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Bayesian optimization (BO) is an efficient and flexible global
optimization framework that is applicable to a very wide range
of engineering applications. To leverage the capability of the
classical BO, many extensions, including multi-objective, multi-
fidelity, parallelization, latent-variable model, have been pro-
posed to improve the limitation of the classical BO framework.
In this work, we propose a novel multi-objective (MO) exten-
sion, called srMO-BO-3GP, to solve the MO optimization prob-
lems in a sequential setting. Three different Gaussian processes
(GPs) are stacked together, where each of the GP is assigned
with a different task: the first GP is used to approximate the
single-objective function, the second GP is used to learn the un-
known constraints, and the third GP is used to learn the uncertain
Pareto frontier. At each iteration, a MO augmented Tchebycheff
function converting MO to single-objective is adopted and ex-
tended with a regularized ridge term, where the regularization
is introduced to smoothen the single-objective function. Finally,
we couple the third GP along with the classical BO framework
to promote the richness and diversity of the Pareto frontier by the
exploitation and exploration acquisition function. The proposed
framework is demonstrated using several numerical benchmark
functions, as well as a thermomechanical finite element model
for flip-chip package design optimization.

*Corresponding author: anhtran @sandia.gov

1 Introduction

Optimization, in general, is a common problem that ap-
pears in many contexts, including engineering, machine learn-
ing, physics, finance, and mathematics. ~Numerous meth-
ods, such as evolutionary algorithms, and global optimization
method, have been proposed to achieve the optimality with im-
proved efficiency and effectiveness. Bayesian optimization (BO)
method, also known as efficient global optimization method, is a
derivative-free optimization technique that has been used exten-
sively in engineering domains, particularly design optimization.
Traditionally, the classical BO method only consider single-
objective function, whereas in practice, multiple objectives are
interested. Objectives are often found to conflict each other,
where a trade-off between objectives is desired to achieve the
optimality. Thus, it is important to derive the set of optimal so-
lutions in the Pareto sense, where the limits of objectives are
fully exposed for decision makers.

Multi-objective Bayesian optimization (MOBO) is an ex-
tension of the classical BO method for multi-objective optimiza-
tion. Here, we limit ourselves in reviewing MO extension to
most recent developments. Jeong and Obayashi [[1] proposed an
El-based criteria and employed genetic algorithm (GA) to search
for potential sampling points on the Pareto frontier. Knowles [2]
introduced the ParEGO framework with the augmented Tcheby-
cheff function to scalarize the multi-objective functions, which
was later extended by Davins-Valldaura et al. [3] by includ-
ing the probability of Pareto frontier with another GP. Zhang
et al. [4] proposed the MOEA/D framework with the classical
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Tchebycheff scalarization function and decomposed a MO into
a number of single-objective optimization subproblems. Li et
al. [5,6] improve the MO GA methods with the K-MOGA frame-
work, where the posterior mean and posterior variance is con-
sidered to assist GA methods. Feliot et al. [7] proposed a multi-
objective EI acquisition function considering constraints based
on the posterior mean and posterior variance. Qian and Yu [§]
extended the REMBO framework from Wang et al. [9] for solv-
ing MO problems by using random embeddings to significantly
reduce the effective dimensionality of the problem considered.
Gupta et al. [10] proposed a batch MOBO framework with a
weighted linear average objective and demonstrated by optimiz-
ing heat treatment process of an Al-Sc alloy. Shu et al. [11]
developed a composite acquisition function for MOBO to effi-
ciently sample with simultaneous improvement of convergence
and diversity in constructing the Pareto frontier. Herndndez-
Lobato et al. [12,[13] proposed a predictive entropy search acqui-
sition function for MO problems considering constraints. Ab-
dolshah et al. [14] proposed a MO BO framework where vari-
ous computational efforts are taken into account when exploring
the input domain. Gaudrie et al. [15] proposed a sequential and
batch extension for MO BO method by maximizing the expected
hyper-volume improvement. Palar et al. [16] compared the im-
pact of different covariance functions in MO BO and concluded
that Matérn-3/2 is the most robust kernel for design optimization
applications. Further interested readers are referred to other sur-
vey and literature review [[17,18] in MO BO methodologies and
applications.

