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Abstract

We present a numerical method for approximating the solution of convex integer
programs stemming from optimal experimental design. The statistical setup consists
of a Bayesian framework for linear inverse problems for which the direct relationship
is described by a discretized integral equation. Specifically, we aim to find the optimal
sensor placement from a set of candidate locations where data are collected with
measurement error. The convex objective function is a measure of the uncertainty,
described here by the trace or log-determinant of the posterior covariance matrix, for
the discretized linear inverse problem solution. The resulting convex integer program
is relaxed, producing a lower bound. An upper bound is obtained by extending the
sum-up rounding approach to multiple dimensions. For this extension, we analyze
its accuracy as a function of the discretization mesh size for a rectangular domain.
We show asymptotic optimality of the integer solution defining the upper bound for
different experimental design criteria (A- and D-optimal), by proving the convergence
to zero of the gap between the upper and lower bounds as the mesh size goes to
zero. The technique is illustrated on a two-dimensional gravity surveying problem for
both A-optimal and D-optimal sensor placement where our designs yield better results
compared with a thresholding rounding approach.
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1 Introduction

Design of experiments (DOE) is an important endeavor of statistics. It aims to deter-
mine experimental settings that yield accurate results for statistical model parameters.
In traditional DOE, one selects suitable treatments (explanatory variables), assigns the
treatments to experimental units under statistically optimal conditions (usually to mini-
mize the variance of parameter estimates), and observes treatment effects by measuring
response variables (see [9]). Another important branch of DOE seeks to determine the
optimal sampling locations given a set of available measurement points (see [8, §7.5]
and [25, §9, §12]). In [8], the goal is to select m regression vectors with replacement
from a prescribed set of p regression vectors, so as to obtain best ordinary least squares
(OLS) estimates. The optimality criteria are based on the trace, log-determinant, or
maximum eigenvalue of the covariance matrix of OLS estimates. This is an integer
programming problem, and it is generally NP-hard [30]. One tractable approach is
to first solve the convex problem obtained from relaxing the integrality constraints,
and then round the solution off to an integer one. In [25], the setting is also linear,
where measurements are selected from an infinite set of regression vectors, allowing
for repeated measurements. Several efficient rounding-to-integrality procedures are
proposed and an analysis of asymptotic performance loss is given. A common feature
of all these approaches is that the analysis is done with respect to a fixed number of
model parameters.

Our focus of investigation is related to such previous endeavors but takes a different
direction. Instead of a linear relationship between response (output) and parameters
(input) in fixed and finite dimensions, our measurement of response is determined by
the discretization of an integral functional of distributed parameters. The unknown
quantity is a function that belongs to an infinite-dimensional space, which is approxi-
mated by discretization on increasingly fine meshes. Here, we aim to understand the
asymptotics of the rounding procedure in the limit of the mesh size going to zero. As
a result, the inverse Fisher information matrix we try to minimize (with respect to a
given design criterion, such as its trace) increases in size with the number of discretiza-
tion points, which makes analysis with common design criteria difficult (Sect. 2.5).
We are not aware of prior theoretical work on the convergence analysis of discretized
design of experiments with a number of sites that can grow unboundedly. Moreover,
we assume here—as would be the case in many physical settings—that each data
site is measured only once, so repeated measurements (as in [8,25]) are not allowed.
This would be the case, for example, if the problem is time dependent and thus a
certain point in space cannot be revisited at the same instant in time or if the sensor
error is constant in time but has mean zero over the sensor population, as is typical of
physical sensors [17, §34.3].

Since we aim to determine the optimal sensor locations starting from a relaxed
problem, the construction of an integer solution with appropriate rounding strategies
of the relaxed version is a critical endeavor. Numerous rounding heuristics are given
in the literature (see [6,22,23]), and some specifically aim for binary variables (see
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[4,15,32]). In [6], the author studied the optimal rounding by recording and comparing
empirical success rates, defined as the percentage of “roundable relaxation” optima
(in the words of [6]), for different types of optimization problems (mixed-integer
quadratically constrained program, mixed-integer nonlinear program, etc.) among the
existing rounding strategies. Classical mixed-integer techniques have been used specif-
ically for sensor placement aiming at detecting contamination in water networks (see
[5,21,29]) but focusing mainly on a fixed-sized discretization without investigation of
limiting properties. Closer to the continuously indexed (in the limit) framework in
this paper, sensor placement for systems governed by partial differential equations
has been studied using a Bayesian framework [1]. In that case, the discrete nature of
sensor placement problems was recovered by seeking sparsity in the solution of the
relaxed problems by means of an /y penalty that is approximated by a sequence of
smooth functions. This approach can be applied to infinite-dimensional problems, but
the numerical results can be unstable, and they depend on the choice of various tuning
parameters. All the rounding approaches described in this paragraph have shown good
performance for certain classes of problems, including the type studied here, but their
asymptotic properties have not been investigated theoretically.

Since we are interested in problems that can be continuously indexed, we investi-
gate an extension of sum-up rounding (SUR), a recently proposed technique that was
first used in the context of continuous-time mixed-integer optimal control problems
(MIOCPs) [27]. Sum-up rounding for binary variables, as we also pursue here, has
been shown in temporally indexed problems to have the desirable asymptotic property
of being arbitrarily close to an integer solution as long as the discretization mesh is suf-
ficiently fine [26,27]. In [27], the authors not only clarify the role of SUR in MIOCPs
but also obtain a guaranteed bound on the performance loss, depending on the size of
discretization mesh. In [26], a specific structure in one dimension is considered where
the objective is a function of either the Fisher information matrix or its inverse, and
the optimality gap converges to zero. Recently we used SUR as a heuristic for the
sensor placement problem in natural gas pipelines governed by systems of nonlinear
hyperbolic differential equations. We observed convergence of the integrality gap as
the spatial mesh was progressively refined [33]; but since the spatial problem had a
different nature from [27], we did not have theory to justify that observation. That was
one of the main motivators for this work.

Here, we investigate DOE based on a Bayesian framework for parameter estimation
[1], and we minimize functions of the posterior covariance matrix based on common
experimental design criteria [25]. Our parameter to the observations map is based on
an integral equation, as opposed to the solution of a partial differential equation as in
[1], although the two are conceptually equivalent if one considers the Green function
resolvent with the prior interpreted as a regularization term [11]. The resulting DOE
problem after spatial discretization is a convex mixed-integer program; see Sect. 2.5.
After solving the relaxed problem, we define and employ a multidimensional SUR
procedure inspired by the one-dimensional procedure proposed in [26,27]. Our main
objective is to investigate whether the integrality gap between the DOE criteria at the
rounded solution and relaxed solution converges to zero in the limit of zero mesh size,
as was observed for MIOCPs in [26,27]. Our contributions consist of proposing an
extension of the SUR rounding procedure in multiple dimensions and proving that, for
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common experimental design criteria, the integrality gap converges to zero as the mesh
size shrinks to zero. The techniques we employ to this end are related to the spectral
theory of self-adjoint integral operators [3]. We emphasize that questions about the
asymptotic quality of DOE solutions over varying design space size have not been
investigated in classical DOE theory [25].

