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Abstract—A graph is an excellent way of representing relation-
ships among entities. We can use graph analytics to synthesize
and analyze such relational data, and extract relevant features
that are useful for various tasks such as machine learning.
Considering the crucial role of graph analytics in various
domains, it is important and timely to investigate the right
hardware configurations that can achieve optimal performance
for graph workloads on future high-performance computing
systems. Design space exploration studies facilitate the selection
of appropriate configurations (e.g. memory) to achieve a desired
system performance. Recently, the approach of accelerating
graph analytics using persistent non-volatile memory has gained
a lot of attention. Traditional system simulators such as Gem5
and NVMain can be used to explore the design space of these
advanced memory architectures for graph workloads. However,
these simulators are slow in execution thus limiting the efficiency
of design space exploration studies. To overcome this challenge,
we proposed a machine learning based approach to co-design
advanced memory architectures for graph workloads. We tested
our approach with DRAM, non-volatile memory, and hybrid
memory (DRAM+NVM) using a breadth first search bench-
mark algorithm. Our results showed the applicability of the
proposed machine learning based approach to the co-design of
the advanced memory architectures. In this paper, we provide
recommendations on selecting advanced memory architectures
to achieve desired performance for graph workloads. We also
discuss the performances of different machine learning models
that were considered in this study.

Index Terms—Design Space Exploration; Graph Analytics;
Non Volatile Memory; Machine Learning;

I. INTRODUCTION

In this paper we present a co-design methodology for
computer micro-architectures for the optimum performance
of graph analytics workloads. Our methodology is based on
Machine Learning (ML) and is applied for the design of
computer memory architectures to optimize the performance
of graph analytics workloads. However, our methodology
can be used for applications other than graph analytics. For
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computer architecture design, it is necessary to choose appro-
priate configurations to satisfy various performance, power,
temperature, reliability, and other metrics. This process is
known as the Design Space Exploration (DSE). The size of
the micro-architecture design space has been growing at a
rapid pace due to the increasing complexity of the modern
computer systems and the complex interactions among var-
ious hardware components, software stack, and application
softwares. Traditionally, computer architects utilize large-scale
cycle-accurate architectural simulators that are used on rep-
resentative benchmarks to explore the design space. Some
examples of such architectural simulators used by computer
vendors include the Mambo simulation environment [1], the
SimNow simulator [2], and the HAsim simulator [3]. How-
ever, the speed of these traditional architectural simulators
is extremely slow. To improve the simulator’s speed and
fidelity, several enhanced simulators have been developed [4].
Nevertheless, even the enhanced simulators cannot meet the
demands of simulating and optimizing the performance of
extreme scale computing systems. Various approaches have
been proposed to overcome these limitations, including several
ones based on machine learning for more efficient design space
exploration. We utilized machine learning methods for micro-
architectural design to build a predictive model by utilizing
a small set of simulated configurations in the training phase.
Such predictive models in essence approximate the simulator
function that characterizes the relationship between the design
parameters and processor responses. Some example design
parameters for memory architectures are cache size and queue
size. Example processor response parameters are performance
and energy consumption. Then, in the predicting phase, the
trained models are used to predict the responses of new
design configurations that are not involved in the training
set. Since simulations are only required in the training phase,
the machine learning techniques are relatively efficient than
other traditional approaches when they can accurately predict
the micro-architectural performance while employing a small
labeled training set.

We developed an end-to-end workflow for the co-design
of computer memory architectures and graph analytics work-
loads. Our workflow combines traditional simulators such as
the Gem5 [5] and the NVMain simulators [6] with ML to
make recommendations for optimized hardware configurations



for graph analytics workloads. In Section II we present some
technical background and related work. Section III describes
our end-to-end workflow. Section IV presents detailed results
and discussion of our experimental results. We conclude by
discussing our planned future research.

II. BACKGROUND AND RELATED WORK

The purpose of this research is to develop an end-to-
end workflow for optimum performance of graph analytics
applications to be executed on computing platforms with
hierarchical memory structures. Historically, the main memory
component of computer architectures has been the ubiquitous
Dynamic Random-Access Memory (DRAM). DRAMs are
present in mobile hand-held devices as well as in the most
powerful supercomputers. However, conventional computer
memory technologies will not be able to meet the challenges of
future extreme-scale systems. These challenges include energy
efficiency, system reliability, and application performance.
There is an increasing gap between the frequencies of CPUs
and the latencies of memory systems. This gap, known as
the memory wall [7], results in performance bottleneck.
Additionally, DRAM device scaling has also plateaued to
result in lower on-node memory capacity. The limited on-
node memory capacity forces the applications to engage in
increased inter-node communications resulting in degradation
of application performance and system reliability. In addition,
the current memory systems are not energy efficient due to the
fact that they consume power even in idle mode. Traditional
DRAM main memory systems consume as much as 30-50%,
of the total power budget of a computing system [8]. There-
fore, alternative memory technologies such as various non-
volatile memory concepts [9] are being investigated. NVM
devices such as the NAND flash memories are deployed on
state-of-the-art supercomputers. U.S. Department of Energy’s
Summit Supercomputer (currently ranked 2 on the TOP500
list [10]) has 1600 GB of NVM in each of its 4608 nodes and
these can be configured either as burst buffers or as extended
memory [11]. However, the optimum integration of NVMs in
a computer memory architecture is an active and open area of
research. NVMs can be integrated in multiple ways in memory
hierarchy. NVMs can be added to augment on-node DRAM, as
global storage devices, as CPU cache, or as I/O burst buffers.
Therefore, rigorous design space exploration of these emerging
memory systems is necessary such that appropriate choices
of memory parameters/configurations can be made to satisfy
performance, power, reliability, and other metrics.