In this paper, we propose to stack three GPs to solve the
MO constrained optimization problems, where s is the number
of objectives considered. Furthermore, we explore the possibil-
ity of introducing regularization in the Tchebycheff scalariza-
tion method. The approach is unique in three different perspec-
tives. First, we employ GP as an uncertain machine learning
technique to probabilistically search for the Pareto frontier, sim-
ply by stacking this classifier over the objective GP. The acquisi-
tion function in the classical BO method is employed to balance
the exploitation and the exploration of this Pareto GP, which en-
hances its richness and diversity in the Pareto frontier. Second,
we combine the multi-objective functions to a single-objective
function with a randomized weight vector and regularize this
single-objective function by a ridge regularization to smoothen
the single-objective function. The philosophy of our approach is
intrinsically similar to that of classical BO methods. Compared
to other approach in literature, the heuristic proposed in this re-
search is greatly simplified, yet its efficiency is comparable to
other methods. Our approach is more general in the sense that it
does not restrict to a particular form of the acquisition function,
and leaves the choice of acquisition functions up to the users.
The idea is extended based on the work of Davins-Valldaura et
al. [3]; however, our work differs from their work in treating the
Pareto GP, as well as the acquisition function. In our approach,
we opt to include both exploitation and exploration of this Pareto
GP by considering uncertainty, whereas in their approach, only
the probability of Pareto frontier (i.e. exploitation) is considered.

Another novelty in our approach is the ridge regularized term in
the acquisition to smooth the acquisition function.

Two significant advantages of the proposed stMO-BO-3GP
algorithms are highlighted as follows. First, the regularization
terms in the acquisition can significantly mitigate the effects
of noise on observations. Second, our approach is not limited
by the number of objective functions, as in other approaches.
For example, if hypervolume-based approach is considered, the
number of objectives would have a scalability effect on the com-
putation of the hypervolume. Our proposed approach avoids lim-
itation by converting the identification of Pareto frontier into an
uncertain classification problems in machine learning context,
with a flavor of uncertainty quantification. Thus, as the Pareto
GP classifier gains more accuracy, it converges to the true Pareto
frontier through the mean of classical Bayesian optimization ap-
proach.

For the remaining of this paper, Section [2 describes the pro-
posed stMO-BO-3GP framework. Section 3| provides the numer-
ical results for several numerical analytical functions, as well as
an engineering thermomechanical finite element model (FEM)
using the proposed approach. Section 4 discusses and Section 5]
concludes the paper.

2 Methodology

We follow the formulation of Lin et al. [19] in defining
the MO BO problem. For the sake of clarity, we denote x =
{x;}L, € X CR? as the input of d continuous variables in d-
dimensional space, whereas y = {y;}_; as s outputs. Tradition-
ally, BO solves the single-objective optimization problem

y = argmax c(x), (1)
xeX

subject to the constraints ¢(x) < 0. In this paper, we consider the
scenario of MO optimization problem,

Y = argmax(f1(x),..., fs(x)), 3

xeX

subject to the constraints ¢(x) < 0.

2.1 Gaussian process

Gaussian process regression is an efficient and flexible
framework to approximate a response surface for a single-
fidelity, single-objective function. We briefly summarize the GP
theoretical formulation for the sake of completeness [20]. Let
D = (x;,yi)i=1:n denote the dataset of n observations with output
y and d-dimensional input x € X C RY. AGPisa nonparamet-
ric model characterized by its prior mean function g (x) : X - R
and a covariance function k(x,x’) : X x X — R. Assuming that
the observations f = fi., are jointly Gaussian, and the observa-
tion y is normally distributed given f, i.e.

flx ~ N (m,K), 3)



yIf.0% ~ N(f.6°I), (4)

where m; := u(x;) and K; ; == k(x;,x;).