While inspired from the idea of SUR in [27] and using it as a building block, this
work is different in several respects. First, applying it in a multidimensional setting
allows for a larger number of rounding options and our theory covers a fairly general
setup based on what we call compatible two-level domain decomposition schemes.
Also, while the SUR technique itself works for rectangular domains, (which in effect,
we argue in the construction at the end of Sect. 3.2), the proof in [27] relies on the
convergence of one-dimensional integrals which would not directly apply to more than
one dimension. While in the end, for implementation simplicity, our examples are for
rectangular domains as well, the theoretical framework itself allows in principle a broad
set of domain shapes and other rounding techniques, another example of which we
give in Sect. A.1. Second, the functions we optimize here, which define the objective
of the experimental design, depend on the posterior covariance matrix, whereas the
entries in the precision matrix (the inverse of the covariance matrix) are the ones related
to an integral quantity for which the typical SUR analysis applies. To carry out the
gap convergence analysis for experimental design requires the investigation of SUR
effects on the eigenvalues of the precision and covariance matrices. Moreover, the sizes
of these matrices go to infinity, which poses additional obstacles to the convergence
analysis as we discuss in Sect. 4, whereas results in [26] primarily address a fixed
dimensional parameter space, and thus, covariance matrix.

The paper is organized as follows. In Sect. 2, we define the parameter-to-observable
map, we quantify the estimation error using the posterior covariance matrix in the
Bayesian framework, we formulate the original mixed-integer nonlinear program and
the relaxed problems, and we make a connection to integral operators. In Sect. 3, we
define a SUR procedure based on a two-level meshing framework, and we prove the
SUR approximation properties in multiple dimensions. In Sect. 4, we show conver-
gence of the integrality gap based on SUR for different experimental design criteria. In
Sect. 5, we give simulation results on two-dimensional gravity surveying and compare
them with thresholding designs. In Sect. 6, we draw conclusions, discuss limitations,
and propose future work for our approach.

2 Estimation framework

While the contribution of this work concerns primarily the behavior of the SUR-
induced integrality gap, some of the assumptions we make stem from the estimation
framework itself. In particular, our results are tied to a common but specific choice
of the covariance matrices as well as to a limiting interpretation in terms of a certain
integral operator. In the latter case, the integer programming relaxation needs to be
interpreted in an extended output space. We thus describe the estimation framework
that we use to define our DOE problem. The setup is based primarily on [1].
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2.1 Parameter-to-observable map

Consider the input domain £2;, C R€ and output domain $2,,; C RP, both of which
are compact sets. Suppose the output without measurement error depends on the input
through an integral equation:

u(x) =/Q. S, Yuo(y)dy,  x € Lour, (e))

where f(x, y) is prescribed by the physical constraints in the setup; we thus assume
it is known. The output u(x) can be measured at selected points but is affected by
measurement error. Our goal is to infer the parameter vector u( from the observation
vector u. Equation (1) defines a parameter-to-observable map.

To create a finite-dimensional approximation we now discuss a simple discretization
strategy. More advanced discretization approaches as in [19] could easily be incorpo-
rated but would complicate the presentation whose focus is on the SUR approximation
properties for DOE. We divide D = §2;,, (or an approximation of £2;,) into m subdo-
mains Dy, D, ..., Dy, with equal size u(D;) =Ay=u(2;,)/mfori=1,2,...,m
(asis done, e.g., for versions of Nystrom’s method in [28]). Then, we select a represen-
tation point y; in each D; and represent the input function u( as the finite-dimensional
vector iy = (uo(yl), up(y2), ..., uo(ym)). Similarly we divide V = £2,,; into n sub-
domains Vi, V2, ..., V, with equal size u(V;) = Ay =u(2pus)/nfor j=1,2,...,n
and select a representation point x; for each V;. Then we represent the continuous
output u as the vector it = (u(xl), u(xz), ..., u(x,,)). These x1, x3, . .., x, points are
also the candidate locations to place sensors. We approximate the integral from (1) by
the Riemann sum:

u(xj) = /Q Sxj, yuog(y)dy ~ Zf(xj, yi)uo(yi)Ay.

To write it in matrix form, we define F' € R"*"™ with F(j,i) = f(xj, yi)A,, and
then &t = Fuyg.

We note that in applications the function f(x, y) in (1) may not always be continu-
ous. For example, when the function f encapsulates wave dynamics, it is represented
by a Dirac functional f((x, 1), y) =4(y, x—at), where a is the wave speed. For the
remainder of this work, we assume f to be continuous. Another restriction in (1) is that
u(x) depends linearly on uq(x), which is not the case in nonlinear relationships, such
as for pipeline gas dynamics [33]. In that case, the target problem can be approximated
in the framework of (1) by linearization, as was done in [1,33].

In the rest of this work, we use §(x) to denote the Kronecker § symbol:

I, ifx=0,

§(x) =
) 0, otherwise.
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2.2 Bayesian estimation framework

Our goal is to estimate the parameter vector i as a proxy for the unknown function u.
We consider a Bayesian framework where i is the parameter vector to be estimated
and the measurements # are data perturbed by noise. Similar to [1,33], we assume that
both the parameter prior and the measurements distributions are Gaussian:

o ~ N(”pri, Fpri)v
= F’/AlO + 1, where n-~ N(O’ Fnoise)-

Here, I'y,; and 15,45 represent the prior and measurement noise covariance matrices,
respectively, whereas u ,; is the prior mean. We assume the measurement error to be
unbiased conditional on the realization of ¢, and thus n has mean 0. From Bayes’
rule, the posterior distribution of iig is also Gaussian and has (up to a constant) the
following density:

SN L, . 1A R
npost(u()lu) & exp {_E(M - FMO)TF ! (. — Fuop)

noise
N T ~—1,~
_E(MO_Mpri) Fp”‘(u()_upri)}-

We now quantify the sensor placement effect in the posterior. We achieve this by
creating a weight vector w = (wy, wa, ..., w,) € {0, 1} where the jth component
w; corresponds to candidate location x; in the output domain. A sensor is placed at
location x; if w; =1 and is not placed if w; =0, so there is a one-to-one mapping
between sensor placement and weight vectors. Let W be a diagonal matrix with weight
vector w on its diagonal. The w-weighted posterior likelihood, conditional on the data
u and weight vector w, is

7 post (fiolit, w) o exp {—%(ﬁ — Fig)" W', | W2 — Fig)
Lo = upr)T Tyt Gio = wpri) |

One can immediately verify that for any integer-valued vector w, the posterior distri-
bution is exactly the one for Bayesian least squares with data measured for indices of
u(x) where w; = 1,in (1) fori =1,2,...,n.