The objectives of our paper are optimum hardware con-
figuration selection and design space exploration for graph
analytics applications. Researchers have investigated potential
acceleration of graph analytics using persistent/non-volatile
memory technologies (e.g., NVM SSD and byte-addressable
NVM) and proposed Metall and miniVite tools [12], [13]. The
miniVite and Metall tools showed significant performance im-
provements on NERSC Cori and OLCF Summit supercomput-
ers by employing a graph that was persistently stored instead
of regenerated [12]. The NV GRAPH data structure was pro-

posed to support in-memory graph storage and computing for
non-volatile main memory systems [14]. Experimental results
showed NV GRAPH ’s performance to be comparable to the
Compressed Sparse Row Representation (CSR) and Linked-
Node Analytics using Large Multiversioned Arrays (LLAMA)
in-memory data structures. High-performance graph analytics
performance on Intel’s Optane DC Persistent Memory (Optane
PMM) was studied in [15]. The results showed that the Optane
PMM yields competitive performance on large production
clusters by supporting a range of efficient algorithms. Dhuli-
pala proposed a semi-asymmetric graph engine called Sage
and showed that shared memory and non-volatile memory
implementations of graph algorithms can solve a wide range of
graph problems [16]. Kumar and Huang proposed SafeNVM,
which offered a reliable NVM store to support application-
specific data formats such as databases and persistent key-
value stores [17]. A parallel graph processing framework for
a hybrid memory system (DRAM + NVM) called NGraph
was proposed in [18]. The authors reported that NGraph was
48.28% faster than a lightweight graph processing framework
for shared memory called Ligra [19] and a numa-aware graph-
structured analytics platform called Polymer [20] systems.
These prior promising results certainly motivate computer sci-
entists to further explore the optimum memory configurations
(DRAM, NVM, and DRAM+NVM) for large scale graph
analytics workloads.

Traditional architectural-level simulator-based memory de-
sign approach is often inefficient due to the significant com-
putational costs. The problem further intensifies for emerging
architectures with complex interactions among hardware and
application software. To overcome these challenges, ML-
based methods have been applied to design various micro-
architectural aspects, such as the memory controller optimiza-
tion [21] and memory hierarchy [22]. The ML-based DSE
approaches can be significantly more efficient than traditional
simulator-based DSE methods.

Therefore, in this work, we propose and evaluate a ML-
based DSE approach for graph analytics workloads. We
applied ML approach to build predictive models that ap-
proximate the functionality of an architectural simulator by
providing the relationship between the memory configuration
parameters (e.g., number of channels, ranks, banks, controller
frequency, timing parameters) and memory responses (e.g.,
latency, bandwidth, power, number of read/write operations).
Our previously published work concentrated on ML-based
DSE of hybrid memory design for applications such as the
HPCG and STREAM benchmarks [23]. This paper builds
upon our previous work to design an end-to-end ML-based
DSE workflow specifically for graph analytics benchmarks
such as the Graph500 [24]. Graph analytics applications have
different memory access patterns compared to traditional HPC
simulation workloads. As such, the workflow presented in this
paper provides valuable insights for the optimization of future
extreme scale systems for graph analytics.



III. ML-BASED MEMORY CO-DESIGN FOR GRAPH
WORKLOADS

In this section, we present our end-to-end workflow for co-
design of advanced memory architectures for graph analytics
applications. We describe various components of this workflow
and discuss their respective roles. Further, we present various
machine learning algorithms considered for this study followed
by a description of the overall experimental setup.

A. Co-design workflow for advanced memory architectures for
graph workloads

We implemented an end-to-end semi-automated memory
co-design workflow for conducting machine learning based
hybrid memory co-design exploration of graph data related
workloads. The pictorial view of our memory co-design
workflow for graph workload is shown in Figure 1. The
workflow consists of three major components: 1) Gem5 system
simulator, 2) non-volatile memory simulator called NVmain,
and 3) machine learning models.

Fig. 1: End-to-end workflow for co-design of advanced mem-
ory architectures for graph workloads using ML

• Gem5 system simulator: Our objective is to simulate the
memory responses using NVMain simulator. To achieve
this, we need memory traces of any workload executing in
a computer system. Gem5 is a computer-system simulator
which can be used to simulate a designated workload as
a sequence of discrete events [5]. These events consist of
both compute events as well as memory access events.
The Gem5 simulator outputs these events in the form
of traces (both compute and memory event traces). The
Gem5 simulator can be used in two modes: 1) System
Emulation (SE) mode which simulates the system calls
and services and 2) Full System (FS) mode in which a
complete system with all devices and operating system
can be simulated. We specify to the Gem5 simulator the

system configuration (i.e. CPUs, memory size, etc.) via
a system configuration file and provide the executable of
the application workload (e.g. a benchmark algorithm).
Subsequently, Gem5 simulates the benchmark and pro-
duces the trace file. We further extract the memory-related
traces and convert them to the NVMain compatible
format.