The classical GP regression formulation assumes a station-
ary covariance matrix and only considers the weighted distance
P (x,x") = (x—x")T A(x—x'), where A is a diagonal matrix of d
squared length scales 9,-2. Matérn kernels offer a broad class for
stationary kernels, controlled by a smoothness parameter v > 0
(cf. Section 4.2, [21]]), including the square-exponential (V — o)
and exponential (v = 1/2) kernels widely used in the literature.
The v = 3/2 Matérn kernel k(x,x") = 0% exp (—v/3r)(1 +V/3r)
is used in this work. At a known sampling point x € X, the pos-
terior mean u(x) is calculated by

u(x) = o (x) +k(x)" (K +071) " (y —m), )
and the posterior variance 6°(x) is given by

0% (x) = k(x,x) — k(x)T (K +°I) "k(x), (6)

1
where k(x) is a vector of covariance k(x); = k(x,x;), 6° = . (y—

o(x))T K~ (y — uo(x)) is the intrinsic variance. To obtain the
hyper-parameter 6 = (0;);—1.4, we maximize the log marginal
likelihood, which is computed as

1
logp(y|x1:n7e) = __(y_m)T(Ke +021)*1(y_m) (7)

f510g|KG+621| - glog(Zn).

Here, K is emphasized to be strongly dependent on 6.

2.2 Multi-objective function
We adopt the definition of Pareto-dominant from Rojas-
Gonzalez et al. [18]

Definition-1: x; is said to dominate x,, denoted as x; =< xp, if
and only if V1 < j <s, such that y;(x;) < y;(x2),
and 31 < j <s, such that y;(x;) <y;(x2).

X1 is said to strictly dominate x,, denoted as x| <
x2, if and only if V1 < j <, such that y;(x;) <

yj(x2).

Definition-2:

MO optimization problems are typically solved by convert-
ing a MO problem to a single-objective problem, where the
single-objective function is scalarized as a weighted sum of s
multiple objectives [18], such as,

1. weighted Tchebycheff
y = max w;(yi(x) —z),
1<i<s

scalarization function

S
2. the weighted sum scalarization function: y = Z wiyi(x),
i=1
3. and the augmented Tchebycheff scalarization function y =
N
oo wi(yi(x) —zi) +p Z wiyi(x),

I< i=1

where 7z denotes the ideal value for the i-th objective, the
m

weights 0 < w; < 1, wa =1, p is a small positive constant
i=1

(p =0.051in [2,3]).

We closely follow the idea of Davins-Valldaura et al. [3]
in converting multiple objectives to a single-objective function.
We propose another objective function based on the augmented
Tchebycheff scalarization function, with an addition of the reg-
ularized term for differentiability, which could be interpreted in
terms of ridge regression,

s
y = max wiyj (%) +p Y wiyj(x) +Allx2, (8)
siss i=1

where A is an appropriate constant for regularization.

2.3 Constraints

We consider the known constraints and hidden constraints,
where the known constraints are known before the functional
evaluation, whereas the hidden constraints must be learn indi-
rectly through the functional evaluation.

2.3.1 Known constraints

Known constraints can be represented as a set of inequalities
¢(x) <0, where ¢ is a relatively cheap function to evaluate, com-
pared to the real objective function f. The known constraints can
be easily implemented by directly penalizing the acquisition by
setting it to zero if known constraints are violated, while leaving
unviolated sampling points as is.

In practice, the penalty scheme is implemented by multiply-
ing the acquisition with another indicator function I(x),

I(x):{(l), if Vk : e (x) <0, ©

if 3k : cr(x) > 0,

where c; denotes the k-th constraint in the set of known con-
straints.

2.3.2 Unknown/hidden constraints

We adopt our previous strategy by employing a probabilistic
binary classifier to learn the hidden constraints. As a result, fea-
sible and infeasible regions are separated in the input domain X.
These two regions are mutually exclusive, i.e. disjoint, because
a sampling point cannot be both feasible and infeasible at the
same time. The labels of feasible/infeasible for sampling points



are fixed, in the sense that as the optimization process advances,
the labels do not change.

