W_new W_new

Phase 3
W_new[ : , (r+1)xT : K-1] -=
W_new[ : , xT : (r+1)xT-1] x
Q[1- xT : (r+1)xT-1, (r+1)xT : K-



Data Movement Comparison

Running on a PIE dense image dataset

V
(# rows in W)

K
(low rank)

T
(tile size)

C
(cache size)

11,554 256 16 33MB

Comparison of data movement cost for updating W

Original HALS-based NMF (byte)

K (V K + K + 6V + 1)

= 775,015,680

Our ALO-NMF (byte)

1 2
V (— + —) (K2 — KT) + KVT

T AIT'

= 338,840,256

2.29x reduced 1



Determination of the Optimal Tile Size

Total data movement of phases 1, 2 and 3 -
1

vol(T) = V (- + —) (K2 - KT) + KVT
T NIT

d(vol(n)
= T2 
( 2

dT 
.7 - 1) + K = 0

Optimal tile size T
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For a machine with C = 33 MB and K = 256,
optimal tile size T = 19.82
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Tile size (T)

Tile size T selected by a function are optimal!



Performance Evaluation: Setup

We used four sparse matrices and a dense matrix for evaluation

Sparse datasets

Dataset V D NNZ

t 20 Newsgroups 26,214 11,314 1,018,191

TDT2 36,771 10,212 1,323,869

MovieLens 18,933 8,293 389,455

p2p 400 10,304 4,121,478

Dense dataseti— PIE 11,554 4,096 47,321,408

We used the relative objective function to measure the accuracy of
NMF variants

Relative error = Evd(AVd — (WH)vd) 2

Evd(Avd)2
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Performance Comparison: Quality

HALS-based NMF implementations (ALO-NMF CPU/GPU and PLANC-HALS CPU)
produced a better convergence rate than other NMF variants
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Performance Comparison: Speedup

ALO-NMF CPU/GPU achieved significant performance improvement
over the existing state-of-the-art parallel NMF implementations
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Performance Comparison: Speedup

Original HALS-based NMF vs. ALO-NMF
Breakdown of elapsed time in the process of updating W

Original HALS-based NMF
Elapsed time (s)

per epoch

Sparse Matrix-Dense Matrix
Multiplication (SpMM)

0.046

Dense Matrix-Dense Matrix
Multiplication (DMM)

0.001

Iterative
Dense Matrix-Dense Vector

Multiplication
0.210

Total elapsed time (s) 0.257

Our ALO-NMF
Elapsed time (s)

per epoch

Sparse Matrix-Dense Matrix
Multiplication (SpMM)

0.046

Dense Matrix-Dense Matrix
Multiplication (DMM)

0.001

Phase 1 0.002

Phase 2 & 3 0.031

Total elapsed time (s) 0.080

68.87% reduced 4
The lower the better



Performance Comparison: Speedup

Scalability with the large rank-K
D
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Summary and Conclusions

Architecture-aware machine learning algorithm design is critical

We focused on data locality optimizations for NMF
The associativity of addition is utilized to reorder additive contributions in updating

elements of matrices W and H
We developed a function of tile size for selection of effective tile size T

Our ALO-NMF achieved 2.29x lower data movement and ,,4.45x
speedup compared to the existing state-of-the-art parallel NMF
implementations
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