• NVMain simulator: NVMain is an architectural-level
simulator capable of simulating various memory perfor-
mance parameters such as energy, bandwidth, latency, etc.
with cycle-accurate operations of main memory designs
using both DRAM and emerging NVM technologies
including their hybrid designs [6]. Depending on the sim-
ulation type, i.e. DRAM, NVM, or hybrid, we specify the
configuration parameters to the NVMain simulator. These
configuration parameters broadly consist of memory ar-
chitectural parameters such as number of channels in the
memory module, number of ranks per channel, number
of memory banks, number of rows and columns in each
bank, clock frequency of the memory interconnect, and
CPU frequency. Similarly, the configuration parameters
also include timing related parameters such as column
read time (tBURST), data restoration time (tRAS), row
activation time (tRCD), pre-charge time (tRP), write to
pre-charge time (tWR), etc. Along with these configu-
ration parameters, we can also specify a few control
parameters that are related to the NVMain’s operation
such as PrintGraphs, TraceReader, PrintPreTrace, etc.

We provide the memory configuration file and memory trace
file (extracted from Gem5 trace) to NVMain to simulate the
memory performances. NVMain’s output consists of various
performance metrics such as memory bandwidth, total data
reads and writes, total power and energy, etc. The following
are the definitions of few of these metrics which we considered
in this work. Typically, the memory performance depends on
the memory configuration parameters as well as the type of
workload (in our case graph processing algorithm).

• Latency: It is the time between a processor initiating a
read (or write) request for a byte or word and receiving
(or successfully writing into the memory) the byte or
word. The lower is the latency of a memory the better is
the performance. We can extract total as well as average
values for the latency from NVMain’s output trace.

• Bandwidth: It is defined as a rate at which the data can
be read from and written into the memory. For example,
the number of bytes read (or written) per second.

• Power: This indicates the total power in Watts consumed
by the memory unit while executing the specified bench-
mark.

• Memory read and write operations: These values
represent the total number of read and write operations
performed while executing the specified workload. En-
durance of a memory is related to the write operation.
While DRAM is considered to have infinite endurance
(on the order of 1015), NVMs have finite endurance of



the order of 108–109 [6].

Next, we combine the memory performance parameters
with the corresponding memory configuration parameters to
generate the data set for training machine learning models.
Afterwards, the pre-trained ML models can be used to predict
the memory performance for graph benchmarks for various
memory configuration parameters.

B. Machine learning algorithms considered in this work

The specific objective of co-designing the advanced memory
architectures for graph workload using machine learning is to
understand the relationships between the memory configura-
tion parameters and memory performance metrics using ML
approach. We develop the surrogate ML models that can be
used for the co-design of advanced memory architectures for
graph workloads. The main limitations of using system and
memory simulators such as Gem5 and NVMain are their time
expensive nature of execution. One potential approach that
gained momentum in recent years is to develop surrogate ML
models. Once such models are available, they can be used to
quickly predict the performance of a particular memory config-
uration for a given benchmark. This approach has a potential
to accelerate the co-design process. In this work we have used
the following ML algorithms and regression techniques for the
co-design of advanced memory architectures.

• Support Vector Machines (SVM ): SVM provides a
set of supervised algorithms for classification, regression,
and outlier detection [25]. We are using SVM as a
regressor. SVM is a linear non-probabilistic binary clas-
sifier which can be applied to the non-linearly separable
data through the kernel trick and can be easily applied to
the multi-class classification problem. In principle, SVM
tries to assign each training data point to one of the two
classes so that the difference between the two classes is
maximized.

• Random Forest (RF ): The next ML algorithm consid-
ered is random forest [26]. It is based on an ensemble
learning method that creates a large number of decision
trees such that the parameters of each of these trees are
randomly perturbed. Each tree is overfitted and later the
results of all the trees are combined to obtain the final
result. We are using the RandomForestRegressor function
provided in the scikit-learn library.

• Gradient Boosting (GB): This algorithm is based on a
principle of fitting several weak learners (such as simple
decision trees) iteratively with the modified training data
in each iteration [27]. Initially, all the data points are
assigned equal weights and the learners are trained. In the
subsequent iterations, the weights of the data points that
were predicted less accurately in the previous iteration are
increased compared to the data points that were predicted
correctly. As a result, the learners are forced to learn to
predict the data points which are hard to learn. We use
the GradientBoostingRegressor function provided in the
scikit-learn library.

C. Overall setup for graph workloads

Our objective is to co-design the advanced memory archi-
tectures for graph workloads using machine learning. Here, we
describe the graph algorithm and the overall end-to-end setup
of our workflow.

The pictorial view of our co-design workflow for graph
benchmark can be seen in Figure 1. We computed the Breadth-
First Search (BFS) kernel as specified in the Graph500 bench-
mark by starting from a random vertex ID. The Graph500
is a large-scale benchmark for HPC platforms. Instead of a
computation-intensive benchmark like the High Performance
Linpack (HPL) [28], the Graph500 is focused on data-intensive
workloads [24]. We used a synthetic graph generator called
the GTGraph [29] to generate a graph with 1,024 vertices
and with an edge factor of 16. Next we ran our BFS code
on the generated data in the Gem5 simulator with the default
system configuration in a System Emulation mode (SE). This
run produced a trace file with the size of 5GB. The next task
is to extract the traces related to the memory operations and
simulate them in the NVMain simulator.

Further, we used NVMain to simulate the performance
of main memory using DRAM, NVM, and hybrid memory
configurations [6]. Each NVMain simulation for a particular
memory configuration took around 2 hours. In order to avoid
human errors, we automated the process of generating config-
uration files for 1) pure DRAM, 2) pure NVM, and 3) a hybrid
(combinations of DRAM and NVM) with different numbers of
channels as well as with different values for various memory
configuration related parameters. We specifically considered
CPU frequency, memory controller frequency, fraction of
memory, and two timing parameters, i.e. tRAS and tRCD. We
used CPU frequencies of 2 GHz, 3 GHz, 5 GHz, and 6.5 GHz.
We also used controller frequencies of 400 MHz, 666 MHz,
1250 MHz, and 1600 MHz. Using our configuration generation
scripts, we generated several configuration files for three types
of memory configurations.