Denote the feasibility dataset as {x;,c;}}_,, where n is the
number of data points. We assign ¢; = 1 if x; is feasible, and
¢; = 0 if x; is infeasible. At an unknown x, the feasibility clas-
sifier provides a probability mass function, with Pr(x|c(x) = 1)
as the predicted probability of passing the hidden constraints,
and Pr(x|c(x) = 0) as the predicted probability of failing the
hidden constraints. It is noteworthy that their sum adds up
Pr(x|c(x) = 0) +Pr(x|c(x) = 1), as they are mutually exclusive
and there are only two possibilities. The probability of passing
the unknown constraints will be used to condition on the acqui-
sition, resulting in the multiplication of Pr(x|c(x) = 1) in the
conditioned acquisition.

Even though there are many available probabilistic binary
classifier in the context of machine learning, for example, k-
NN [22], AdaBoost [23], RandomForest [24], support vec-
tor machine [25] (SVM), least squares support vector machine
(LSSVM) [26], and convolutional neural network [27], in this
work, we restrict our methodology to GP as a binary probabilis-
tic classifier. Labeling feasibility as described above, the poste-
rior mean of feasibility GP can be used to predict the probability
of passing unknown constraints, i.e. pfeasible(¥) = Pr(x|c(x) =

1).

2.4 Pareto frontier with an uncertain GP classifier

At each iteration, we construct the current Pareto frontier,
which is subjected to change as the optimization process ad-
vances. If a sampling point is currently Pareto-dominant, the
point is labeled as 1, and if the sampling point is not Pareto-
dominant (i.e. it is dominated by another point in the dataset),
the sampling point is labeled as 0. The classification process is
thus uncertain, in the sense that the labels change from one iter-
ation to another. This is to contrast with the constraint classifier
¢(x), where the labels are fixed and do not change, as the opti-
mization process advances. The uncertainty in the Pareto fron-
tier classification gradually decreases, as the number of sampling
data points increases.

We explore the possibility of using GP as an uncertain
Pareto frontier classifier. Surprisingly, GP is one of a few well-
established machine learning techniques that considers uncer-
tainty in prediction through its posterior variance function. Be-
cause of this particular reason, GP is employed as an uncertain
classifier to construct the Pareto frontier, where the uncertainty
is quantified by the GP posterior variance function (Eq [6).

The main idea is to force the Pareto GP classifier to balance
its learning by exploitation and exploration, especially when the
Pareto frontier prediction is not accurate by focusing on the un-
known region at the beginning of the optimization process. As
the optimization advances, if the Pareto frontier can be classi-
fied with high accuracy, the BO framework should be exploited
to promote richness and explored to promote the diversity in the
MO optimization settings. This is consistent with the philoso-
phy of the classical BO approach, which strikes for the balance
of exploration and exploitation. Furthermore, the richness and

diversity, which are the two keys measure of MO optimization
problems [[18], are promoted by employing common acquisition
functions on the Pareto frontier GP. As a result, the acquisition
of Pareto GP classifier is included as another in the main acqui-
sition function for the classical BO method (Equation [10).

It is noteworthy to point out that the Pareto classification
problem is also mutually exclusive, in the sense that a sampling
point cannot be both Pareto-dominant and Pareto-non-dominant
at the same time. For an unknown location x, the Pareto GP
classifier provides both the probability of being Pareto-dominant
Upareto(X), Which is bounded between 0 and 1, as well as the
uncertainty associated with the probability as 63, (X).

2.5 Acquisition function

We propose an extended criteria in learning the Pareto fron-
tier considering uncertainty, as opposed to directly couple the
Pareto-dominant probability into the EI acquisition function in
Davins-Valldaura et al [3]. The composite acquisition function
is defined as

a(x) = aop;(x) apareto(X) - Pr(x|c(x)=1) - I(x)
R ——— —— —— ~—
objective GP  uncertain Pareto  unknown constraints  known constraints

