
Exceptional service in the national interest
Sandia
National
Laboratories

Robust training and initialization of deep
neural networks: an adaptive basis viewpoint

Mamikon A. Gulian (SNL)
Eric C. Cyr (SNL)

Ravi G. Patel (SNL)
Mauro Perego (SNL)

Nathaniel A. Trask (SNL)

SAND XXXXXX

SIAM ANN. July 9 2020

crlir Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
(4 • and Engineering Solutions of Sandia, LLC.. a wholly owned subsidiary of Honeywell International. bre., for

the U.S. Department of Energys National Nuclear Security Administration under contract DENA-131103525.

SAND2020-6970C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Abstract CISandia
National
laboratories

• Why do DNNs work? Why can they beat classical statistical
methods for classification and classical numerical methods for certain
regression algorithms, such as solving conservation laws or ROMs?
Many works prove optimal approximation rates (nonlinear N-widths)
of DNNs that defeat classical numerical methods as the dimension
increases.

• Motivated by the gap between theoretical optimal approximation
rates of deep neural networks (DNNs) and the accuracy realized in
practice, we seek to improve the training of DNNs.

• The adoption of an adaptive basis viewpoint of DNNs leads to novel
initializations and a hybrid least squares/gradient descent optimizer

• We provide analysis of these techniques and illustrate via numerical
examples dramatic increases in accuracy and convergence rate for
benchmarks characterizing scientific applications where DNNs are
currently used, including regression problems and physics-informed
neural networks for the solution of partial differential equations.

SIAM AN20. July 9 2020 2

What does approximation theory predict? CISandia
National
laboratodes

• Universal approximation properties of neural networks are often
touted as an explanation of the success of deep neural networks
(DNNs) in applications.

• Despite their importance, such theorems offer no explanation for the
advantages of neural networks, let alone deep neural networks, over
classical approximation methods, since universal approximation
properties are enjoyed by polynomials as well as single layer neural
networks.

• To address this, a recent thread has emerged in the literature
concerning optimal approximation with deep ReLU networks, where
the error in an optimal choice of weights and biases is bounded from
above using the width and depth of the neural network.

• Despite this, it remains a challenge to realize these theorized
convergence rates for DNNs using practical initialization and
training methods. The need is particularly acute in scientific
machine learning (SciML) applications which demand greater
accuracy and robustness from DNNs.

SIAM AN20. July 9 2020 3

Loss functions fi
SandieNationallaboratories

• We consider in this work the following class of f2 regression problems:

K

argmin El(IlLk[11] — Lk D\INE,111 2(DC.k)
k=1

(1)

where for each k = 1, 2, ..., K, Xk = {X(ik)}. 1 ki. denotes a finite
collection of data points, NNE, a neural network with parameters L„
and Lk a linear operator.

• In the case where k = 1 and is the identity, we obtain the standard
regression problem

argmin — NNE, (x) .
E,

• In general (1) represents a broader class of multi-term loss functions,
including those used in physics-informed neural networks for solving
linear PDEs.

SIAM AN20. July 9 2020 4

Adaptive basis viewpoint
• We consider the family of neural networks NNE, : d —}

CISandia
National
laboratodes

consisting
of L hidden layers of width w composed with a final linear layer,
admitting the representation

w

NNE,(x) = (Di (x; E,11)
i=1

where L,L and E,1-1 are the parameters corresponding to the final
linear layer and the hidden layers respectively, and we interpret L, as
the concatenation of E,L and O.

0

-0

Depth L(number of hidden layers)
likw4D-.07-10

di Ana
wayurr v4iv (I) 2

Allig4111A AllitAkt/OA A

, x2)

b4)3,,'

• • • 04)4
tH

SIAM AN20. July 9 2020 b 5

1

DNN Architectures CISandia
National
laboratodos

• A broad range of architectures admit this interpretation. In this
work we consider both plain neural networks (also referred to as
multilayer perceptrons) and residual neural networks (ResNets).