Under these assumptions and accounting for the prior distribution, we can compute
the posterior g, which is the normal distribution N (u post» I'post), where

-1
_ Tp—1 ~, =1 _(pTwl/2p=1 wl2 -1
Upost _F[’(’” (F Fnoiseu_’_r ul’”) ’ F[’”” - (F w PnoiseW F+Fpri>
are the posterior mean and covariance matrix, respectively. We point out that in this
estimation model the posterior covariance matrix does not depend on data #. In other
words, the optimal sensor placement is determined by the parameter-to-observable
map and two I” matrices.
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2.3 Choice of covariance matrices

We assume that, conditional on the true u, the measurement errors are independent.
In most physical processes and sensor systems this is a reasonable assumption [10].
Consequently, the matrix I5,;s. is diagonal and commutes with W and all its positive
powers, resulting in the expression

Tl ~ oy el T -1 ~1\ 7!
Upost = Fpost (F r u+rI upri)y F[mst = (F r WF+TI >

noise noise pri

In particular, the precision matrix (the inverse of the covariance matrix) becomes
linear in W, which considerably simplifies our calculations and analysis. We assume
identical sensors, and therefore I,,ise = Opnoiseln for some prescribed sensor noise
standard deviation o;,,;s.. The other covariance matrix that needs to be selected is the
one corresponding to the prior distribution. Here we use a multiple of the identity
I'yri = 0prilm. This choice can be interpreted as ridge regression [13] or Tikhonov
regularization of an inverse problem [18]. While for some setups our choice is not
the ideal prior [18] it is one of the most common choices, at least before significant
collection of data.

Our analysis is tied significantly to these choices, and particularly so for the prior
where other reasonable choices may be available. On the other hand, this is one of the
most common choices in statistical analysis of inverse problems [18]; therefore our
setup does represent many problems of interest.

2.4 Connection to integral operators

With the covariance choices specified in Sect. 2.3, the precision matrix, the inverse
of the posterior matrix 1”4, becomes

r‘ —o' FTwr+o7lr,.

post noise pritm

Note that the (i, j)th entry in ij,i, is

n
Typbi (i ) = (A 2opice > f (ko yOWEf (et y) + 00k 80 = x7), (2)
k=1

with w} being the weights from the diagonal of W. With reference to the notations from
Sect. 2.1, we denote by w"(x) the piecewise constant function defined as w”(x) =
wy, x € Dy, which is the discretized area corresponding to kth candidate location in
£2i,. Assume that there is a measurable function w(x) : £2,,; — [0, 1] such that
w"(x) — w(x) in L'. For purposes of illustration we assume that w” (x) converges in
this subsection; that will not be required in our results in Sect. 4. Then, if A,, A, — 0
with A, /A, constant, the first term in (2) will converge to
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Ar
Ay <A_;> O‘nioise\/;z f(x, yi)w(.X)f(X, yj) dx. (3)

This quantity relates to the discretization of an integral operator

Lug(z) = <%> on_()}se // fx, 2wx) f(x, s)ug(s)dxds, z € 2pus-
X 0our X 2in

“)

Note that if Ay =A,, then (3) is one coefficient of the discretization of (4) along the
input variable s. If w(x) is nonnegative, then the eigenvalues of £ are nonnegative.
Because £ is a compact operator [3], it has a countable spectrum with 0 its only
accumulation point. Moreover, because of its integral form, its trace is finite [31].
This prompts the hypothesis that the spectrum of Fl;)il is related to the spectrum of

L and op,;. Specifically, eigenvalues of or;)} sel T'W F approach eigenvalues of £ [31]

in the limit of Ay, Ay going to 0 at a fixed ratio. This indicates that the eigenvalues of
I'posy will approximately be 1/(A +o ;ri.), where A are eigenvalues of £. This insight,
with mathematical statements that will be made more rigorous in Sect. 4, allows the
analysis of optimization problems whose objectives are functions of the spectrum of

Tpost» as is the case for the DOE problems described in Sect. 2.5.

2.5 Design of experiments problems

We are ready to formulate our DOE problem that addresses the issue of optimal sensor
placement. We aim to minimize the estimation error of the parameter i1o, which can be
quantified by using its posterior covariance matrix, ¢ (I o). The three most widely
used criteria in experimental design to measure the size of this error are [25]

— A-optimal design: ¢ (I'post) = t7 (I post);
— D-optimal design: ¢ (L posr) = det(Ipost);
— E-optimal design: ¢ (I post) = Amax (L post)-

Lemma 1 tr(Lpost), logdet(Lposr) and Aipax (I'post) are convex functions in the weight
vector w.

Proof The posterior matrix can be written as

-
n
Tpost (w) = (ano}sg Z w; Fl‘Fl.T + o[:ri. Im> s
i=1

where F; is the ith column of FT. The desired results follow because tr(X 1),
logdet(X~1) and A,uq,(X~1) are all convex in X [8, Exercise 3.26], and the fact
that X is affine in w. O
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We formulate the DOE problem as follows (¢ represents one of the three criteria,
and we use logdet for D-optimal design):

min (p(rpost (w))
s.t. w; € {O, 1}, Z?:ﬂl)i = ny,

(&)

where ng is the number of sensors. To avoid the complexity of integer programming,
we start by examining the relaxed problem obtained by relaxing the integer constraint,

min ¢(Fpost(w))
st.0<w; <l,i=1,2,....,n, Y7  w =no,

(6)

whose solution we denote by w;.;. Problem (6) is convex from Lemma 1. It can
be solved, after using some standard semidefinite programming reformulations, by
interior-point algorithms [8]. The relaxed solution w,.; provides a lower bound to the
optimal objective of the convex integer program (5).

Our results will apply for any n¢ (and its value could also change with the number
of discretization domains n), but they would be most meaningful in certain ranges.
An examination of (2) indicates that if f is bounded by C, then the trace of the
discretization of the integral operator is nonnegative and upper bounded by nonC ZA%,.
We must have nAy = O(1) since nAy must be the volume of the initial set V.
Therefore, for the estimation problem to carry information comparable to the prior, we
need to have ngpAy = O(1); thatis, ng must be of comparable order with n. Otherwise
the contribution from ¢ would originate in the limit exclusively from the prior. In
other words, a meaningful asymptotics is the one where the number of sensors is in a
fixed ratio with the number of mesh domains. This is the corresponding constraint to
the one in [26] whereby the measurement time is proportional to the considered time
range [0, T'].

3 A sum-up rounding procedure

In this section we describe a sum-up rounding procedure that maps the fractional vector
wy¢; solution of (6) into an integer vector wsy g in a way that ensures the spectrum of
Ipost (Wrer) and Iy, (wsy R) are not too far from each other. In turn, this will ensure
that the gap ¢(Fpost(wSUR)) - ¢(Fp0st (wyrer)) stays small.

Our procedure is presented here for rectangular domains V (i.e., §£2,,,, but the same
construction can be applied to £2;,), divided into n subdomains Vi, V,, ..., V, of
equal size u(Vy) = Ay = % Given the function w”(x) : V — [0, 1], which is
constant on each V;, we construct a 0—1 valued function w” (x) that is also constant
on each V; such that the two sums

P= T faow" A, SE =) F)i” (w) Ay (7)

k=1 k=1
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are arbitrarily close to each other as long as n is large enough. Our analysis is centered
around estimating the variation in the entry i, j of Fl;,i ; following the SUR procedure.
The bounding technique will end up being uniform in i, j. To simplify our exposition,
we ignore in the rest of the analysis the argument y of f in (3) since it has no effect
on our approach.