(10)
Equation [I0 is explained as follows. The first term,
Gobj (X3 Uobj(X), ngj (x)), is the regularized augmented Tcheby-
cheff single-objective function in Equation §. At each time step,
arandom weight vector w = (wy,...,w;) is sampled to combine
multiple objectives {y;}}_; to a single-objective function y. A
GP model is fitted using the dataset of n data points {x;,y;}7;.
An acquisition function apj(x) is formed, as a function of pos-
terior mean uopj(x) and posterior variance G?)bj (x). The second
term, apareto (X; Upareto (X), G]%arem(x)), is the acquisition func-
tion based on the Pareto frontier GP classifier. The third term,
Pr(x|c(x) = 1) = peasible (X), is the probability of passing un-
known constraints, provided by the second GP.
The next sampling point x* is obtained by maximizing the
acquisition function described in Equation [10, i.e.

x* = argmaxa(x)
xeX

QY

2.6 Summary

The srMO-BO-3GP framework is summarized in Algorithm
. CMA-ES [28,29] is used as the sub-optimizer to obtain the
next sampling point in Equation [T1], where the default settings
are retained. An interface between the stMO-BO-3GP optimizer
and the engineering applications is constructed by MATLAB,
Python, and Shell scripts. Also, since the maximization is set
as a default setting, the Tchebycheff function is algebraically
manipulated to conform with the default setting.

3 Numerical results
In this section, we investigate the effectiveness and the ef-
ficiency of the proposed stMO-BO-3GP algorithm by ZDT and



Algorithm 1 stMO-BO-3GP algorithm.

Input: dataset D, consisting of input, observation, feasibility (x7y7c)7:1
Input: multi-objective (x;,y;)i_;, constraint GP (x,¢;)’;,
1: forn=1,2,...,do

2: randomize a weight vector w

3: combine {y;}}_; to y (Eq

4: construct single-objective GP

5: construct Pareto front

6: find current Pareto front

7: construct Pareto classifier GP

8: construct constraints classifier GP

9: locate the next sampling point x,,1 (Eq. [10)
10: query fory,, | = {y;}}=;, feasibility ¢,
11: augment dataset Dy, 1 = { Dy, (X441 yYn+1:Cn+1 )}
12: end for

> multi- to single-objective
> GP #1: 1o (X), O (%)
> GP #2: Upareto (%), Obyrero (X)

> GP #3: Ufeasible (x) ) Glgeasible (x)

LDTZ benchmarking functions, where the geometry of Pareto
frontiers are well documented by Jin et al [30]. The hyper-
volume metric, which is a strictly monotonic measure, is com-
puted using Walking Fish Group algorithms used [31,32]. The
regularization A parameter is set to 0.05, even though its effect
requires a further benchmark study. We compare the numerical
performance between variants of stMO-BO-3GP, particularly for

- variations of acquisition function for the objective GP: PI,
EIl, and UCB;

- variations of acquisition function for the Pareto GP: PI, EI,
and UCB;

- regularized vs.
function.

This results in 18 different variants of the srMO-BO-3GP. The
name convention for these variants is Reg/NoReg-{PI,EI,UCB }-
{PLELUCB}, which corresponds the option of regularization,
the objective GP, and the Pareto GP.

non-regularized Tchebycheff objective

31 ZDT1
The ZDT1 benchmark function for a 12-dimensional input
x € [0,1]" is described as

fi=x1, (12)
fo=gh, (13)
where

9 12
g=1+ﬁ2xp, (14)

p=2
he1— |0t (15)

g

It can be proved analytically that since 1 < g < 10, the Pareto
frontier is obtained when g = 1. The Pareto frontier is a collec-

tion of {f1, 2}, where fo = 1 —\/fi.

Comparison of Pareto frontiers: ZDT1 functions
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Fig. 1: Comparison of srMO-BO-3GP variants on ZDT1 bench-
mark function.

Figure [Ia shows a comparison between 18 variants of the
srtMO-BO-3GP algorithm, where Figure [1b shows the magni-
fied view in the window of [0,1] x [0, 1]. Readers are referred to
the color version online. The true Pareto front is plotted with the
dash-dotted green square. The regularized acquisition functions
are plotted as solid lines, whereas the non-regularized acquisi-



tion functions are plotted as dash-dotted lines. The objective GPs
with PI acquisition function are plotted as blue, whereas those
with EI acquisition function are plotted as magenta, and those
with PI acquisition function are plotted as black. The Pareto GPs
with PI acquisition function are plotted as circles, whereas those
with EI acquisition function are plotted as downward triangles,
and those with PI acquisition functions are plotted as upward
triangles.

