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Machine Learning Everywhere

Machine Learning is becoming an integral part of everyday life ‘




Top-Trending Machine Learning Architecture

How to achieve good performance on specialized architectures?
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Architecture-aware Machine Learning

= Aspects of Performance ‘
> Processor (number of operations)
- Memory (data movement)
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FLOPs are free, but data movement is expensive
= Minimization of data movement overheads is increasingly critical
= Architecture-aware algorithm design E ittt ey s st e e



Non-negative Matrix Factorization (NMF) |

Given a matrix A € RY*? and latent variable K «< min(V, D), ‘

NMF estimates two rank-K matrices W € RY*X and H € R¥*? such that,
A ~ WH

D : K

Matrix A Matrix W Matrix H |



| NMF Applications
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Node Embedding for Graph Mining
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NMF Algorithms

= Objective function

1 1
D (A[WH) = ~[|A = WHI[2 = 2> (Ayq = (WH)yq )2
vd

= Variants of NMF
- Multiplicative Update (MU)
- Additive Update (AU)
> Alternating Non-negative Least Squares (ANLS)
- Hierarchical Alternating Least Squares (HALS)



Performance Challenges in HALS-based NMF

Input: A € RY*P: non-negative input matrix, £ machine epsilon

Initialize W € RY*X and H € RE*P with random non-negative numbers

repeat
R =ATW
S=WTw

fork=0toK —1do
| Hy = max(e, Hy + Ry — HTSk) s

The main data movement overhead is
associated with these k loops

P = AHT
Q = HHT » 91% of the combined fractional
. fork=0toK—1do data movement overhead
Updating W— ‘
4 - Wy = mV?,X(S; Wi Qi + Px — WQg)
_ k
a K 1wl

until convergence

How to reduce data movement cost of these k loops?



HALS-based NMF

Interaction between different columns of W with iterative matrix-vector ‘
multiplications

® original value |
® current value k=0 k=1 k=2
® updated value %Q iQ iQ
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Replace W[0][0] with Replace W[0][1] with Replace W[0][2] with
an updated value an updated value an updated value



HALS-based NMF

Updating W with iterative matrix-vector multiplications

® original value
® current value
® updated value

W_new; (Q; +
W_new, ,Q, ; +
W_old;,Q,; +
W_old, ;Q;, +
W_old, ,Q,; +
W_O|d0,5Q5,t




HALS-based NMF

Updating W with iterative matrix-vector multiplications

® original value
® current value
® updated value




| Overview of Our Approach

:
Our goal is to minimize data movement cost ‘
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Original HALS-based NMF Our ALO-NMF
» The lower bound of data movement for » The lower bound of data movement for
iterative matrix-vector multiplications efficient tiled matrix-matrix multiplication

5 oo 2VK*
= VK* + K* + VK =
V€

where V: # rows in W where C: cache size|

K: # columns in W, # rows and # columns in Q

*Source: Julien Langou. “Communication Lower Bounds for Matrix-Matrix Multiplication”. (2015)

How to reformulate the original iterative matrix-vector multiplications to
matrix-matrix multiplication?



Brand New ALO-NMF (Accelerated Locality-Optimized NMF)

Updating W with tiled matrix-matrix multiplications
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Data Movement Comparison

Running on a PIE dense image dataset

V K T C
(# rows in W) | (low rank) (tile size) (cache size)
11,554 256 16 33MB

Comparison of data movement cost for updating W

Original HALS-based NMF (byte) Our ALO-NMF (byte)
1 2
K(VK+K+6V+1 VI=+—=|(K?—KT) + KVT
( ) (T ﬁ) ( )
= 775,015,680 = 338,840,256

w

2.29% reduced



Determination of the Optimal Tile Size

Total data movement of phases 1,2 and 3 =
1 2
vol(T)=V(—+—>(K2—KT)+KVT ‘
T ~c
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ar NS
Optimal tile size T - T = KVC For a machine with C = 33 MB and K = 256,
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- Tile size (T)
Tile size T selected by a function are optimal!



Performance Evaluation: Setup

= We used four sparse matrices and a dense matrix for evaluation

Dataset "4 D NNZ
20 Newsgroups 26,214 11,314 1,018,191
TDT2 36,771 10,212 1,323,869
Sparse datasets MovielLens 18,933 8,293 389,455
o p2p 400 10,304 4,121,478
PIE 11,554 4,096 47,321,408

= We used the relative objective function to measure the accuracy of
NMF variants

Yopid(Apa—(WH)pq)?
V Zvd(Avd)z

Relative error =




Performance Comparison: Quality |

HALS-based NMF implementations (ALO-NMF CPU/GPU and PLANC-HALS CPU) ‘
produced a better convergence rate than other NMF variants
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Performance Comparison: Speedup

ALO-NMF CPU/GPU achieved significant performance improvement ‘
over the existing state-of-the-art parallel NMF implementations
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Performance Comparison: Speedup

Original HALS-based NMF vs. ALO-NMF

- Breakdown of elapsed time in the process of updating W

Original HALS-based NMF

Elapsed time (s)

Our ALO-NMF

Elapsed time (s)

per epoch per epoch
Sparse Matrix-Dense Matrix 0.046 Sparse Matrix-Dense Matrix 0.046
Multiplication (SpMM) ' Multiplication (SpMM) '
Dense Matrix-Dense Matrix 0.001 Dense Matrix-Dense Matrix 0.001
Multiplication (DMM) ' Multiplication (DMM) '
lterative Phase 1 0.002
Dense Matrix-Dense Vector 0.210
Multiplication Phase 2 & 3 0.031
Total elapsed time (s) 0.257 Total elapsed time (s) 0.080

68.87% reduced ¥

The lower the better




Performance Comparison: Speedup

Scalability with the large rank-K
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Summary and Conclusions

= Architecture-aware machine learning algorithm design is critical

= We focused on data locality optimizations for NMF
> The associativity of addition is utilized to reorder additive contributions in updating
elements of matrices W and H

> \We developed a function of tile size for selection of effective tile size T

= Our ALO-NMF achieved 2.29x lower data movement and ~4.45x
speedup compared to the existing state-of-the-art parallel NMF
implementations
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