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Abstract Most soot simulation is done using relatively simple models that only provide basic information 

regarding general soot mass due to the high computational cost of more complex models. In this work, a stochastic 

model capable of detailed soot description has been implemented in a hybrid fashion such that a relatively fast 

conventional combustion simulation followed by many independent highly parallelizable soot simulations can be 

used. The model is used to characterize the origin and advection of soot for a diesel engine with a triple injection 

scheme. 

1. Introduction  

Soot simulation for engine combustion applications ranges from simple semi-empirical models [1] to more complex 

solutions of the population balance equations [2]. Commonly, conclusions are drawn from very simple 

phenomenological multistep models, which are computationally inexpensive, but only provide a single variable, 

mass or volume fraction, describing soot and struggle to make accurate predictions without case specific tuning. The 

next steps in complexity and the state-of-the-art in industry software are the method of moments [3] or sectional 

models [2] that have multiple variables predicting particle distributions. Both approaches are limited in their ability 

to describe details of the particle morphology. Additionally, the method of moments requires assumptions about the 

shape of the distribution [4] and the sectional model can only resolve a discretized probability density function 

(PDF). 

Stochastic solutions to the population balance equations (e.g., Celnik et al. [5]) can retain more features of the 

particle ensemble, enabling a detailed description of the particle morphology at the expense of increased computational 

cost. The detailed description of the particle morphology may improve the ability to predict key features driving the 

soot formation process. Previous work by Morgan et al. [6] included consideration of primary particle diameter and 

location to describe particle morphology. Celnik et al. [5] added variables to describe the types of active sites on the 

particles for surface reaction models. Typically, stochastic soot simulations are constrained to simplified 

configurations (e.g., laminar premixed flames [7]) due to the complexity and computational cost of implementing a 

stochastic model in a nonhomogeneous, three-dimensional domain. 

Previous work [8] has introduced and validated a methodology to implement stochastic soot models in 3D; 

however, the computational cost of the model is still relatively unbounded and usually expensive. Instruction-wise, 

the standard coagulation kernel size grows by the number of stochastic particles squared [9]. Simulations requiring 

consideration of particles that are orders of magnitude less prevalent than other particles, like accumulation and 

inception mode particles, can be extremely costly. That is, simulations with information for particles that only occur 

1:10,000 of the time cost 100 times more than simulations with information for particles that only occur 1:1,000 of 

the time. Additionally, in the 3D solution method, every time step is dependent on the slowest parcel. Memory-wise, 

a single stochastic ensemble can easily require over a Mb of memory and every cell capable of producing non-

negligible soot must have a parcel in it. 215 (32768) particles described by 8 floating point numbers each cost more 

than a Mb. If the Eulerian mesh has more than 1,000,000 cells with one-tenth of the cells producing non-negligible 

soot, the soot simulation will require more than 100 Gb. 

The present work focuses on further reducing the computational cost of detailed morphological soot data provided 

by stochastic 3D soot model via hybridizing a conventional and stochastic soot model. The hybrid model implements 

a conventional soot solution during the combustion simulation and a re-calculation via stochastic means in a post 

processing fashion.  

 

2. Methods 

Soot is modeled using SWEEP, a stochastic modified Monte-Carlo method soot model developed by Celnik et 

al. [10], and Patterson et al. [9] and distributed by the Cambridge CoMo group.  The model includes a majorant kernel 

developed Goodson et al. [11] to replace the coagulation kernel and linear process deferment algorithm (LDPA) 

developed by Patterson et al. [9] to increase the computational speed. SWEEP manages a random ensemble of virtual 
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soot particles that represent the total population. As the number of representative particles increases, the law of large 

numbers dictates that the representation becomes more accurate [7]. In the current SWEEP implementation, the 

representative virtual particles are described by the constituent number of carbon and hydrogen atoms, characteristic 

diameter, surface area, volume, and age and are controlled by the Smoluchouski population balance equation 

𝜕𝑛(𝑥𝑖 , 𝑡)
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where 𝑛(𝑥𝑖 , 𝑡) is the number of particles of type 𝑥𝑖 at the time 𝑡, 𝐾(𝑥𝑖 , 𝑥𝑗) is the coagulation kernel for particles of 

type 𝑥𝑖 and 𝑥𝑗 . 

To use the stochastic soot simulations in a 3D domain, a Lagrangian-Eulerian framework is implemented. Each 

parcel passes its surrounding environment to an independent stochastic simulation as parameters. To couple the 0D 

soot simulations of the Lagrangian parcels to the Eulerian field, each parcel tracks the volume it represents and 

communicates with the Eulerian field in terms of densities. The volume representation is carefully tracked such that 

mass is conserved in exchanges between the two fields.  