Overall, the regularized objective function (A = 0.05)
slightly outperforms the non-regularized objective function (A =
0). The objective GPs with the EI acquisition function seems to
outperform the objective GPs with UCB and PI acquisition func-
tion, with PI acquisition function being the worst. However, the
Pareto GPs with the EI and PI acquisition functions are more ac-
curate in classifying the true Pareto frontier, compared to those
with the UCB acquisition functions. The best performers among
these variants are NoReg-EI-PI and NoReg-EI-EI.

3.2 DTLZ1
The DTLZ1 function for a 12-dimensional input x € [0, 1]'2
is described as

fi=0.5(1+g)x, (16)
f=05(1+g)(1—-x1), 17)
12
where g = 10011+ Y ((x, —0.5)* — cos [20m(x, — 0.5)])
p=2

Figure 2a shows a comparison between 18 variants of the
stMO-BO-3GP algorithm, where Figure 2B shows the magni-
fied view in the window of [2500,2525] x [2475,2500]. Readers
are referred to the color version online. The true Pareto front
is plotted with the dash-dotted green square. The regularized
acquisition functions are plotted as solid lines, whereas the non-
regularized acquisition functions are plotted as dash-dotted lines.
The objective GPs with PI acquisition function are plotted as
blue, whereas those with EI acquisition function are plotted as
magenta, and those with PI acquisition function are plotted as
black. The Pareto GPs with PI acquisition function are plotted
as circles, whereas those with PI acquisition functions are plotted
as upward triangles. All variants of the sMO-BO-3GP converges
on the true Pareto frontier with little variations.

3.3 Engineering applications

We demonstrate the applicability of our proposed frame-
work to a thermomechanical FEM model for flip-chip package
design, where five objectives are considered. Figure 3 shows the
geometric model of the thermomechanical finite element model
(FEM), where the mesh density varies for different levels of fi-
delity. Two design variables are associated with the die, three
are associated with the substrate, three more are associated with
the stiffener ring, two are with the underfill, and the last one is
with the PCB board. Only two levels of fidelity are considered
in this example. Table [I] show the design variables, the physical
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Fig. 2: Comparison of srMO-BO-3GP variants on DTLZI
benchmark function.

meaning of the design variables, as well as their lower and upper
bounds in this case study.

Table 1: Design variables for the FCBGA design optimization.

Variable | Design part Lower bound | Upper bound | Optimal value
X die 20000 30000 20702

X2 die 300 750 320

X3 substrate 30000 40000 35539

X4 substrate 100 1800 1614

xs substrate 10-107° 17-107¢ 17-107°
X6 stiffener ring 2000 6000 4126

X7 stiffener ring 100 2500 1646

xg stiffener ring | 8-107° 25.107° 8.94.107°
X9 underfill 1.0 3.0 1.52

X10 underfill 0.5 1.0 0.804

X1 PCB board 12.0-107° 16.7-107° 16.7-107°

After the numerical solution is obtained, the component
warpage at 20°C, 200°C, and the strain energy density of the
furthest solder joint are calculated. The five objectives are listed
as follows,
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Fig. 3: Finite element model geometry.

Objective-1:
Objective-2:
Objective-3:
Objective-4:

warpage at 20°C,

warpage at 250°C,

damage metric for BGA lifetime prediction,
damage metric for C4 interconnection lifetime pre-
diction,

first principal stress at C4 corner, where cracking
and delamination frequently occurs,

Objective-5:

where the goal is to minimize all these objectives.