Next, we created a comprehensive dataset from NVMain’s
output trace files for training ML models. We created a post-
processing script to extract the memory performance values
from the NVMain’s output trace. The memory performance
parameters we considered are latency, bandwidth, memory
reads and writes, and power. We combined these values with
their corresponding memory configuration parameters to create
a comprehensive dataset which we further used for ML model
training.

D. Challenges faced for the co-design workflow for graph
workload

We faced the following challenges in executing the proposed
workflow:

• The Graph500 benchmark like Scott Beamers Graph
Algorithm Platform (GAP) [30], did not run on the Gem5
simulator. Some of the advanced C++ runtime capabilities
are not supported in the Gem5 simulator while operating
in SE mode. We observed that some system calls such
as mprotect, set robust list, rt sigaction, rt sigprocmask,



and sched getaffinity were unavailable in Gem5, which
produced warnings and exceptions. Moreover, in the
Gem5 simulator, the graph was wrongly produced, with
537 vertices and 0 edges in place of 1,024 vertices with
10,468 edges. Furthermore, the BFS program did not run
to completion. To overcome this challenge we computed
the BFS kernel as specified in the Graph500 benchmark
by starting from a random vertex ID. We used a synthetic
graph generator called the GTGraph to generate a graph
with 1,024 vertices and with an edge factor of 16.

• Typically, a sequential approach processes the Gem5 trace
file one line at a time in a sequence. We observed that
our Gem5 trace file for a graph algorithm has over
≈ 91.5M lines. The sequential processing of this file is
a time consuming task. To overcome this challenge, we
employed a parallel script to convert the Gem5 traces
into the memory trace format compatible with NVMain.
A multiprocessing module in Python was used for parallel
computing. This parallel script divides the input file into
chunks. The size of each chunk is user specified and
the starting points of these chunks are provided to the
parallel processes. Each parallel process processes its own
chunk. Finally, each process stores its memory trace lines
sequentially in a list and this list is further stored in a
file. Our parallel script showed a linear speed-up over
the sequential approach to extracting the memory-related
traces from Gem5 output. The procedure created a 14GB-
sized output file in a required format for the NVMain
simulator.

IV. RESULTS AND DISCUSSION

In this section we present the experimental results. First,
we describe the experimental setup used for ML based co-
design for advanced memory architectures for graph workload
followed by memory performance metrics and statistics used
for the performance evaluation. Next, we discuss various
observations that can be drawn from the results where we
also provide recommendations for the co-design of advanced
memory architectures.

A. Experimental setup

1) Objectives of the experiments: The objective is to un-
derstand the relationships between the memory architectural
parameters and memory performance metrics and learn about
the suitability of ML algorithms for co-designing advanced
memory architectures for graph algorithms in three memory
modes, i.e. DRAM, NVM, and hybrid (DRAM+NVM).

2) Simulation setup: We used Gem5 system simulator in
SE mode to simulate the graph benchmark and extracted
memory traces from Gem5 output. For this work, we used
Gem5’s default configuration in SE mode which uses atomic
CPU and atomic memory access. Next, we ran the NVMain
simulator to simulate the memory traces. We used four dif-
ferent CPU frequencies 2 GHz, 3 GHz, 5 GHz, and 6.5 GHz
and four different controller frequencies 400 MHz, 666 MHz,
1250 MHz, and 1600 MHz. We considered 2 and 4 channels

to generate memory configurations for NVMain simulations.
Additionally, we used data restoration time (tRAS) and row
activation time (tRCD) as timing parameters. For DRAM, we
used tRAS value of 24 cycles and tRCD value of 9 cycles.
The tRAS for NVM was 0 as non-volatile memories do not
need to restore the data similar to DRAMs. We used several
tRCD values for NVM depending on the controller frequency.
For 400 MHz of controller frequency we used tRCD values of
20, 30, 40, 50, 60, and 80 cycles. For 666 MHz of controller
frequency we used tRCD values from 33, 50, 67, 83, 100,
and 133 cycles. For 1250 MHz of controller frequency we
used tRCD values from 62, 94, 125, 156, 187, and 250 cycles.
Lastly, for 1600 MHz of controller frequency we used tRCD
values of 80, 120, 160, 200, 240, and 320 cycles.

3) Data: In this work we computed the BFS kernel as
specified in the Graph500 benchmark by starting from a
random vertex ID. We selected this algorithm because it
is data intensive in nature and it is one the most repre-
sentative algorithms in graph analytics workloads. We used
a synthetic graph generator called GTGraph to generate a
graph with 1,024 vertices and with an edge factor of 16.
For this work, we limited our analysis to BFS algorithms
with graph of 1024 vertices. However, in future, we will
experiment with different graph algorithms and various sizes
of the input graph. We generated a comprehensive dataset for
ML model training from outputs of NVMain simulations. Out
of total 416 memory configurations, for a few configurations
NVMain simulation exited with segmentation fault error. At
this moment we don’t know the reason for this segmentation
fault. We selected around 374 data points, i.e. the memory
configurations which ran successfully, and used 80% of these
data points for training the ML models, and 20% data points
for testing. Figure 2 summarizes the dataset used for the
ML model training. The first three columns of the table
represent memory configuration parameters. For brevity we are
showing only three configurations parameters CPU frequency
CPUFreq, controller frequency (ControlFreq), and number of
channels (nCh). The columns 4–9 represent average values
of six memory performance metrics for each memory type,
i.e. DRAM (D), NVM (N), and hybrid (H). The color coding
depicts darker shades for higher values and lighter shades for
lower values of performance metrics. This representation is
helpful for comparing the performance of different memory
types having different memory configurations. We provide our
detailed observations in the subsection IV-B.