• Defining the affine transformation, T1(x, L,) = Wt. • x + I:11E., and given
an activation function cr, plain neural networks correspond to the
choice

oplainx&)=0.0-11 0...00.0-1-1,

while residual networks correspond to

ores
= + o TL) • • • o (I + 0- o T2) O (6 Tl),

where (13 is the vector of the w functions (Di, ig the vector of the w
activation functions a. and I denotes the identity. In both cases E,1-1
corresponds to the weights and biases W and b.

• In practice, deep plain DNNs are not trainable. A rule of thumb is if
you have more than 10 layers, you should probably use a ResNet.

SIAM AN20. July 9 2020 6

Hybrid Least Squares/Gradient Descent

• We seek

argmin c,
' k=1

Lk[u] — [(11;.(x, 0)]

2

f2(Xk)

fi
Sandi
National
laboratodes

A typical approach to solving Equation 7 is to apply gradient
descent with backpropagation jointly in (L,L, E,H).

• Given the adaptive basis viewpoint, an alternative is to hold the
hidden weights E,H constant and minimize w.r.t. to E,L, yielding the
LS problem (for simplicity focusing on K = 1):

argmin A.E,L — II
b112f2(X)

Here we have bi = [il] (xi) and Aii = [Di (xi, E,H)] for
E X, i= 1, , N, j = 1, , w.

SIAM AN20. July 9 2020 7

Hybrid Least Squares/Gradient Descent
CI &TAW

National
laboratodes

• Exposing the LS problem in this way prompts a natural
modification of gradient descent. The optimization algorithm
proceeds by alternating between: a LS solve to update E,L by a
global minimum for given E,H, and a GD step to update L,H.

Algorithm 1 Hybrid least squares/gradient descent

1: function LSGD(e)
2: = t> Input initialized hidden parameters
3: 4L = LS(411) t> Solve LS problem for 4L
4: for i = 1 ... do
5: ~H =GD(4) t> Solve GD problem
6: 41' = LS(411)

7: end for
8: end function

SIAM AN20. July 9 2020 8

Illustration of LSGD

—6.7v1,7

C) &IAN
National
laboratories

Figure: LSGD algorithm. The
black dot denotes the initial
guess and the black star a local
minimum. The red line
represents the submanifold

— SVW E,L) for which E,T- is a
solution to the least squares
problem for fixed L,H, written
= LS(L,H), on which

V E,0 = a, 0). Since the
black star must also be a global
minimum in L,L, it lies on this
submanifold. The blue curve
represents GD, and the
rectilinear green curve LSGD.
Each LS solve (dashed green
line) moves the parameters to
the submanifold E,I- = LS(E,H).

SIAM AN20. July 9 2020 9

= LS(e)

LSGD vs GD
GReLU/plain/width 32/depth 4 RaLU/ResNet/width 32/depth 4

4

3 2
0

° -2

-4

=GD st. dev.
—GD mean
MLS/GD st. dev.
—LS/GD mean

training steps (log scale)
6 6
10° 101 102 103 104 10° 101 102 103 104 IV

4
tanh/plain/width 40/depth 6 4anh/ResNet/width 64/depth 8

2 2
0 0

-14

10
-12

-6
8

-10
-12
-14

-8
6

-2 2
-4 4

-16 16
10° 101 102 103 10° 101 102 104 104

4

2

0

-2

-4

Figure: Mean of 1og10(Loss) over 16 training runs ± one standard
deviation of the same quantity, for approximating sin(27rx) on [0, 1]
sampled at 256 evenly spaced points.

Natknal
Laboratodes

SIAM AN20. July 9 2020 10

The Box initialization for ReLU DNNs fi
Sandie
National
laboratories

• We demonstrate how the He/Glorot initializations, for fixed width
and increasing depth, rapidly lead to a set of constant basis
functions for plain networks and linearly dependent basis functions
for deep ReLU network (with diverging slope). These are bad sets of
initial basis functions!

• This is by design — for a shallow ReLU network, the bias
(breakpoint) is chosen to be zero and the slope is sampled randomly.

• From a C° finite element point of view, it's better to scatter the
breakpoints (in one-dimension) or cut-planes (in higher dimensions)
of the ReLU functions randomly in the domain where data is
available. Then, each basis function will be sensitive to local changes
in parameters.