Figure #d shows the scatter plot matrix between the five ob-
jectives and their joint densities, whereas Figure @ presents the
Pearson correlation, which is bounded between (-1) and (+1).
851 simulations are performed, in which only 256 simulations
are feasible. Out of 256 feasible simulations, 84 of those rep-
resent the current Pareto frontier of this numerical study. The
objective 1 is very positively correlated with the objective 2, as
both of them corresponds to the warpages at different temper-
atures. This implies that minimizing the object 1 would also
minimize the objective 2, thus no trade-off is found. The same
argument applies for objectives 3 and 5, where positive corre-
lation is found. The objective 4 is poorly correlated with other
objectives. Trade-offs are found between members of the group
of objectives 1 and 2 and those of the group of objective 3
and 5. Overall, it is challenging to visualize the Pareto front
on high-dimensional space for a practical. However, we have
demonstrated that our methodology is applicable to problems
with many objective functions. In practice, the number of ob-
jectives are often reduced to minimum, before the optimization
study is conducted.

4 Discussion

BO is a powerful and flexible framework which allows for
many useful extension. For example, the local GP approach
[33,34] could be used to improve the scalability of GP. An
extended version of local GP has also been developed [33] to
solve the mixed-integer optimization problems, where the num-
ber of discrete/categorical variables is relatively small. Acceler-
ated BO methods by exploiting computational resource on high-
performance computing platform have been proposed [36,37]
to reduce the amount of physical waiting time. Multi-fidelity
BO approaches [38,39] have been developed to couple informa-
tion between different levels of fidelity by exploiting the corre-
lation between low- and high-fidelity models to reduce the com-
putational efforts. Its success has been demonstrated, at least in
the field of bioengineering [40] and computational fluid dynam-
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Fig. 4: Correlation between five objectives in the FEM example
and their joint densities.

ics [41.[42].

The uncertain GP Pareto frontier was tested on both multi-
objective and single-objective function. Surprisingly, the re-
sults for uncertain multi-objective Pareto GP classifier are not
as good as those for uncertain single-objective Pareto GP classi-
fier. Particularly, the uncertain single-objective Pareto GP classi-
fier tends to diversify results more, using the exploration feature
that is already readily available in the acquisition function. Ad-
ditionally, the exploitation feature will push the uncertain Pareto
frontier to the true Pareto frontier. As the optimization advances,
the uncertain Pareto frontier provided by the Pareto GP will con-
verge to the true Pareto GP.

Two significant advantages of the proposed srMO-BO-3GP
algorithms are highlighted as follows. First, the regularization
terms in the acquisition can significantly mitigate the effects
of noise on observations. Second, our approach is not limited
by the number of objective functions, as in other approaches.



For example, if hypervolume-based approach is considered, the
number of objectives would have a scalability effect on the com-
putation of the hypervolume. Our proposed approach avoids
limitation by converting the identification of Pareto frontier into
an uncertain classification problems in machine learning con-
text, with a flavor of uncertainty quantification. Thus, as the
Pareto GP classifier gains more accuracy, it converges to the true
Pareto frontier through the mean of classical Bayesian optimiza-
tion approach. The second advantage is particularly a huge im-
provement, compared to other conventional approaches, such as
first/second-order reliability method (FORM/SORM) [43], be-
cause these approaches parameterize and fit the Pareto frontier
with a polynomial. This leads to a significant drawback when the
Pareto frontier is discontinuous. Our proposed approach srtMO-
BO-3GP does not suffer from this limitation, and does not limit
the number of objective functions. By converging the multi-
objective optimization problem into an uncertain classification
and solving through GP classifier, the discontinuous problem is
completely resolved by classification techniques in the context
of machine learning.

5 Conclusion

In this paper, we propose a MO BO framework, called
stMO-BO-3GP in a sequential setting with applications to
engineering-based simulations. In this framework, three distinct
GPs are coupled together. The first GP is used to approximate
the single-objective function, which is converted from MO func-
tion using a regularized augmented Tchebycheff with a ridge
regularization term. The second GP is used to learn the un-
known constraints, which are evaluated simultaneously with the
objective function, e.g. the output does not exist because of var-
ious numerical reasons. The third GP is used as an uncertain
binary classifier to learn the Pareto frontier, where its own ac-
quisition function is embedded in the main acquisition function.
The stMO-BO-3GP framework is demonstrated using two nu-
merical benchmarking functions, as well as a thermomechanical
FEM.
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