The Stokes number for particles smaller than 1000 nm is less than unity; accordingly, the motion of the parcels 

is assumed to perfectly follow the Eulerian gas phase. The thermal time constant of soot particles in standard 

combustion conditions is on the order of 100 nanoseconds or lower [12], which is more than an order of magnitude 

lower than the flow time scale. Accordingly, the parcel temperature is assumed to be at equilibrium with the 

surrounding gas. Lagrangian parcels are created as a function of the represented volume partition and local parcel 

divergence (i.e., ∇ ∙ 𝜌𝑝𝑎𝑟𝑐𝑒𝑙).  

Like other soot model’s, the stochastic soot model is solved in a time splitting fashion. Figure 1 is a flow chart of 

the soot model substep. The algorithm of Figure 1 runs the soot model until the surrounding environment of the parcel 

changes by percentChange to ensure stability and 

convergence. Then control returns to the gas phase 

chemistry solver. This coupling is limited by the 

slowest parcel in the domain. 

The hybrid model reduces the computational cost 

by removing the “weakest link” problem. Instead of 

using the stochastic model concurrently with the 

combustion model, it uses a standard fully coupled 

soot model as a surrogate to approximate the effect of 

soot as it would have been predicted by the directly 

coupled model. Lagrangian parcels are still tracked 

and its surrounding conditions are logged. After the 

combustion simulation is complete, the parcel logs are 

fed into independent SWEEP simulations.  

The hybrid model still requires access to the 

source code to produce the parcel logs, restricting its 

use in commercial codes. The hybrid model can be 

extended to these commercial codes by modifying the 

creation of Lagrangian parcels. The extended hybrid model uses a postprocessor to create parcels after the combustion 

simulation is completed. Parcels follow postprocessor calculated pathlines. The full and hybrid model parcels move 

according to the same equations. Parcels are initialized in isovolumes of a threshold inception species at regular times 

throughout the simulation such that all soot producing regions are adequately represented.  

 

3. Hybrid Model Verification 

The current CFD and chemical kinetics approach has been applied to a range of spray and engine combustion 

cases using a variety of fuels [13] [14]. For the sake of brevity, the present work will focus on validation of the hybrid 

and extended hybrid soot models. 

Spray A experiments and case parameters [15] form the basis for Hybrid model verification because of its 

prevalence in literature, soot conducive conditions, and lack of additional confounding dynamic domain effects present 

in engine simulations. KIVA [16] and CONVERGE [17] CFD solvers were used. Both used the RANS framework.  

 
Figure 1 Simplified flow chart of chemistry/soot time step 

splitting algorithm  
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The hybrid soot model relies on a conventional soot model to approximate the effects of soot as predicted by the 

more complex stochastic soot model that will follow. If the effects of temperature, species concentration, etc. are 

predicted poorly, the stochastic model will predict soot based on incorrect data. If, for example, the surrogate model 

predicts no changes, the results are the same as the stochastic model run in a one-way coupled mode. Figure 2 shows 

the predicted PSD for spray A at 1.75 ms after the start of injection for the two-way coupled, one-way coupled, and 

hybrid model. All simulations were performed in KIVA. The one-way coupled PSD reproduces the shape of the two-

way coupled PSD, but over predicts the magnitude and maximum particle size. The overprediction is due to lack of 

consumption of pyrene in the one-way coupled approach. The hybrid model, using the method of moments as a 

surrogate, accurately captures both the shape and magnitude of the two-way coupled PSD to within one order of 

magnitude. Evidently, the surrogate model provides 

adequate likeness to the stochastic model to enable 

accurate soot prediction.  

The verification of the hybrid model showed that 

one-way coupling with a surrogate model is suitable 

for accurate soot prediction. While this is promising, 

it still requires substantial source code modification. 

To improve the usefulness of the code, a post-

processing method was developed. We call this the 

extended hybrid model. The extended hybrid soot 

model relies on post combustion simulation generated 

Lagrangian parcels to couple to the Eulerian field such 

that parcel representation is accurate. Figure 3 shows 

Spray A PSDs at multiple times using the standard 

hybrid model and the extended hybrid model with a 

method of moments surrogate soot model. Agreement 

is within an order of magnitude throughout. 

Discrepancies, such as, the inception mode particle 

population at 1ms are typically small and only temporary. 

 
Figure 3 Top left: 1ms, Top right: 1.5ms, Bottom left: 2ms, Bottom right: 3.5ms. Blue: Extended hybrid model with Ensight 

generating and accumulating parcel histories, Orange: Conventional hybrid model with KIVA generating and tracking parcels. 

  

  
 

 
Figure 2 PSDs of Spray A at 1.75ms. Blue: Two-way coupled 

stochastic soot model, Green: one-way coupled model, and 

Orange: hybrid model with method of moments surrogate.  
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4. Comparison with Existing Soot Models 

The extended hybrid model was coupled with CONVERGE and comparisons were made between the extended 

hybrid model and commonly available soot models. The differences in PSDs between the SWEEP model and the 

sectional model are shown in Figure 4. The sectional model predicts a largely stagnant small mode particle population 

and the hybrid model predicts a dynamic growing population. 

