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4 ‘ ML motivation/workflow

= particle impingement angle
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5 ‘ Training/testing dataset and GP

° 144 training data points

(o]

40 testing data points

> Very minimal for ML.

° Fix a pump component, i.e. fix the geometric model

o

Vary a// BCs

> Regression of wear w.r.t. BCs

(o]

r
K;j = k(x;, x;) = 65 exp —=)
log p(YIxy., 6) = —% y—m] |(K° + o) (y — mg) — %log IK® + o2Il — glog(Zn).

Parameters used for building training datasets.

BaSiS: (H>Q7d50}0’0)‘

2

H,(X) = py (%) + k(x)'(K + o) (y — m),
o2 =k(x,x) —kx)T(K + o) k(x),

fIX~ N(m,K),

yif, o2 ~ N(f, o?I),

40 Testing cases and the corresponding operating conditions.

Variable Physical Unit Lower Upper Used Values
description bound bound
H pump head m 35 65 35,50,65
%BEPQ percentage of BEP % 70 130 70,100,130
flow rate
dso mean particle size um 150 600 150,300,450,600
Cy concentration by % 10 40 10,20,30,40

volume

Testing case H(m) BEPQ (%) dso(um) Cp(%)

1 61.0238 100.7292 166.3271 17.1453
2 59.1267 98.1905 315.0980 32.1904
3 44,7113 108.3772 240.2366 20.7519
4 48.4715 91.1032 559.3353 30.8105
5 61.5799 88.8346 164.6182 29.2931
6 60.6776 93.6561 409.1707 14.3419
7 55.3361 90.3236 543.6216 30.1760
8 49,2122 79.0786 244.4687 33.3295
9 40.8413 96.6661 176.7400 18.0289
10 37.3730 84.1489 194.7891 23.2157
11 52.6503 89.6869 469.7961 35.7262
12 44,7080 95.1341 321.9043 38.8840
13 40.7969 79.9512 234.7505 12.2550
14 40.7849 84.3104 274.8115 34.8312
15 52.0627 86.1245 234.0740 38.4080
16 46.5643 106.2776 291.9244 36.7283
17 42.4220 91.7494 391.4051 36.8881
18 57.2903 89.4059 516.8324 36.8432
19 ST 77157 81.3670 404.4440 14.4302
20 63.5732 77.5094 293.5427 18.2543
21 46.8153 105.3642 300.4395 21.8259
22 38.6464 76.4270 252.9711 29.3955
23 51.5555 94.2633 412.6286 19.7275
24 41.3691 81.1006 507.0509 30.9224
25 60.6506 105.4266 287.0631 31.1752
26 44,4207 99,7222 151.2729 29.2686
27 55.1794 76.4686 489.6172 21.6258
28 45.4443 80.8128 596.0691 10.3929
29 41.9834 81.6694 394.4312 21.1014
30 39.9178 105.8456 407.9843 36.4604
31 49,8985 86.2312 171.2106 28.1420
32 51.7241 93.4960 235.8800 35.4772
33 55.7365 79.2394 469.7201 39.0805
34 63.8825 727157 418.2133 39.7347
35 54.2585 106.0398 417.2460 29.2489
36 50.3763 85.9893 488.4799 32.5342
37 46.0812 90.4854 412.1844 24.4333
38 37.6830 87.7900 436.1273 22.7111
39 42.0202 96.4432 393.2446 16.7365
40 35.6735 94.1172 367.0682 11.8249




¢ I Solid-liquid CFD wear prediction — 3D Impeller
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7 | WearGP: 3D impeller showcases
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WearGP: (H,Q, dx. C,)
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(e) CFD-3DImpeller: Pressure
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° Speedup:
o Local: 234,134 x ~ O(10°)
o Global: 976,659 x ~ O(10%)
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(f) WearGP: Pressure
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WearGP and CFD comparison: avg hub wear
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WearGP and CFD comparison: max hub wear
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8 | Solid-liquid CFD wear prediction — 3D Casing

° Inlet velocity conditions
> Wall functions

° Fully developed conditions at outlet:

o Zero gradient for all fields except pressure in normal direction

_ _ _ Qm
uk_rad — um_ra(l — u/_rad T 27Z'R2b

H
u =u =% -

k tan m tan /] tan b
s = = nU.

C

v, = %UOT,.L, L=0.14R,

CFD modeling

» K.V. Pagalthivarthi, R.J. Visintainer, Solid-liquid flow-induced erosion
prediction in three-dimensional pump casing. ASME FEDSM 2009.
K.V. Pagalthivarthi, J.M. Furlan, R.J. Visintainer, Finite element prediction

of multi-size particulate flow through three-dimensional pump casing,
ASME FEDSM 2015.
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‘ WearGP: 3D casing showcases

The left top corner is the zoom in view near the tongue region
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(b) WearGP.

> Speedup:
o Local: 247,985 x ~ 0(10°)
> Global: 3,406,532 x ~ O(109)
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10

Effects of X W(H, Q) at dsy = 300um and C, = 0.20
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11 ‘ What if the geometric model changes!?

> Can we change from one pump to another pump?

> Rephrase: can we change the design (parameters)?

" . . . . . . . . Tran, A., Sun, J., Furlan, J. M., Pagalthivarthi, K. V., Visintainer, R. J., Wang, Y.
° Yes, and we can even optimize the design using Bayesian optimization in parallel. 019). pBo-2GP-38: A bateh parallel known/unknown constrained Bayesian
optimization with feasibility classification and its applications in computational

fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 347,

827-852.
pBO-2GP-3B: Convergence plot of 33d impeller CFD simulation
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2 1 Q&A

Thank you for your listening, If you have any questions, please email: anhtran(@sandia.gov