• For a deeper network, if we control the slopes (weights) based on
where the breakpoints/cut-planes are, we can control the output a
given layer, and then iterate the initialization through the layers.
The goal is to have as high a rank as possible in the initialized basis.

SIAM AN20. July 9 2020 11

Plain networks CISandie
National
laboratories

Figure: Notation used in the "Box
initialization" of each node. A random point p
with random orientation 11 is used to define a
ReLU function of form cr(k(x — p) • ft). One may
choose the slope of the ReLU cc to impose an
upper bound on the output of each layer. We
refer to the hyperplane normal to n, where the
ReLU "switches on", as the cut plane.

For each output row (1 ..i...w) of the layer:

El Select p E [0,1]w at random.

El Select a normal n at p with random direction.

la Choose a scaling k such that

max cr(k(x — p) • n) = 1.
xe[0,1]',

la Row wi of WI' and 1:)1' are selected as bi = kp • n and wi = knT.

SIAM AN20. July 9 2020 12

L=0 L=1

•
1.2

•
A

1.8

1.2 2.4

•
1.2 1.2

L=2 L=3 L=4 L=5 L=6

• • •
0.21 0.22 0.2 0.2 0.2

0.23 0.24 0.2 0.2 0.2

1°4kb

1.2 1.2 1.1 0.65 1.2

L=7

•
0.2

0.2

J
1.2

fi
Sandi3
National
laboratodes

Figure: Images PL of the unit square [0, 1]2 under L initialized hidden
layers of plain networks for He (top) and Box (bottom) initializations.
Values are presented on the square [-0.2, H]2, where H is denoted to the
bottom-right of each image. Collapse to a point corresponds to constant
basis functions.

SIAM AN20. July 9 2020 13

Residual Networks CISandia
National
laboratodes

• For a ResNet, unless d = w, the first hidden layer is initialized as a
plain layer. Then, for the remaining hidden layers, to initialize the
neuron i, 1 w,

P For m specified later, select p E [0, m]w at random.
Ei Select a unit normal n at p with random direction.
[i] For 5 specified later, choose a scaling k such that

max o-(k(x — p) • n) = 5m.
[O,m]w

10 Row wi of WE' and 13E' is selected as bi = kp • n and wi = knT.

Assuming the input into the first hidden layer is contained in [0, l]w,
initializing the hidden layers with 5 = iL leads to a network such that
the final output of the hidden layer is contained in the box [0, e]w; in
other words, the values of each basis function are contained in [0, e].

SIAM AN20. July 9 2020 14

L =

•
L=2 L=4 L=8 L=16 L=32 L=64 L=128

/
1.2 3.5 4.5 39.0 370.0 28000.0 7.8e+08 1.7e+17

• /

1.2 4.6 7.8 110.0 2300.0 7.9e+05 7.1e+11 6.6e+22

•••
1.2 1.2 1.2

••■ ■ ■

1.2 1.2 1.3 1.3 1.4

fi
Sandi3
National
laboratodes

Figure: Images of the unit square [0, 1]2 under L initialized hidden layers
of ResNets for Glorot (top), He (center) and Box (bottonq
initializations. Values are presented on the square [-0.2, , where H is
denoted to the bottom-right of each image. Collapse to a line through the
origin corresponds to linearly dependent basis functions (i.e., 4:01 = C4:02).

SIAM AN20. July 9 2020 15

Effect on training
C) &IAN

National
laboratories

• We compare the use of the Box initialization for a residual neural
network with hidden layer width 32 against the He initialization for
approximating sin (27rx) using 256 evenly spaced samples in [0, 1]. We
average over 16 independent runs.

He Initialization of width-32 ReLU network Box Initialization of width-32 ReLU network
6 6

4

o

4

2

0 0
bl)
0
,4 -2
z
a5, -4 -4

-6 - -6

-8
Number of training steps scale) 8

10° 101 102 103 104 10°

—L — 8

—L = 16

—L = 32

—L — 64

—L = 128

101 102 103 io4

Figure: Mean of 1og10(Loss) over 16 training runs of residual width-32
ReLU network with L = 8, 16, 32, 64 and 128 hidden layers and training
rate 2—(k+3) for the He (left) and Box (right) initializations.