Note that the function f need not be the same as the one defining the integral Eq. (1),
and it can be any function defined on £2,,, satisfying certain continuity conditions. If
V C R, this is essentially a one-dimensional time domain problem that has already been
studied in [27]. In multiple dimensions, we can flatten the multidimensional vector and
apply the basic sum-up rounding. However, the integration-by-part technique in the
proof of [27, Theorem 2] becomes problematic in multiple dimensions, and this is why
we resort to a two-level decomposition which also covers the basic one-dimensional
case. It is worth mentioning that depending on the ordering of entries, we can obtain
different integer vectors. In this section, we discuss the basic sum-up rounding strategy
in Sect. 3.1 where Lemma 2 is an analogue to [27, Theorem 3]. The multidimensional
strategy and its properties are given in Sects. 3.2 and 3.3 respectively, and Theorem 2
in Sect. 3.3 is an extension of [27, Theorem 2].

3.1 Basic sum-up rounding strategy

We denote w!' (w}) as the value of w”(x) (w"(x)) in V; and construct the binary
function w” (x) from w”(x) as follows.

(1) Compute /1 = wy - n(V1), and set wY to

0, ifly <5uV),
1, otherwise.

(2) Fori=2,3,...,n,compute

i i—1
L= w'(xp(Vi) and 1= " Vi),

k=1 k=1

e
where w}' is given by

~n

an 00 L= Ty < Ju(v)),
! 1, otherwise.

We call this strategy basic sum-up rounding, in reference to the name of the one-
dimensional technique introduced in [26,27] which inspired this approach. The basic
idea is that each element is scanned sequentially and is rounded to either O or 1
determined by the difference in the accumulated sum of elements that are already
processed. The strategy has the property that for large n, w” (x) and w" (x) get close
to each other for all partial sums, which is stated in the following lemma.
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Lemma 2 The function w" (x) has the following property: Foranyi =1,2,...,n,

. f 1
1= = | 3 ("0 = 0" (60) As| < =),

k=1

where V is the rectangular output domain with fixed size.

Proof We prove this result by induction. For i = 1, we have the following.

— When I} < %,u(Vl) = ﬁu(V), we have w} =0 and I, =0, and therefore
~ 1
I —hl=15 < 2—/~L(V)-
n
— When I > ﬁM(V), we have w} =1. Since w" (x) <1, we get

1 1 - 1 1
—uV)<hi =—pV), [h—hl=-pnV)—1 < —pnlV).
2n n n 2n

By the induction hypothesis, assume |/; — I:-l < ﬁ (V) is true for i = k. We show it
for i =k+1 as follows.
— When 0 < [, — fk < ﬁ,u(V), note that I < I;41. We discuss two cases.
(@) If0 < L4y — I < ﬁ,u(V), then wy, ; =0 from the rounding rule, and thus
ka = fk. Therefore

~ 1
0<liy1—lry1 = —p(V),
2n

and the induction hypothesis is satisfied.
(b) If 5-pu(V) < Ix+1 — Ik, which implies

1 - ~ w,’{LH 1 1
(V) < Ippr — I < I — Iy + uV) < —uV) + —u(v), (8)
2n n 2n n

then from the rounding rule we have that wy = 1, and we obtain

- - 1
Iyt — e = u(Vig1) = ;M(V)- )

Subtracting the equality (9) from the inequality (8) gives the desired result:
1 ~ ~ 1 1
50 (V) < lepr = I = ir — I = — (V) = —p(V).
2n n 2n
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— When —ﬁu(V) < Iy — fk <0, since Iy = I + wZH “(nv), we also have that

Iy+1 > I, and thus —ﬁu(V) < Ixy1 — fk. We discuss two cases in a similar
way.

(a) If —ﬁ,u(V) < Ipy1 — I < ﬁu(V), then 'I)k+1 =0 from the rounding rule,
and thus ik+1 = ik. Hence

1 - 1
(V) < Lry1 — Dy < —p(V).
2n 2n

(b) If 5-pu(V) < Ix+1 — Ik, then

n
Wy

vy <0+ %u(w. (10)

1 - -
—u V) < g1 — I < I — I +
2n n

In turn, from the rounding rule this implies that wj’ ;| = 1. As a result, we
have

- ~ ~ 1
lerr = D+ p(Vign) = D+ = (V). (1)

Replacing the identity (11) in the inequality (10), we obtain

1 ~ ~ 1
—— (V) < Igy1 — Ier1 = Dy — I — — (V) < 0.
2n n

Inspecting the consequences of these four branches, we have completed the proof
for i =k + 1, namely, |lr4+1 — Ix41] < ﬁ (V). Therefore the statement is true for
i =1,2,...,n and the proof is complete. O

We now have a rounding strategy, and before we apply it, it is important to check
feasibility of the resulting integer vector. The lemma below states that sum-up rounding
always provides a feasible vector for our main optimization problem (5).

Lemma 3 With the basic sum-up rounding strategy, if Y ; _, w" (xx) =ng is an integer,
then

Do W) =) w' (w) = no.
k=1 k=1

nv)

P and the conclusion for i = n can be

Proof In Lemma 2 we have that A, =
rewritten as

n n 1
n _ ~ 7 < -
| > wrew - Y @) < 5
k=1 k=1
Since both Y ) _; w" (xx) and ) ;_, w" (xx) are integers, they have to be equal. O
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3.2 Sum-up rounding algorithms

We showed in Sect. 3.1 that w" (x) and w" (x) are close to each other, but our goal is to
prove that the two sums in (7) are close. Suppose V =[I1, 131x[17, 13]1x- - -x[IF 1] C
R?, and each [li, lé] is divided into n; intervals Z; 1,Z; 2, ..., Z; »; (script letters
represent one-dimensional intervals) of equal length. Then there are n = nyns---np
unit rectangles of the form

[T zZ

i=1,2,..,P,
jiell.2,....n;}
They all have the same size (V)/n, and we call them Rp, Ra, ..., R,. In addition,

we assume that there exist two positive constants ¢y, ¢z such that

max;—=1,2,....P 1
A (12)
min;=g,2,..,pn;

This implies that n; = O(n'/?) forany i € {1,2, ..., P} and that each rectangle R;
is not far from a “unit box.”

Definition 1 We call a compatible two-level decomposition scheme a domain decom-
position setup of a compact domain V with the following properties. The rectangles
R;,i = 1,2,...,n, are grouped in subdomains V;, j = 1,2, ..., Iz(n), for which
the first k(n) subdomains contain an equal number of rectangles, »(n). The inter-
sections between the interiors of each two subdomains V; is empty, moreover the
subdomains V; need not cover the entire domain V, and we denote the remainder

by View = V — UI;(zni V;. We denote by p(V;) the diameter of the subdomains,
Jj =1,2,..., k(n). Subsequently, we reindex the rectangles such that their ordering
respects the subdomains ordering, thatis, R;; € V;, R, € Vj,, j1 < j» = i1 < i2.
Our sum-up rounding approach consists of applying the basic method from Sect. 3.1
to the rectangles R; in their modified ordering.

