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Abstract Most soot simulation is done using relatively simple models that only provide basic 

information regarding general soot mass due to the high computational cost of more complex models. 

In this work, a stochastic model capable of detailed soot description has been implemented in a hybrid 

fashion such that a relatively fast conventional combustion simulation followed by many independent 

highly parallelizable soot simulations can be used. The model is used to characterize the origin and 

advection of soot for a diesel engine with a triple injection scheme. 
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1. Introduction  

Soot simulation for engine combustion applications ranges from simple semi-empirical models 

[1] to more complex solutions of the population balance equations [2]. Commonly, conclusions 

are drawn from very simple phenomenological multistep models, which are computationally 

inexpensive, but only provide a single variable, mass or volume fraction, describing soot and 

struggle to make accurate predictions without case specific tuning. The next steps in complexity 

and the state-of-the-art in industry software are the method of moments [3] or sectional models [2] 

that have multiple variables predicting particle distributions. Both approaches are limited in their 

ability to describe details of the particle morphology. Additionally, the method of moments 

requires assumptions about the shape of the distribution [4] and the sectional model can only 

resolve a discretized probability density function (PDF). 

Stochastic solutions to the population balance equations (e.g., Celnik et al. [5]) can retain more 

features of the particle ensemble, enabling a detailed description of the particle morphology at the 

expense of increased computational cost. The detailed description of the particle morphology may 

improve the ability to predict key features driving the soot formation process. Previous work by 

Morgan et al. [6] included consideration of primary particle diameter and location to describe 

particle morphology. Celnik et al. [5] added variables to describe the types of active sites on the 

particles for surface reaction models. Typically, stochastic soot simulations are constrained to 

simplified configurations (e.g., laminar premixed flames [7]) due to the complexity and 

computational cost of implementing a stochastic model in a nonhomogeneous, three-dimensional 

domain. 

Previous work [8] has introduced and validated a methodology to implement stochastic soot 

models in 3D; however, the computational cost of the model is still relatively unbounded and 

usually expensive. Instruction-wise, the standard coagulation kernel size grows by the number of 

stochastic particles squared [9]. Simulations requiring consideration of particles that are orders of 
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magnitude less prevalent than other particles, like accumulation and inception mode particles, can 

be extremely costly. That is, simulations with information for particles that only occur 1:10,000 of 

the time cost 100 times more than simulations with information for particles that only occur 

1:1,000 of the time. Additionally, in the 3D solution method, every time step is dependent on the 

slowest parcel. Memory-wise, a single stochastic ensemble can easily require over a Mb of 

memory and every cell capable of producing non-negligible soot must have a parcel in it. 215 

(32768) particles described by 8 floating point numbers each cost more than a Mb. If the Eulerian 

mesh has more than 1,000,000 cells with one-tenth of the cells producing non-negligible soot, the 

soot simulation will require more than 100 Gb. 

The present work focuses on further reducing the computational cost of detailed morphological 

soot data provided by stochastic 3D soot model via hybridizing a conventional and stochastic soot 

model. The hybrid model implements a conventional soot solution during the combustion 

simulation and a re-calculation via stochastic means in a post processing fashion.  

 

2. Methods 

Soot is modeled using SWEEP, a stochastic modified Monte-Carlo method soot model 

developed by Celnik et al. [10], and Patterson et al. [9] and distributed by the Cambridge CoMo 

group.  The model includes a majorant kernel developed Goodson et al. [11] to replace the 

coagulation kernel and linear process deferment algorithm (LDPA) developed by Patterson et al. 

[9] to increase the computational speed. SWEEP manages a random ensemble of virtual soot 

particles that represent the total population. As the number of representative particles increases, 

the law of large numbers dictates that the representation becomes more accurate [7]. In the current 

SWEEP implementation, the representative virtual particles are described by the constituent 

number of carbon and hydrogen atoms, characteristic diameter, surface area, volume, and age and 

are controlled by the Smoluchouski population balance equation 

𝜕𝑛(𝑥𝑖, 𝑡)
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where 𝑛(𝑥𝑖 , 𝑡) is the number of particles of type 𝑥𝑖 at the time 𝑡, 𝐾(𝑥𝑖 , 𝑥𝑗) is the coagulation kernel 

for particles of type 𝑥𝑖 and 𝑥𝑗 . 