SIAM AN20. July 9 2020 16

Sande
MGM

Application: PINN solver for Advection Eq.
0

laboratones

• We consider now a physics-informed neural network (PINN) solution
to the linear transport equation atu(x, t) + a(x, t) axu(x, t) = 0 on
the unit space-time domain (x, t) E [0, 1.]2, with initial condition
u(x, t = 0) = u0 (x) and homogeneous Dirichlet boundary data
u(x = 0, t) = O.

• The loss function considered here is

a = Cal + 02 + a3, ai =
1
N1 L lat3or,+ a(x, t)10\fil2,

ieXi

a2 = — L INNi(x, 0) — uo12, 33 =
3

L poto,t)12
N2 tEX2 lEX3

where X1, X2 and X3 are Cartesian point clouds with spacing Ax on
the interior, left and bottom boundaries, respectively.

SIAM AN20. July 9 2020 17

Constant Velocity
• For constant velocity, a(x, t) = 1, the analytical solution is

u(x, t) = u0 (x — t). We use a shallow one-layer ReLU network.

• For this case, the exact solution is in the range of the network for
width 3, and at this point a1 = 32 = a3 = 0, rendering the choice
of e unimportant (we set e = 1).

100 ------

io 4 -

-1104 1 -

10-.4 -

if) -
- LS/GD

10. 10' 102' 10

Iteration

los

fi
Sandio
National
Laboratodes

1.0 1.0

0.8 cu 0.8

0.6 0.6
LS

0.4 0.4

0.2 0.2

0.0
0.00 0.25 0.50 0.75 1.00

0.0

Figure: Left: Loss evolution over training for GD and LSGD. Right:
Solution after 5000 iterations for GD and 500 iterations for LSGD.
Setting: Box initialization, ReLU activation function, network width =
32, depth = 1, learning rate = 0.005.

SIAM AN20. July 9 2020 18

Nonconstant Velocity
• We next consider nonconstant velocity, a(x, t) = x, with

corresponding analytic solution

u(x, t) = tto (x exp(—t)).

• In this case we must fix c independent of the neural network size to
realize convergence. We hypothesized c = VV—' and identified
cc = 1/2 as revealing O(W2) convergence rate w.r.t. width.

`,2 6 x 10-1o

4 x 10-1

3 x 10-1

SIAM AN20. July 9 2020

411r

a =01111k

a = 0.5

a = 1.0

a = 1.5

a = 2.0

161

Width

fi
Sandi3
National
laboratodes

19

ion

4, 10-1

10-2 -

0.0

—0.2

—0.4 -

o —0.6 -

—0.8 -

1.0 2

GD

—I— Deo,
—i— Depth 2
- Depa,a
—I— ...a

0
x

4 16

Number of hidden layers

0

o -1

—2

4 8 16 32 2 4 8 16 32
Width Width

LSGD

4 16

Number of hidden layers

fi
smdu
National
Laboratodes

Figure: Middle: Convergence with ReLU (left; learning rate 0.001) using
cc = A, and tanh (right; learning rate 0.01) using cc =
Bottom: Comparison of GD (left) and LSGD (right) training for tanh
activation, learning rate 0.01, width 32 and 5000 steps. X's indicate errors for
different realizations of the Box initialization. The line indicates second order
convergence w.r.t. depth.

SIAM AN20. July 9 2020 20

Acknowledgements fi
Sandi3
National
laboratodes

• The work of R. Patel, M. Perego, N. Trask, and M. Gulian is
supported by the U.S. Department of Energy, Office of Advanced
Scientific Computing Research under the Collaboratory on
Mathematics and Physics-Informed Learning Machines for
Multiscale and Multiphysics Problems (PhILMs) project.

• E. C. Cyr is supported by the Department of Energy early career
program.

• M. Gulian is supported by the John von Neumann fellowship at
Sandia National Laboratories.

• Thank you to the organizers and to SIAM!

SIAM AN20. July 9 2020 21