To obtain the approximation properties, it would be sufficient to apply the basic method
from Sect. 3.1 to each subdomain V;. The extra steps of reordering and the application
to the entire rectangle set ensure that we preserve the total sum of the weights, and
thus that we satisfy the constraints from (5).

To achieve a vanishing integrality gap, we will be interested in compatible two-level
decompositions that satisfy in the limit the following properties:

= k(n) n—
lim  max p(V;)=0, k(n),r@n) "= oo, M"—‘?l, 1 (Viem) = 0.

n—00 1< <k(n) n

13)

For many domains V such compatible two-level decompositions can be easily
obtained based on algorithms for hexahedral meshing [34] that are commonly used
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in spectral element methods [24]. Note that our problem is easier than most in that
sense, since the mesh need not be conformal [7], that is, we allow V,.,, # . Even in
that case, however, a rigorous proof of (13) for a wide class of domains is non-trivial
and significantly beyond the scope of the paper. The theoretical existence of such
decompositions, however, seems clear as similar techniques are central to Riemann
sums convergence arguments.

We thus demonstrate how to create compatible two-level decompositions for rect-
angular domains only, as follows.

(i) We divide V into n = nn, - - -np small rectangles of the form (3.2) as before,
and we list them as Ry, Ry, ..., R,.
(i1)) We order the unit rectangles Ry, Ra, ..., R,, as follows:

21—1,1 XIz_l X e XIPJ
=TipxIp1 x---x1Ip;

Ry, =Ty xTog x -+ xTpy
Ry =T11 xIhpx---x1Ipy
Rypp=T1pxDhox---x1Ip

Rn :Il.nl XIZ,,,2 X e X Ip,np.

They are ordered “line by line” according to the first dimension. Denoting
ki(ny) E Wn 1J, we now build the subdomains V; as follows.

(a) On [l1 A » ] we group the first ky (n) intervals {Z;, J} 1( D as G1.1, group the next

ki(ny) intervals {Z ; }iféé?;ll as Gy », and so forth unt11 we get i k,(n,)- The

remaining intervals {7, j};f: k()21 AT grouped as G 451, and the number

of intervals in G| ;45 equals nj — La/nljz.
(b) The subdomain V; has the following form:

gl’jl X IZ,jz X .. X IP,jpv

where j; € {1,2,...,ki(ny), last}, ji € {1,2,...,n;} fori > 2.

This decomposition has the following parameters and properties, in reference to Def-
inition 1.

P P
k() = Wil [ [ i k) = T/m1 ] [ nis r0) = L/ni) (14)

i=2 i=2

{)L‘ I,2,...,kn IS
J \/_ n; J
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With these definitions, sum-up rounding is applied as described in Definition 1. We
note that many other compatible two-level decompositions are possible, another one
is presented in Sect. A.1.

The following simple example illustrates the idea of two-level decomposition on a
square domain in R?. There are 10 unit intervals evenly spaced on each side (7] =
ny = 10), and the number of unit rectangles R; is n = 100; we group I_«/EJ, which
is 3, unitintervals 7 ; as [« j1 on Dimension 1, and then form 30 subdomains V;; the
basic sum-up rounding strategy is applied to each V;. As the construction is repeated
for increasing n, the remainder area (yellow in color rendering) will diminish compared

12
to the full domain since 1 — LHL'J — 0, and its effect on the difference between the
sums in (7) and the corresponding integral will vanish.

— domain: [I},13] x [i2,13]
— discretization parameter:

NEENEENEE ny = ny = 10,
”l‘1”17”“21”1”%21””7 n =mnine = 100
v ZZ{ N — ki(n1) = [V10] = 3,
™ R e A B k(n) = 30, k(n) = 40
E Tt = Rj=1h, x Ty,
al| where j 2 (ja = D + 1
E Lo =G =T UL p UL 3
A I R S S R S S Gro=T14UTL15UT16
A Giza=L17UL1gUTL9
| T"fl’ o T‘?T 1 T‘T{l? B Gi1tast = T1last
) 1 L 1 ‘ 1 [ — subdomain:
i — — % Vi=Gi1x1z
h Iy, T tast 2 Vo=G12 X121

Va=Gi3x1s1
Dimension 1 -

We will characterize essential features of this approach in the next subsection.

3.3 Properties of sum-up rounding
For our results, we use the notation ||x || = ||x||2 for the norm of a vector x € R”.

Theorem 1 Assume that V is a compact domain in RY and that f(x) is Lipschitz
continuous on V with Lipschitz constant L: for any x,y € V,

lf(x) = fO)I = Lix = yll.

Consider a compatible two-level domain decomposition and let w" (x) be the binary
function from a sum-up rounding algorithm as described in Definition 1. Let xi be a
pointin Ry, k = 1,2, ..., n. Then we have
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WV —=Vyrem) k(n)r(n)

Sl;lea‘gclf(X)I

|32 Feo () — " @) A
k=1

r(n) n
k(n)r(n)
+omax p(V)2LU(V = Vran) = —
+ 2max | £ ()1 (V=Vyem) (1 - @) |

Moreover; if Y ;_, w" (xx) = ng is an integer, then Y _;_, W" (xg) = ny.

Proof We prove first the result for the case where k(n) = Iz(n) and Ve, = @ (that
is, all subdomains V; have the same size and properties and they exactly cover the
domain V). In this case Lemma 2 gives

n ~n 1 1
X W0 =) A = (UL U V) = V),
xpeViu.UV;
This implies
| > (w0 — 0" 0) A
xk€V;
| Y e -i"w)a
xpeViU..UV;
Y @@ —a"mw) A
xkeViU..UV;g
< V) —— (V)
2 2rm)”
1
= mu(vj). (16)

Let y; be any point in subdomain V;, and define

T =) fl) (" () — 5" () Ag,

k=1
k(n)

=) Y (W) — 0" () Ay
j=1 xk€V;

A bound on || is given as

k(n)
1= Y10 YD ("0 — 5" (w) A
j=1 xk€V;
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k(n)

(16) n(V;)

< max [f ()] ,X_; o

_ n(v)

= rgleaglf(x)l- (17)

Lipschitz continuity implies | f(x) — f(y)| < L|lx — y|| forany x, y € V; and

k(n)
- = A3 Y (Fow = £O) (w00 — 5" (x0) |
j=1x1eV;
k(n)
=AY Y (@ - Fop) (@) — 0" () |
Jj=1xx€V;
k(n)
<A Y 2Ll — vyl
j=1xeV;
k(n)
<D 2Lp(Vp) ) A
j=1 xkeV;
k(n)
=2LY  p(Vpu(V;)
j=1
= 2L (V) max p(V). (18)

Therefore we obtain from (17) and (18) that

|3 reo0 (w0 — ") A | = 17
k=1
<1+ - ¥
- n(v)
< max | f(x)| +2Lp(V)max p(V;).
xeVv r(n) J

When Ig(n) > k(n) and Vyep ;é @, we divide V — V., into two disjoint domains
Vinain = U];(zni V;and Vi = U];(L)C(n)“ V. We apply the results in the case k(n) =

Iz(n) to Vinain to obtain

M (Vinain)
r(n)

+ 2LM(Vmain)mj?1X p(Vj), (19)

| > rew (e — ) A

Xk € Vinain

=max | f(x)]
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For the remaining part of the sum, using the fact that the components of w and w are
bounded between 0 and 1, we have

| > e (w e - ") A

Xk €Viast

< 2max | f ()| (Viast)- (20)
xeV

Because each unit rectangle Ry has the same size, we have

k(n)r(n)
n

mVinain) = mw(V = Viem),

k(n)r(n)
U Viast) = (V) — uVingin) = (V. — Viem) (1 - T) .