 

 
Figure 4 PSDs for the spray A conditions as predicted by indicated models at the indicated times. Top left: 1ms, Top right: 1.5ms, 

Bottom left: 2ms, Bottom right: 3.5ms. Blue: Extended hybrid model with a sectional surrogate soot model, Orange: Sectional 

soot model.  

 

5. Applying the Soot Model to a Diesel Engine 

Simulations of a 1.9L GM diesel engine undergoing cold start cycles at 1500 rev/min and 2 bar IMEP with 3 

injections were chosen based on the soot conducive conditions and the expected availability of detailed experimental 

data with particle size distributions to compare to. The third injection timing was swept from 9 to 21 deg. ATDC to 

provide a parameter effecting soot. CONVERGE and the extended hybrid model were used. The method of moments 

surrogate model was used because a similar method of moments surrogate model was used with KIVA in the validation 

step of Figure 3. 

Figure 5 Shows PSD plots for the different third injection timings. Each plot shows PSDs at multiple crank angles. 

All cases have relatively similar soot populations at 10 deg ATDC because all of the cases are similar until the 3rd 

injection. Soot populations after the third injection vary greatly between the cases. When the third injection is later, 

the largest soot population is maximized at approximately 10 deg. ATDC. If the third injection is earlier, the largest 

particle population is maximized at approximately 50 deg. ATDC. The PSDs at EVO for the 9 and 13 deg. ATDC 

cases are very similar despite differences at earlier times. At 50 deg. ATDC the 13 deg. ATDC case has a much more 

pronounced bimodal distribution than the 9 deg ATD case.   
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Figure 6 (a) shows a scatter plot of the parcels, colored by soot mass fraction, at EVO. Soot mass is clearly 

concentrated in local pockets throughout the cylinder. Figure 6 (c) is filtered to only the 150 heaviest parcels and 

clarifies what was seen in Figure 6 (a). Namely, all of the high mass density soot regions are near a cylinder wall or 

piston face. The heaviest of the heavy are on the cylinder wall, halfway between the head and piston. Figure 6 (b) is a 

scatter plot with the same 150 parcels as Figure 6 (c) and colored the same way but located by where the soot parcel 

was born. Note that not all of the parcels were born at the same time. This plot shows that the heaviest parcels undergo 

a migration from the cylinder central volume to the cylinder walls. The heaviest parcels all start in a similar area, near 

the cylinder head and along the injection vector.  

Figure 7 shows the particle size distribution at EVO for the entire volume and for only the boundary volume of 

the cylinder. This confirms that most of the soot is contained in the boundary volume at EVO. The final PSD on Figure 

7 is also for the boundary volume but with parcels that started near the wall filtered out. This shows that most of the 

large particle population started away from the cylinder wall. 

Figure 8 shows the path of the parcel with the highest contribution of soot mass to the cylinder volume at EVO. 

The parcel is created during the second injection far away from the cylinder wall. It is entrained in the 3rd injection 

and quickly brought to the cylinder wall. The parcel follows the cylinder wall until EVO. 

 

 
Figure 5 Top Left: Volume averaged PSDs for the diesel catalyst heating conditions. 9 deg. ATDC, Top Right: 13 deg. 

ATDC, Bottom Left: 17 deg. ATDC, Bottom Right 21 deg. ATDC, Orange: 10 deg. ATDC, Green: 50 deg. ATDC, Red: 85 

deg. ATDC, Purple: 110 deg. ATDC.   
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(a) (b) (c) 
Figure 6 (a) Scatter plot of all soot parcels at EVO for 9 deg ATDC case. (b) Scatter plot of the location of generation of the 

150 heaviest soot parcels at EVO for case with 3rd injection removed. Parcels are colored by mass fraction. (c) Scatter plot of 

150 heaviest soot parcels at EVO for 9 deg. ATDC case. Parcels are colored by mass fraction 

 

 

 
Figure 7 Blue: entire volume, Orange: volume near wall, 

Green: volume near wall with parcels that originated near 

wall filtered out. PSD of 9 deg. ATDC at EVO 
 

Figure 8 Path of heaviest parcel at EVO.  

 

6. Conclusions 

A hybrid variation of a stochastic soot model capable of running with limited computational resources and using 

conventional simulation software was introduced and validated in two stages. First, it was shown that using a 

surrogate soot model to consume inception species could produce accurate results. Second, it was shown that the 

Lagrangian soot parcels of the stochastic model could be created in a postprocessing step. The hybrid model was 

then used to show that a majority of the soot created in a diesel engine using a triple injection scheme originates near 

the center of the cylinder and moves to the perimeter in the entrainment of the third injection. 
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