4) ML algorithms and performance metrics: We mainly
used three machine learning algorithms 1) Support Vector
Machine (SVM ) 2) Random forest (RF ), and 3) Gradient
boosting trees (GB) as regressors. In this setting, the memory
configuration parameters represent the predictor variables and
memory performance parameters represent the predicted vari-
ables. The training set is composed of these predictor variables
and their corresponding predicted variables. Further, the ML
algorithms use mean square error (MSE) as a loss function
(i.e. error function) which is a convex function. The task of
ML algorithms is to minimize this loss function. We evaluated



CPU 
Freq

Control 
Freq nCh Average Power Average Bandwidth Average Latency Average Total Latency Average Memory Reads Average Memory Writes

D N H D N H D N H D N H D N H D N H
2000 400 2 0.17 0.04 0.11 985.12 877.46 958.92 31.87 26.58 27.39 168.29 874.48 544.16 4.13E+07 4.13E+07 4.13E+07 4.48E+06 4.48E+06 4.48E+06
2000 400 4 0.15 0.04 0.10 530.79 477.80 484.74 29.81 23.72 24.72 125.61 1265.01 2070.16 2.06E+07 2.06E+07 2.06E+07 2.24E+06 2.24E+06 2.24E+06
2000 666 2 0.16 0.06 0.09 1107.87 983.39 906.71 31.87 28.18 22.98 168.29 1227.83 605.97 4.13E+07 4.13E+07 3.44E+07 4.48E+06 4.48E+06 3.74E+06
2000 666 4 0.15 0.06 0.04 582.26 535.71 184.71 29.81 24.46 8.29 125.61 1754.45 1274.39 2.06E+07 2.06E+07 6.88E+06 2.24E+06 2.24E+06 7.47E+05
2000 1250 2 0.15 0.12 0.07 1214.16 1072.06 587.49 31.87 31.87 14.25 168.30 2011.20 1292.82 4.13E+07 4.13E+07 2.06E+07 4.48E+06 4.48E+06 2.24E+06
2000 1250 4 0.14 0.11 0.11 624.83 584.48 494.59 29.81 26.19 21.49 125.61 2837.92 6564.72 2.06E+07 2.06E+07 1.72E+07 2.24E+06 2.24E+06 1.87E+06
2000 1600 2 0.15 0.15 0.15 1243.94 1095.67 1212.17 31.87 34.16 28.56 168.29 2484.79 3136.67 4.13E+07 4.13E+07 4.13E+07 4.48E+06 4.48E+06 4.48E+06
2000 1600 4 0.14 0.15 0.10 636.44 597.65 406.71 29.81 27.26 17.30 125.61 3491.61 9237.47 2.06E+07 2.06E+07 1.38E+07 2.24E+06 2.24E+06 1.49E+06
3000 400 2 0.18 0.04 0.12 1297.68 1117.62 1254.33 31.87 26.58 27.39 168.29 734.74 441.99 4.13E+07 4.13E+07 4.13E+07 4.48E+06 4.48E+06 4.48E+06
3000 400 4 0.16 0.04 0.07 716.85 623.50 425.72 29.81 23.72 16.41 125.61 1039.58 699.57 2.06E+07 2.06E+07 1.38E+07 2.24E+06 2.24E+06 1.49E+06
3000 666 2 0.17 0.06 0.12 1519.45 1295.62 1479.18 31.87 28.18 27.61 168.29 995.18 578.90 4.13E+07 4.13E+07 4.13E+07 4.48E+06 4.48E+06 4.48E+06
3000 666 4 0.15 0.06 0.05 814.04 725.92 374.70 29.81 24.46 12.48 125.62 1379.12 750.48 2.06E+07 2.06E+07 1.03E+07 2.24E+06 2.24E+06 1.12E+06
3000 1250 2 0.15 0.12 0.12 1726.78 1454.49 1379.21 31.87 31.87 23.90 168.29 1574.53 1134.68 4.13E+07 4.13E+07 3.44E+07 4.48E+06 4.48E+06 3.74E+06
3000 1250 4 0.14 0.11 0.11 899.74 818.51 704.26 29.81 26.19 21.21 125.61 2133.47 4288.62 2.06E+07 2.06E+07 1.72E+07 2.24E+06 2.24E+06 1.87E+06
3000 1600 2 0.15 0.15 0.10 1787.63 1498.46 1149.37 31.87 34.16 19.22 168.29 1925.87 1329.27 4.13E+07 4.13E+07 2.75E+07 4.48E+06 4.48E+06 2.99E+06
3000 1600 4 0.14 0.15 0.15 924.01 844.60 873.02 29.81 27.26 26.13 125.59 2589.91 6427.66 2.06E+07 2.06E+07 2.06E+07 2.24E+06 2.24E+06 2.24E+06
5000 400 2 0.20 0.04 0.08 1739.10 1431.34 1093.19 31.87 26.58 18.20 168.29 622.96 287.16 4.13E+07 4.13E+07 2.75E+07 4.48E+06 4.48E+06 2.99E+06
5000 400 4 0.17 0.04 0.09 996.23 824.72 704.95 29.81 23.72 20.58 125.60 859.24 653.84 2.06E+07 2.06E+07 1.72E+07 2.24E+06 2.24E+06 1.87E+06
5000 666 2 0.18 0.06 0.11 2162.01 1737.80 1723.13 31.87 28.18 23.12 168.29 809.06 400.29 4.13E+07 4.13E+07 3.44E+07 4.48E+06 4.48E+06 3.74E+06
5000 666 4 0.16 0.06 0.09 1194.38 1014.01 886.98 29.81 24.46 20.88 125.61 1078.85 1519.11 2.06E+07 2.06E+07 1.72E+07 2.24E+06 2.24E+06 1.87E+06
5000 1250 2 0.16 0.12 0.14 2607.48 2037.53 2501.34 31.87 31.87 28.87 168.29 1225.20 681.93 4.13E+07 4.13E+07 4.13E+07 4.48E+06 4.48E+06 4.48E+06
5000 1250 4 0.15 0.12 0.09 1388.44 1204.53 848.43 29.81 26.19 16.99 125.61 1569.90 1594.38 2.06E+07 2.06E+07 1.38E+07 2.24E+06 2.24E+06 1.49E+06
5000 1600 2 0.16 0.15 0.13 2748.76 2125.49 2187.22 31.87 34.16 24.68 168.29 1478.73 661.15 4.13E+07 4.13E+07 3.44E+07 4.48E+06 4.48E+06 3.74E+06
5000 1600 4 0.15 0.15 0.15 1447.08 1261.98 1348.06 29.81 27.26 25.94 125.61 1868.55 3495.13 2.06E+07 2.06E+07 2.06E+07 2.24E+06 2.24E+06 2.24E+06
6500 400 2 0.20 0.04 0.07 1971.21 1585.58 927.64 31.87 26.58 13.80 168.29 584.26 189.01 4.13E+07 4.13E+07 2.06E+07 4.48E+06 4.48E+06 2.24E+06
6500 400 4 0.17 0.04 0.07 1151.58 928.46 633.37 29.81 23.72 16.42 125.60 796.81 573.42 2.06E+07 2.06E+07 1.38E+07 2.24E+06 2.24E+06 1.49E+06
6500 666 2 0.19 0.07 0.11 2532.76 1971.14 2009.29 31.87 28.18 23.18 168.29 744.63 353.85 4.13E+07 4.13E+07 3.44E+07 4.48E+06 4.48E+06 3.74E+06
6500 666 4 0.16 0.06 0.12 1424.88 1175.55 1230.46 29.81 24.46 24.94 125.61 974.91 1262.57 2.06E+07 2.06E+07 2.06E+07 2.24E+06 2.24E+06 2.24E+06
6500 1250 2 0.17 0.12 0.10 3166.50 2367.16 2014.30 31.87 31.87 19.10 168.29 1104.28 386.57 4.13E+07 4.13E+07 2.75E+07 4.48E+06 4.48E+06 2.99E+06
6500 1250 4 0.15 0.12 0.09 1709.93 1439.70 1032.17 29.81 26.19 17.07 125.61 1374.82 907.23 2.06E+07 2.06E+07 1.38E+07 2.24E+06 2.24E+06 1.49E+06
6500 1600 2 0.16 0.15 0.08 3377.31 2487.25 1581.52 31.87 34.16 15.01 168.29 1323.95 340.97 4.13E+07 4.13E+07 2.06E+07 4.48E+06 4.48E+06 2.24E+06
6500 1600 4 0.15 0.15 0.10 1799.74 1522.64 1098.07 29.81 27.26 17.44 125.62 1618.85 1063.61 2.06E+07 2.06E+07 1.38E+07 2.24E+06 2.24E+06 1.49E+06