Applying these identities to the inequalities (19) and (20), we obtain the inequality
claimed in the proof. The equality is a consequence of applying the basic sum-up
rounding rule from Sect. 3.1 to the set of all rectangles as described in Definition 1,
in conjunction with Lemma 3. The proof is complete. O

The preceding result gives us the following immediate corollary.

Corollary 1 With the assumptions of Theorem 1, further assume that a sequence of
compatible two-level domain decompositions satisfy (13). We then obtain that

=0.

Jim 37 7 (w0 = ) 4,
k=1

and that, if Y " _ w" (xx) = no is an integer, then ) ; _, W" (xx) = no. In other words
the gap between the relaxation and our sum-up rounded integer solution goes to zero,
and the integer solution is feasible for the original problem (5).

As discussed following the definition of compatible two-level domain decompo-
sitions, Definition 1, this result can be used to show the vanishing integrality gap of
our approach for many types of domains. A complete analysis of when (13) holds
appears extensive, though cases such as unions of rectangles or polyhedral sets do
not seem to require particularly deep analysis. Given our focus on consequences for
optimization, we focus exclusively on the rectangular domain case. For that situation,
we can strengthen (13) and Corollary 1 by giving a bound on the rate of convergence
as n — oo (also note that V,.,, = ¢ in that case).

Theorem 2 Under the assumptions of Theorem 1, there exists a C such that our sum-up
rounding construction satisfies

C
= /2P

|3 ro (w0 — 3" (w0) A

k=1
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Proof We use the inequalities

2 2 2 1
n Jn n 2
and
cln% < min n; < n%, n% < max n; < czn% (22)
i=12,...P i=12,..P
that follow from (12).

We use the definitions of the sum-up rounding scheme parameters (14)—(15) to infer
the following inequalities.

1
! <c n r(n)k(n)sl; S < 2 (23)
NG n r(n)  Lyni] T
For the maximum diameter of V; we obtain from (15) and (21)
- L1
_ ,O(Vj)fﬁnllaXt._Lz ..... pl5—1})
=12, k() gmini=i2  p /i
2 - L1
D ypmtizizepG o), 24)
3ver
We also obtain
k 2 2D 2 23) -1
LKooy Ly @l 1_<1__> < o T, (25
n nj m

We now use Theorem 1 along with (23), (24), and (25) to obtain the statement of
this theorem with the choice
1

_1 , N &
C = max |f(x)|,LL(V)\/§C1 SHALu(VIVP max P(lé —1Dey ?
xXe =1,

,,,,

+dmax | f(0)|u(V)e, ’.

This completes the proof. O

We note that other compatible two-level relaxations observe similar bounds when
used for sum-up rounding; see Sect. A.1.

4 Approximation of functions of the covariance matrix

We rely on the convergence of the sum-up rounding strategy to prove the main results
on functions of covariance matrices. We keep the ratio Ay /A, (or n/m) constant, say
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«, in (3). We define
Gpo= Ay (8" i ypY =y and Gl = Ay (g™ iy 1

where

n
8" i ) = @0t Y f Ok, W™ (60) f (Xk, ¥ As
k=1

n
g™ (yinyj) = a0t Y f (o )" () f (xk, ) Ave.
k=1

Here w" is the solution to the relaxed optimization problem (6) with the discretization
parameter n, and we construct w” from the SUR technique in Sect. 3. The quantities
Gy, Gi,, and I,y satisfy the following relationships

-1 - -1
Tpost ") = (G +0pkIn) o Tpost (@) = (Gl + 0k ln) - (26)
The assumption of Lipschitz continuity we make on f(x, y) is
| £ G v = 0oy f G )| = L = xall

where y1,y» € $£2;, and L is independent of y; and y,. This is not a strin-
gent assumption, since we can let L depend on yj, y; first and then take L :=
maxy, y,eg;, L(y1, y2) (note that £2;, is bounded and closed, thus ensuring L < 00).
Theorem 2 then implies that

Vi, j=1,2,....m, 1V (vi,y) —g” i, y))| <& — 0, asn — oco. (27)

Here €, is the bound from Theorem 2. By definition of the Frobenius norm,
G — G llp < AyyJm2e2 = u(2in)én — 0.

Since 4(£2;,) is constant, we can introduce a new sequence {€¢,} — 0, ¢, =
max {1, u(£2)€,}. With this notation we have

8% i, yj) — &% iy y)) <€ and |G — G |IF < €. (28)

: n ~n
Denote eigenvalues of G}, and G}, as

n n n
M>2> =0 >
n n n
M >0 > =00 >
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Note the number of eigenvalues for both G”, and G”, is m, which changes and rises

up to infinity. We will show the kth eigenvalues of G, and é',’n are arbitrarily close
for any fixed k € Z.

Lemma 4 If A} and 5\2‘ are the kth eigenvalues of G, and G% respectively, then
AL =M <2 ¢ (29)

Proof From the Courant-Fischer theorem for real-valued symmetric matrices [16,
Theorem 4.2.11], the kth largest eigenvalue of G}, can be computed as

Gn .
AR = wpiﬁ{Lﬁ—ﬂque&u¢o} (30)
dim(S)=k flull

From this, we know there exists a subspace S of dimension k in R™ such that

Gy, - ull
—r >\ —€
fulf  —7F "

for any u € S, u # 0. We apply (28); and using the relationship [|A] < ||A|lF, we
obtain

g MG ul Gy -ul = 1Gy, = Gy e lu
ueSuzo ul " ]
1Gr -2l = €nlu]
B Jul
> Ay — 26,.

Again from (30), we get
A=A = 2e,.

Switching G% and G/, and using similar arguments, we obtain the reverse inequality
A= iz — 2¢,.

Then (29) follows directly. O

Lemma 4 can directly be used to show convergence of the gap for E-optimality,
since in that case, the difference between the objectives is

1 1

o+AM o4

_ b=

o2

<&
o2

On the other hand, for integral operators with continuous kernels it can be shown
that A, approaches zero, therefore any design will produce the same result in the limit
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which makes this criterion uninteresting in our setup. For the A- and D-optimality case,
however, the objective function can be seen as the sum of eigenvalues or logarithm of
eigenvalues of the covariance matrix, and the number of its terms goes to infinity. In
that case, the objective functions may not even be bounded as n — oo, as we discuss
in (54) and (55). Therefore directly invoking Lemma 4 would not prove convergence.

