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Neural Networks

https://www.imagimob.com/blog/are-there-fashion-trends-in-ai

* For big data applications, neural
networks (NNs) are often used, but
traditional computer architectures
inefficient

* Synapses and neurons of a neural Sl
network can be implemented using - 7
spintronic devices

* Using intrinsic properties of | '
magnetic materials, it is possible to
implement controllable non-linear
synapses

* Goal: model non-linear synaptic
behavior at device and system level
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Micromagnetics and SPICE modeling
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* Develop non-linear synapse model e al
, . e . i MmO
using micromagnetics simulation U = eroBuall + &)

software MuMax3

* Verify behavior on a larger scale by
using in conjunction with SPICE
software

* Emphasis on ways to minimize
leaking behavior in synapses

Brigner et al., Graded-Anisotropy-Induced Magnetic Domain Wall Drift for an
Artificial Spintronic Leaky Integrate-and-Fire Neuron



Benchmark results for smooth synapse
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Results for synapse edge roughness

Roughness diam 1 nm :: w; =25 nm :: PMA STT Relaxation position :: w; = 25 nm :: PMA STT
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Results for synapse with notches

Notch diam 10 nm :: w; = 25 nm : PMA STT Relaxation position :: w; =25 nm :: PMA STT
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Conclusions and research direction

e Set up micromagnetics model of trapezoidal synapse using CoFeB
material parameters with implementation of:
* Spin transfer torque, spin Hall effect, Rashba effect
* Notches and surface roughness
* PMA vs IMA materials

* Notches and surface roughness both retain properties of nonlinear
propagation, but only sufficient diameter notches prevent leaking

* Next step: Investigate notch diameter vs maximum synapse pinning
location