Fig. 2: Summary of memory performance metrics. First three columns represent memory configuration parameters. The columns
4–9 represent average values of memory performance metrics where ‘D’, ‘N’, and ‘H’ represent DRAM, NVM, and hybrid
memories respectively. Color coding depicts darker shades for high values and lighter shades for low values.

the suitability of these algorithms in predicting the memory
performances for a given memory configuration. We used
mean squared error (MSE) (Eq. 1) and R2-score (coefficient
of determination) (Eq. 2) statistics to compare the trained ML
model’s performance on test data points. In Eq. 1 and 2, y
and ŷ represent simulated values and predicted values (by ML
models) of memory performance metrics respectively. Also,
ȳ represents the mean of the simulated memory performance
metric and n is the total number of datapoints considered for
testing. ML model is considered better if it shows a smaller
value for MSE and R2 value closer to 1.0.

MSE(y, ŷ) =
1

n
Σn

i=1(yi − ŷi)2 (1)

R2(y, ŷ) = 1− Σn
i=1(yi − ŷi)2

Σn
i=1(yi − ȳi)2

(2)

B. Results and observations

In this section we discuss and summarize the memory
performance metrics that are collected from the outputs of
NVMain simulations for graph workload (shown in Figure 2).
We also pinpoint various patterns in memory performances
based on CPU frequency, controller frequency, and number
of channels. Further, we compare the performance of ML
algorithms detailed in Section III-B for predicting memory
performance metrics of bandwidth, power, average latency,

total latency, memory reads, and memory writes for the
Graph500 Breadth-First Search (BFS) benchmark. Figure 3
shows six plots, each corresponding to the scatter plot of the
respective performance metric for three ML algorithms along
with the ground truth. Table I lists MSE and R2 statistics
for different ML models for predicting memory performance
metrics. Table I also highlights the best performing algorithm
for a given memory performance metric.

