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Neural Networks

• For big data applications, neural
networks (NNs) are often used, but
traditional computer architectures
inefficient

• Synapses and neurons of a neural
network can be implemented using
spintronic devices

• Using intrinsic properties of
magnetic materials, it is possible to
implement controllable non-linear
synapses

• Goal: model non-linear synaptic
behavior at device and system level

https://www.imagimob.com/blog/are-there-fashion-trends-in-ai
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Hassan et al., Magnetic domain wall neuron with lateral inhibition



Micromagnetics and SPICE modeling

• Develop non-linear synapse model
using micromagnetics simulation
software MuMax3

• Verify behavior on a larger scale by
using in conjunction with SPICE
softwa re

• Emphasis on ways to minimize
leaking behavior in synapses
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Benchmark results for smooth synapse
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Results for synapse edge roughness
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Results for synapse with notches
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Conclusions and research direction

• Set up micromagnetics model of trapezoidal synapse using CoFeB
material parameters with implementation of:
• Spin transfer torque, spin Hall effect, Rashba effect

• Notches and surface roughness

• PMA vs IMA materials

• Notches and surface roughness both retain properties of nonlinear
propagation, but only sufficient diameter notches prevent leaking

• Next step: Investigate notch diameter vs maximum synapse pinning
location