. . . . n __ k ~l’l _
As a simple example, consider the situation where A} = 1 + N and A} = 1,
~ 1
k=1,2,...,n, Foranyk we have that |} — A}/| < n™ 2 and thus the two eigenvalue

sequences satisfy a relationship as the one in the conclusion of Lemma 4. On the other
hand the difference between the A-optimal criteria would be

- 1 1 - Ik .
g+1+$ o+1 ny/n(o + 1)(o +2)

k=1

A proof of a zero gap between function of a matrix and its SUR version will require
more results beyond Lemma 4. In the following two theorems, we provide rigorous
proofs on convergence for A- and D-optimal design criteria respectively.

_ - N
Theorem 3 Let M)} = (O’Im + G;‘1) Y and M) = (alm + Gz) , Where 0 = o'p_r%.
Then

tr(M;,) — tr(M;;) -0
as m,n — o0 and with n/m = o constant.

The proof is based on the fact that from Lemma 4, the spectra of G”, and of G,
are close to each other. From the definition of M)}, its spectra can be inferred from
that of G/, through Ay = 1/(0 + Ag), where A is an eigenvalue of G, and A/ is
an eigenvalue of M),. The key is to exploit this relationship to show that the spectra
of M” and M are also close, combined with the consequences of the compactness
of the integral operator.

Proof Since w" and w" are between 0 and 1, then g*" (y, y) and g™" (y, y) are abso-
lutely integrable.
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m m
0< Y M=1r(Gh) =2y &"" (i.y)

k=1 i=1

sAy-Dgw =i i) |—>f =1y, y)ldy

i=1

m
<Y M=trGp) = Ay Zg“’"(yi, i)
k=1 i=1
sAy-Dg —‘<y,,y,>|a/ "=y, y)ldy

The inequality holds because g®" (y;, y ;) depends linearly on w". Since convergent
sequences are uniformly bounded, there exists a constant C > 0 such that for any
n >0,

O<ZAZ§C, 0<) M<cC. 31
We also have that
m m m ~
‘Z - K =‘Ay2(g"’ is i) — 8" ()’hyi))‘
— ;

m
<4y ‘g“’" Giyi) — 8" (i, yi)’

<Ay -m-€y = u(82in)€n,

where the last inequality follows from (27). Since 1+(£2;,,) does not depend on n, and
similar to the way we defined {€,} in (28), we can redefine the sequence {€,} — 0
(for example as €, < max{l, w(£2;,)}€,) such that the following inequalities hold
simultaneously

m m
18" 0 ) — 87" iyl = e G, = Gl < en [ DA 0| <
k=1 =

(32)

We now show that for any small € > 0, there exists an integer N > 0 such that for
any n> N, we have

’S‘ éiajtkn i 1 (33)
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with some positive constant D. Note that n/m =«, so m is determined by n and they
increase at the same rate. We fix € > 0. From the upper bound in (31), there are at most
No =[C/e] eigenvalues satisfying A; > €, or equivalently, when k > Ny, A} < € for
any n, and, from similar reasoning, 5‘2 < €. From (29), there exists N > 0 such that

for any n > Ny, |A} — XZl <e2forallk=1,2,...,n We choose n > max{Ny, N1}
and split the sum in (33) into two parts:

1 1 1 1
§= -— -—.
Z(asz a+xg>+2<o+xg a+xg>

k<Ny k>N

For the first part, we note that

D o) IEP D e
- = = ~ SIN)O—H =~ —5 " €.
k<No o +)‘Z o +)‘«Z k<Np (U +)&Z)(U +)\-Z) 02 02

(34)
For the second part, we know A}, Xz <€, and we discuss two cases.
(1) When 27 > A% and k > Np,
- 1 1 Py Py
0< ——0F =) < ——— = Lk ok
(o0 +¢€) o+A; o+A; (0 +A)(0+Ay) o
(35)
(2) When ):Z < Ay and k > Ny,
Tn __9qn Tn __aqn Yn _ an
Ay )\kf 1 B 1~ _ AL )»k~ Skk A <0, (36)
o2 o+A oH+A (Ao +A) T (0+e)?

So we have

Z( 1 1 )
k>N o+ Ay o+ Ak

M= e
< =
S D -z

M=) k> No < k> Ny
A A 1 1Y\ -
_ k k - n__3n
- A Y (o) G
k>No M<i k> No
1 ~ €20 +¢€) -
D R e
o (0 4+ €)~ _
k> Ny A <A{, k>No
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With a similar use of (35) and (36) we obtain

Z( 1 1 )
k> No G+)LZ U+}‘Z

A — Al Py
> - =
- Z (o + 6)2 + Z o2

M=) k> No < k> Ny
1 1\ = A=

D (i [ R SR e

K> k>No k>No

1 ~ €0 +¢) -
D N TR AL D M )

o o°(0 +€)” .

k>No M=, k>No

From the last two inequalities, we obtain

1 1 | 1| -
> )| == W=
n - 2 k k
k>N (U A o+ )‘Z> R yA

2 . .
+E29HD d S i, Y @r-apt. @

2 3 ma
o°(0 +¢€) _ N
M <Ak, k> Ny Ae>Mi, k>Ng

In order to bound ) . No ()12‘ — Ap), recall (32). From it, there exists N, > 0 such that
for any n > N, we have

’ Sog -] <e (38)
k=1

Choose n > max{Ny, N1, N2}. Because n > N, we have

| > or -

k<Ny

< No-€?=Ce, (39)

and thus from (38), (39) and the triangle inequality we get

| > G-
k> Ny

= | Yo =ipl+| Y os-i| s +ne. @)
k=1 k<No

Note that if we let € < o and use (31), we obtain

€20 +¢€) - 3¢ — 3C
A<M\, k>No k=1
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€20 +¢€) Z

in 3 < in

ik>kk, k> Ny k=1

Combining (37), (40), (41), and (42), we get

|Z 1 B c+1€+3c6_ CH1 30\
o+ A g+)d1 - o3\ o2 o3

According to (34) and (43), we get

m
Yol 2 -—=]]
o+ A} a+k” (T-i-)»" U"';‘Z

k=1 <No
1
+|Z<G+k”_a+iz>|
C c+1 3C 2C+1  3C
5;6%-( 2 +F>e=< P ~I—?>e

Let D = % + i—? Then for any € > 0 smaller than o, there exists N =
max{Ng, N1, N>} such that for any n > N,

- 1 1
‘ Z i = <D -e.
=1 o+ k o +)\.k
By definition of limit, as m,n — oo and n/m = «,
!Z 1 |~ o. (44)
o+i o —}—A"

Given that the first quantity in (44) is ¢t (M)),) and the second is tr(M,’Zl), the con-
clusion follows. m|

Theorem 4 logdet(M]) — logdet(M;;) — 0, or equivalently
m

m
1
Z +An—210g — —> 0.