For a fair comparison, it is required that the values of
different performance metrics are normalized to the same
scale. For example, power takes values between [0, 1] whereas
the values of memory reads and writes are in the range of 107

(refer Figure 2). There are different normalization techniques
such as a) Z-normalization that uses mean µ and standard
deviation σ of observations and b) min-max normalization that
transforms the minimum value in observations to 0 and the
maximum value to 1. In this paper, we used a min-max scalar
technique to scale values of performance metrics in the ML
training dataset.

From the summary of memory performance metrics shown
in Figure 2 along with ML model performances shown in Fig-
ure 3 and the performance metric Table I, we gain following
insights into the advanced memory architectures.

1) Power: NVMain outputs total power for each channel.
We calculated the average power per channel for the purpose
of ML training. We reported in Figure 2 the mean values of
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Fig. 3: Graphs comparing the performance of ML models in predicting the values of different memory performance metrics
with ground truth for various memory configurations in the test data. From left-top corner to bottom-right corner: (a) Bandwidth
(b) Memory reads (c) Memory writes (d) Power (e) Average latency, and (f) Total latency. The ground truth data was obtained
by simulating the memory configurations in the test data. The x-axis of the plots represent the indices of the test data. The
y-axis represents the corresponding memory performance metric. Overall, each graph plots the value of a specific memory
performance metric by three ML models (SVM, RF, and GB) along with the ground truth for each memory configuration in
the test data.

average power per channel for various memory configurations
described by the first three columns. Overall, we observed that
DRAM consumed more power, NVM consumed less power
and hybrid memory consumed average power for all memory
configurations. This was expected as DRAM requires power

TABLE I: ML model’s performance on graph benchmark
Memory

Parameters Statistics Linear SVM RF GB

Bandwidth MSE 5.59×10−3 3.95×10−5 3.80×10−4 1.42×10−4

R2 9.07×10−1 9.99×10−1 9.94×10−1 9.98×10−1

Memory
Reads

MSE 1.10×10−13 5.82×10−7 7.00×10−12 9.87×10−8

R2 1.00 1.00 1.00 1.00

Memory
Writes

MSE 9.14×10−12 6.75×10−7 5.94×10−10 1.03×10−7

R2 1.00 1.00 1.00 1.00

Power MSE 7.28×10−3 1.91×10−5 3.10×10−4 4.95×10−5

R2 8.69×10−1 1.00 9.94×10−1 9.99×10−1

Average
Latency

MSE 2.05×10−3 1.04×10−4 1.01×10−4 1.32×10−4

R2 9.41×10−1 9.97×10−1 9.97×10−1 9.96×10−1

Total
Latency

MSE 2.86×10−3 1.56×10−4 1.91×10−3 3.35×10−3

R2 3.86×10−1 9.66×10−1 5.90×10−1 2.80×10−1

for operations such as pre-charging and data restoration which
are absent in NVMs. DRAM showed a slightly decreased
trend of average power consumption per channel for higher
controller frequencies for a given CPU frequency while NVM
showed a reverse trend. Hybrid memory showed a mixed trend
similar to DRAM until 666MHz of controller frequency and
showed a reverse trend for 1250MHz and 1600MHz controller
frequencies. Finally, for our graph benchmark, NVMs with
controller frequency of 400 MHz showed better performance
for average power consumption per channel for a given CPU
frequency and its performance was independent of number of
channels.

In Figure 3(a), we can see that SVM and GB fit the
test data well for average power consumption per channel.
Also, we can verify from Table I that SVM ’s MSE is the
lowest with R2 = 1. RF was unable to characterize the
differences between hybrid, NVM and DRAM in slightly
higher power ranges, such as power values closer to 0.15W.
These observations lead to the conclusion that SVM is a better
choice for characterizing the average power consumption per
channel in co-designing the advanced memory architectures
for graph workloads.



2) Memory reads/writes: NVMain typically provides mem-
ory read and write values for each channel, i.e. 2 values for 2
channeled memory and 4 four values for 4 channeled memory.
We calculated average memory read/write values per channel
and used them for ML training. We further obtained mean
values of this metric for various memory configurations and
reported in Figure 2.

We broadly observed two categories of values for average
memory reads per channel which varied by the number of
channels used in a memory configuration. Specifically, the
average memory reads per channel for a memory with two
channels was approximately double (≈4.1×107) the memory
reads with four channels (≈2×107). We saw similar observa-
tions for average memory writes per channel. For a memory
with two channels the average memory writes per channel
was (≈4.4×107) and for a memory with four channels the
value was (≈2.2×107). DRAM, NVM, and most of the hybrid
configurations memories showed this pattern evidently. Few
hybrid memory configurations with higher CPU frequencies
showed reduction in the values for average memory reads. A
hybrid configuration with 2 GHz of CPU frequency, 666 MHz
of controller frequency, and 4 channels showed ten times lower
value for both average memory reads (≈6.88×106) and writes
(≈7.47×105) per channel than the values for other configu-
rations. Other hybrid configurations with similar low values
are shown by lighter shades. Form above observations, we
can say that the hybrid memory with four channels and with
lower CPU frequency showed better performance for graph
BFS workload, specifically from the endurance perspective.

From Figures 3(b) and 3(c) and Table I we can see that
ML models SVM,RF , and GB including the baseline linear
regression, captured this average memory reads and writes per
channel well with the R2 ≈ 1 while RF’s MSE is comparable
with that of the baseline linear regression. Moreover, either
linear regression or RF can be used for predicting average
memory read/writes per channel in co-designing advanced
memory architectures. From these observations, we can say
that memory reads/writes are the characteristics of a workload.
Therefore developing ML models with the data generated from
multiple executions of a workload with varying parameters or
even different types of workloads would be beneficial for the
design space exploration study.