The population balance is shifted by random events that occur at a frequency determined 

by physical sub-models. These events are virtual realizations of the four major soot formation 

phenomena: nucleation, coagulation, surface reactions, and agglomeration [12]. That is, the 

events change the parameters of the virtual particles. The specific events considered in this work 

include inception via pyrene, condensation of pyrene, oxidation via O2 and OH, addition of 

acetylene, and agglomeration. Inception is modeled as a two-body collision in the gas phase 

between pyrene molecules using the collision transition kernel formulated by Patterson et al. [13] 

given by 

  𝐾𝑡𝑟 = (
1

𝐾𝑠𝑓
+

1

𝐾𝑓𝑚
)
−1

, ( 2) 
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where Ksf is the slip flow kernel, Kfm is the free molecular kernel, and Ktr is the transition kernel. 

Similar to other studies (e.g., [12] [14]), pyrene is used as the soot inception species. Condensation 

is modeled as a free-molecular collision between an existing soot particle and a PAH. Coagulation 

is a two body collision between two existing soot particles with the same collision model kernel 

used for inception and described by Patterson et al. [13]. O2 and OH oxidation and acetylene 

addition surface reactions are modeled with elementary reaction Arrhenius equations by assuming 

chemical similarity [12]. That is, a surface reaction is similar to a reaction with a large PAH. The 

radical site fraction for surface reactions is based on the HACA model [15] and the active site 

fraction is based on the empirical model developed by Appel et al. [16] given by 

  𝛼 = tanh (𝑎 log(𝜇)⁄ + 𝑏) ( 3) 

where 𝛼 is the active site fraction, 𝜇 is the first size moment, a and b are empirical parameters. 

To use the stochastic soot simulations in a 3D domain, a Lagrangian-Eulerian framework is 

implemented. Each parcel passes its surrounding environment to an independent stochastic 

simulation as parameters. To couple the 0D soot simulations of the Lagrangian parcels to the 

Eulerian field, each parcel tracks the volume it represents and communicates with the Eulerian 

field in terms of densities. The volume representation is carefully tracked such that mass is 

conserved in exchanges between the two fields.  

The Stokes number for particles smaller than 1000 nm is less than unity; accordingly, the 

motion of the parcels is assumed to perfectly follow the Eulerian gas phase. The thermal time 

constant of soot particles in standard combustion conditions is on the order of 100 nanoseconds or 

lower [17], which is more than an order of magnitude lower than the flow time scale. Accordingly, 

the parcel temperature is assumed to be at equilibrium with the surrounding gas. Lagrangian 

parcels are created as a function of the represented volume partition and local parcel divergence 

(i.e., ∇ ∙ 𝜌𝑝𝑎𝑟𝑐𝑒𝑙).  

Like other soot model’s, the stochastic 

soot model is solved in a time splitting 

fashion. Figure 1 is a flow chart of the soot 

model substep. The algorithm of Figure 1 

runs the soot model until the surrounding 

environment of the parcel changes by 

percentChange to ensure stability and 

convergence. Then control returns to the gas 

phase chemistry solver. This coupling is 

limited by the slowest parcel in the domain. 

The hybrid model reduces the 

computational cost by removing the 

“weakest link” problem. Instead of using the 

stochastic model concurrently with the 

combustion model, it uses a standard fully 

coupled soot model as a surrogate to 

approximate the effect of soot as it would have been predicted by the directly coupled model. 

 
Figure 1 Simplified flow chart of 

chemistry/soot time step splitting algorithm  
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Lagrangian parcels are still tracked and its surrounding conditions are logged. After the 

combustion simulation is complete, the parcel logs are fed into independent SWEEP simulations.  

The hybrid model still requires access to the source code to produce the parcel logs, restricting 

its use in commercial codes. The hybrid model can be extended to these commercial codes by 

modifying the creation of Lagrangian parcels. The extended hybrid model uses a postprocessor to 

create parcels after the combustion simulation is completed. Parcels follow postprocessor 

calculated pathlines. The full and hybrid model parcels move according to the same equations. 

Parcels are initialized in isovolumes of a threshold inception species at regular times throughout 

the simulation such that all soot producing regions are adequately represented.  