3) Bandwidth: NVMain provides bandwidth (MB/s) for
each memory bank. For instance, NVMain executing a mem-
ory configuration with 2 channels and 8 banks per channel
produces 16 values of bandwidth. We calculated the average
of these values to obtain average bandwidth per bank for
training ML models. Figure 2 presents mean values of average
bandwidth per bank for a memory configuration defined by
CPU frequency, controller frequency, and number of chan-
nels. Overall, we found that the average bandwidth per bank
increased with CPU frequency and controller frequency. Also
for this metric DRAM showed higher values than NVM
and hybrid memories for graph workload. Moreover, for all
memory types the average bandwidth per bank approximately
reduced to half when the number of channels doubled for given

CPU and controller frequencies.
We can observe in Figure 3(d) that both SVM and GB

algorithms predicted the testing data well whereas RF was
able to perform well only for lower bandwidth values. We
can evaluate this observation in Table I where we can see that
SVM outperformed all the other ML models with lower MSE
and R2 ≈ 1. From these observations we can say that, SVM
is a preferred algorithm for predicting average bandwidth per
bank for co-designing the advanced memory architectures for
graph workloads.

4) Memory Latency: NVMain outputs various latency val-
ues such as average latency and total latency. Average latency
indicates the number of clock cycles spent after a memory
controller initiated a memory request until its completion. This
involves operations such as row selection, column selection,
and data restoration (in case of DRAM). Total latency includes
the queuing delay along with the average latency value. We
calculated the average of these two values for ML training,
i.e. average latency per channel and average total latency per
channel.

Figure 2 provides mean values of these two metrics for var-
ious memory configurations based on the first three columns.
We found that the hybrid memory performed better over
DRAM and NVM for our graph benchmark with low values
for average latency per channel. DRAM showed high values
and NVM showed average values for the average latency
per channel. Overall, the average latency is lower for the
memory with four channels than with two channels. The
hybrid memory with CPU frequency of 2GHz, controller
frequency of 666MHz with four channels showed the lowest
value of the average latency for graph benchmark. The average
total latency per channel showed a completely reverse trend in
which DRAM showed the lowest values compared to NVM
and hybrid memories which indicates shorter queuing delay
for DRAM. Average total latency per channel was found to
be independent of CPU and controller frequency. DRAM with
four channels showed slightly lower total latency than with
two channels. Whereas, for both NVM and hybrid memory the
average total latency per channel increased with the controller
frequency.

In Figure 3(e), we can see that all the ML algorithms fits
the test data well for average latency per channel for our
graph benchmark. Specifically both SVM and RF showed
low value for MSE and with R2 ≈ 1. However, in Figure 3(f)
we can see that SVM outperformed RF and GB resulting
in lower MSE and with R2 ≈ 1 for average total latency per
channel. The R2 values for both RF and GB were also poor
for total latency (refer to Table I). From these observations,
we can say that the SVM algorithm is a better choice for
predicting average latency and total latency per channel in
co-designing the advanced memory architecture for graph
workload.

From above results and discussion, we summarize our rec-
ommendations for co-design of advanced memory architecture
for graph workload as follows:



• We recommend NVM with a controller frequency of
400MHz for better power performance.

• We propose to use hybrid memory with four channels,
specifically the one with 2GHz CPU frequency and
666MHz controller frequency for optimal performance
for memory reads and writes.

• For better bandwidth performance, we recommend
DRAM. However, NVM and hybrid memories also
showed comparable performance.

• For optimal performance for average latency we propose
using hybrid memory and for total latency we recommend
DRAM.

• We recommend using SVM for characterizing the per-
formance metrics bandwidth, power, and latency. We
propose linear regression for characterizing memory read
and writes for co-designing the advanced memory archi-
tectures for the graph benchmark.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we developed a ML-based design space
exploration method to build predictive models for several
responses of a hybrid main-memory system. The overarching
goal of the project is to build such ML models for various
representative workloads. In our earlier work, we experimented
with STREAM and HPCG benchmarks [23]. In this work
we selected the most representative graph analytics algorithm,
i.e. Breadth-First-Search. We believe that the audience of the
paper will be interested in the specific numbers of the memory
performance metrics for BFS workload.

The work presented in this paper can be further extended in
multiple ways. In future, we plan to investigate the generaliz-
ability of this work by experimenting with other algorithms
in graph analytics, large sized Graph500 benchmarks [24],
and different hardware configurations. For this work, we used
Gem5 with default configuration in SE mode which uses
atomic CPU and atomic memory access. We will extend the
current setup for specific CPUs and cache configurations.
Specifically, our future work will address the question, how
does the graph size and the type of graph algorithms influence
the choice of good parameters for the memory architectures?

Our methodology has the potential to significantly reduce
the computational costs and time associated with simulating
memory architectures and optimizing memory performance of
graph analytics applications. In our future work, we will utilize
more advanced ML methods, such as the transfer learning
and semi-supervised learning, to move further beyond the
supervised learning domain which strongly depends on the
labeled simulated data for training and testing purposes. In
addition, we plan to utilize Active Learning (AL) techniques
to further enhance our workflow. We will apply intelligent
sampling techniques to select the initial labeled training sets
for the AL models. This is because an appropriate initial
labeled data set would allow the AL models to achieve the su-
pervised performance limits with considerably smaller number
of labeled training data, and thus would further improve the
efficiency of our DSE approach. We also plan to validate the

performance of our AL-based memory-response models with
real data.
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