 

3. Hybrid Model Verification 

The current CFD and chemical kinetics approach has been applied to a range of spray and 

engine combustion cases using a variety of fuels [18] [19]. For the sake of brevity, the present 

work will focus on validation of the hybrid and extended hybrid soot models. 

Spray A experiments and case parameters [20] form the basis for Hybrid model verification 

because of its prevalence in literature, soot conducive conditions, and lack of additional 

confounding dynamic domain effects present in engine simulations. KIVA [21] and CONVERGE 

[22] CFD solvers were used. Both used the RANS framework.  

The hybrid soot model relies on a conventional soot model to approximate the effects of soot 

as predicted by the more complex stochastic soot model that will follow. If the effects of 

temperature, species concentration, etc. are predicted poorly, the stochastic model will predict soot 

based on incorrect data. If, for example, the surrogate model predicts no changes, the results are 

the same as the stochastic model run in a one-way coupled mode. Figure 2 shows the predicted 

PSD for spray A at 1.75 ms after the start of injection for the two-way coupled, one-way coupled, 

and hybrid model. All simulations were performed in KIVA. The one-way coupled PSD 

reproduces the shape of the two-way coupled PSD, but over predicts the magnitude and maximum 

particle size. The overprediction is due to 

lack of consumption of pyrene in the one-

way coupled approach. The hybrid model, 

using the method of moments as a surrogate, 

accurately captures both the shape and 

magnitude of the two-way coupled PSD to 

within one order of magnitude. Evidently, the 

surrogate model provides adequate likeness 

to the stochastic model to enable accurate 

soot prediction.  

The verification of the hybrid model 

showed that one-way coupling with a 

surrogate model is suitable for accurate soot 

prediction. While this is promising, it still 

requires substantial source code modification. To improve the usefulness of the code, a post-

processing method was developed. We call this the extended hybrid model. The extended hybrid 

 
Figure 2 PSDs of Spray A at 1.75ms. Blue: 

Two-way coupled stochastic soot model, 

Green: one-way coupled model, and Orange: 

hybrid model with method of moments 

surrogate.  
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soot model relies on post combustion simulation generated Lagrangian parcels to couple to the 

Eulerian field such that parcel representation is accurate. Figure 3 shows Spray A PSDs at multiple 

times using the standard hybrid model and the extended hybrid model with a method of moments 

surrogate soot model. Agreement is within an order of magnitude throughout. Discrepancies, such 

as, the inception mode particle population at 1ms are typically small and only temporary. 

 
Figure 3 Top left: 1ms, Top right: 1.5ms, Bottom left: 2ms, Bottom right: 3.5ms. Blue: Extended 

hybrid model with Ensight generating and accumulating parcel histories, Orange: Conventional 

hybrid model with KIVA generating and tracking parcels. 

4. Comparison with Existing Soot Models 

The extended hybrid model was coupled with CONVERGE and comparisons were made 

between the extended hybrid model and commonly available soot models. The differences in PSDs 

between the SWEEP model and the sectional model are shown in Figure 4. The sectional model 

predicts a largely stagnant small mode particle population and the hybrid model predicts a dynamic 

growing population. 

Figure 5 compares the Spray A PSDs produced using the extended hybrid model with multiple 

surrogate soot models. Although temporary similarities can be found, the accumulation mode for 

the sectional and method of moments models at 2ms for instance, there is not an easily identified 

standard PSD between the three surrogate models. The varying results summarized in Figure 5 

highlights the importance of surrogate and stochastic model agreement. 
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Figure 4 PSDs for the spray A conditions as predicted by indicated models at the indicated times. 

Top left: 1ms, Top right: 1.5ms, Bottom left: 2ms, Bottom right: 3.5ms. Blue: Extended hybrid 

model with a sectional surrogate soot model, Orange: Sectional soot model.  

 
Figure 5 Top left: 1ms, Top right: 1.5ms, Bottom left: 2ms, Bottom right: 3.5ms. Blue: Hiroyasu, 

Orange: Method of moments model, Green: Sectional soot model. PSDs for the spray A 

conditions as predicted by indicated models at the indicated times. 
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5. Applying the Soot Model to a Diesel Engine 

Simulations of a 1.9L GM diesel engine undergoing cold start cycles at 1500 rev/min and 2 

bar IMEP with 3 injections were chosen based on the soot conducive conditions and the expected 

availability of detailed experimental data with particle size distributions to compare to. The third 

injection timing was swept from 9 to 21 deg. ATDC to provide a parameter effecting soot. 

CONVERGE and the extended hybrid model were used. The method of moments surrogate model 

was used because a similar method of moments surrogate model was used with KIVA in the 

validation step of Figure 3. 

Figure 6 Shows PSD plots for the different third injection timings. Each plot shows PSDs at 

multiple crank angles. All cases have relatively similar soot populations at 10 deg ATDC because 

all of the cases are similar until the 3rd injection. Soot populations after the third injection vary 

greatly between the cases. When the third injection is later, the largest soot population is 

maximized at approximately 10 deg. ATDC. If the third injection is earlier, the largest particle 

population is maximized at approximately 50 deg. ATDC. The PSDs at EVO for the 9 and 13 deg. 

ATDC cases are very similar despite differences at earlier times. At 50 deg. ATDC the 13 deg. 

ATDC case has a much more pronounced bimodal distribution than the 9 deg ATD case.   

Figure 7 (a) shows a scatter plot of the parcels, colored by soot mass fraction, at EVO. Soot 

mass is clearly concentrated in local pockets throughout the cylinder. Figure 7 (c) is filtered to 

only the 150 heaviest parcels and clarifies what was seen in Figure 7 (a). Namely, all of the high 

mass density soot regions are near a cylinder wall or piston face. The heaviest of the heavy are on 

 
Figure 6 Top Left: Volume averaged PSDs for the diesel catalyst heating conditions. 9 deg. 

ATDC, Top Right: 13 deg. ATDC, Bottom Left: 17 deg. ATDC, Bottom Right 21 deg. 

ATDC, Orange: 10 deg. ATDC, Green: 50 deg. ATDC, Red: 85 deg. ATDC, Purple: 110 deg. 

ATDC.   
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the cylinder wall, halfway between the head and piston. Figure 7 (b) is a scatter plot with the same 

150 parcels as Figure 7 (c) and colored the same way but located by where the soot parcel was 

born. Note that not all of the parcels were born at the same time. This plot shows that the heaviest 

parcels undergo a migration from the cylinder central volume to the cylinder walls. The heaviest 

parcels all start in a similar area, near the cylinder head and along the injection vector.  

Figure 8 shows the particle size distribution at EVO for the entire volume and for only the 

boundary volume of the cylinder. This confirms that most of the soot is contained in the boundary 

volume at EVO. The final PSD on Figure 8 is also for the boundary volume but with parcels that 

started near the wall filtered out. This shows that most of the large particle population started away 

from the cylinder wall. 

Figure 9 shows the path of the parcel with the highest contribution of soot mass to the cylinder 

volume at EVO. The parcel is created during the second injection far away from the cylinder wall. 

It is entrained in the 3rd injection and quickly brought to the cylinder wall. The parcel follows the 

cylinder wall until EVO. 

 

 

 
 

  

(a) (b) (c) 

Figure 7 (a) Scatter plot of all soot parcels at EVO for 9 deg ATDC case. (b) Scatter plot of the 

location of generation of the 150 heaviest soot parcels at EVO for case with 3rd injection 

removed. Parcels are colored by mass fraction. (c) Scatter plot of 150 heaviest soot parcels at 

EVO for 9 deg. ATDC case. Parcels are colored by mass fraction 
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Figure 8 Blue: entire volume, Orange: volume 

near wall, Green: volume near wall with 

parcels that originated near wall filtered out. 

PSD of 9 deg. ATDC at EVO 
 

Figure 9 Path of heaviest parcel at EVO.  

 

6. Conclusions 

A hybrid variation of a stochastic soot model capable of running with limited computational 

resources and using conventional simulation software was introduced and validated in two 

stages. First, it was shown that using a surrogate soot model to consume inception species could 

produce accurate results. Second, it was shown that the Lagrangian soot parcels of the stochastic 

model could be created in a postprocessing step. The hybrid model was then used to show that a 

majority of the soot created in a diesel engine using a triple injection scheme originates near the 

center of the cylinder and moves to the perimeter in the entrainment of the third injection. 
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