PR s

Here, M and M,’,’l are the matrices from Theorem 3.
Proof First note that using the mean value theorem and the monotonicity of the log
function and its derivative, we have that, if 0 < ¢; <x < y <c¢3, then

1 1 1 1
0<—(y—x)<log——log— < —(y—x). (45)
(&) X y C1
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Again we show that for any € > 0, there exists an integer N > 0 such that for any
n>N,

m m

1 1
o ~ Yo ~ ‘<D-e, 46
‘Z ga+AZ 2 ga+kz B 4o

k=1 k=1

with some positive constant D. First, from (31) we choose Ny such that when k > Nj,
A; <€ and A} < € for any n, using a similar argument in the proof of Theorem 3.

Second, from (29), we can find N1 > 0 such that for any n > Ny, |AZ — iZl < €2 for
all k =1,2,...,n. Third, from (32) there exists N> > 0 such that for any n > N,

| 00 =3

3 (o ! / ! + > (10 ! log —
— Lo = — po .
g(r-i-)»z ga~|—)»z g(f—i—)uz ga—}—kz

k<Nyp k> Ny

< €. We then split the sum in (46) into two parts:

For the first part, we apply (45) to obtain

1 1 AT — n 2
log —log _ < MSNO-E—z—-e. 47)
o+ M n o o o
k<No k o+ Ay k<No

For the second part, 0 < 1}, A} <€, and we discuss two cases.

(1) When 5‘2 > Ay and k > No,

| R " 1 1 A=A
0 < ——@Ay —Ap) <log — — log — < .
o+e€ o+ A g+xz o
(2) When 5‘2 < Ay and k > N,
A — 1 1 A — Al
k k <log — log <~k k <o.

(r—i—iz T o+e

Therefore, we have

1 1
lo —lo ~
Z( Y go—}—kZ)

k> Ny

5»"—)\." in_)\n
k k k k
< _— LT
S D D D

iZ>}»Z, k> Ny 5\,’(’<)LZ, k> Ny
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AL — Al 1 1\ -
= _—  _ )Ln_)\‘n
I I T

k>No }:Z<)L2’, k> Ny
1 ~ € -
- )\'n _ )\'n + )Ln _ )Ln
) LYY P > W=D
k> Ny Ak<k” k> Ny

and similarly

1 1
lo —lo =
Z( ga—i—)uz ga—i—)»ﬁ)

k> Ng
A — A A — An
- k k k k
= ) et X
AZ>AZ, k> Ny A"<A”, k> Ny
1 — Ay
= —— (A = AT _
B I T LR E o
Ag>Ay, k>N k> Ny
S Z Gr— A 4 —— " Z (A=,
k>N0 (G E) n_an
x > M k> Ny

From these two inequalities, we get

5 o) <l i

k> No k>No

€ n n n n
oo 1o M ST0E=ip. >0 GE=aD

X’k<)\‘k9 k> Ny ik>)tkq k> No

Using the same rationale that led us to (40), we have

|-
k<Ny

m
| > er -l = >0 -
k> Ny k=1

< (C + D)e.

(48)

(49)

Moreover, using (31) and the nonnegativity of the eigenvalues of M" and M", we

obtain

m
€ € C
0< —— A — Y < — A< —
<o(0+e) Z ( )_022 k= 52¢

=
ik<)\k, k> Ny k=1
m
€ € ~ C
<—— Y G-=5) e
o(o+¢€) o
Ae>Mi, k>No k=1
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Combining (48), (49), (50) and (51), we get

‘Z o 1 o 1 ‘<C+l +C (C+1+C>
— = < €+ —e€= — )€
Pyl ga—l—)\z gg + A} o o2 o o2

(52)

Using the bounds (47) and (52), we get
m
1 1
log — log = ‘
‘Z( 7 mz)
1 1 1 1
< lo —lo = |+| Io —lo — |
|Z< Sy, ga+xg) Z( S0 g0+?~Z>

k<Nyp k>N
C C+1 C 2C +1 C

< —e+ +_2 € = +—2 €
o o o o o

LetD= % + (% We conclude that for any € > 0, there exists N =max{Ny, N1, N2}
such that for any n > N,

|§: 1 ! 1 ! |<D
0 —1lo - <D -e.
=1 g()‘—’-)\,z gg+kz

By definition of limit, as m,n — oo and n/m = «,

’i(log ! — log ! )‘—>O
= o+ A} A

a—l—kk

Given that the first quantity is the logarithm of the determinant of M}, and the second
is the logarithm of the determinant of M., this proves the claim. O

Given the relation of I',,5; and G}, in (26), Theorem 3 proves that the lower bound
of the A-optimal design, which is given by the relaxed optimization problem (6), can
be achieved by using the sum-up rounding strategy. Theorem 4 does the same for the D-
optimal design. The E-optimal design, where we aim to minimize the largest eigenvalue
of I'post, is actually trivial in this framework because the smallest eigenvalue of G7,
goes to 0 and the largest eigenvalue of Iy, (w™) converges to o, which is also true
for I'poss (w"). This argument also shows that the E-optimal result is trivial for this
case since virtually any design will then be E-optimal; hence we do not emphasize it
in this paper. To conclude, with the sum-up rounding strategy described in Sect. 4, we
are able to find sensor locations that are asymptotically optimal for A and D design
criteria.

While our proofs include several restrictions, they can be extended in several ways.
To include more general domains or sum-up rounding patterns would require proving
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results such as Theorem 2 and, subsequently, the critical property (27) needed to show
the shrinking gap for a given design strategy. General domains are not difficult to
include, but the resulting proofs would be extensive, involving computational geometry
technicalities. However, the two-level strategy presented in Definition 1 resembles
the spectral element philosophy [24] that is widely used for quite complex domains.
Moreover, the within-subdomain ordering in Definition 1 is entirely open, which would
allow experimentation with various strategies such as space-filling curves. While our
results are proved for linear operators only, we note that as a first step to extending our
results to the case where the nonlinear parameter-to-observable map F' is nonlinear,
one could use the Laplace approximation as was done in [2,33].

5 Numerical experiments

We now present numerical experiments based on the model problem of gravity survey-
ing (see Example 1.5 in [20]) in our simulation. Suppose mass is distributed at depth
d below the surface where sensors can be deployed, in a unit square [0, 1] x [0, 1]
indexed by the two-dimensional variable y, and we want to estimate the mass density
function go(y). Measurements are carried out on a unit square in a plane indexed
by the two-dimensional variable x, and we can measure the vertical component of
gravitational field g(x) but with error. By Newton’s law of universal gravitation, the
integral equation of g(x) for x € [0, 1] x [0, 1] is

d
(@ + llx = y|»)3/2°

g(r) = / Fegomdy,  flay) =
[0,1]1x[0,1]

where |[x — y| is the Euclidean distance between points x and y. In this problem,
2in = Lout, and we use the same discretization for the two domains. We divide
[0, 1] x [0, 1] into n? small squares with equal size 1 /n2. On each side, there are n
points 0 < x; <xp < --- <x, <1 (x; = i/n+0.5) and Ay = 1/n. We have n?
candidate locations, and w = (wy, wz, ..., w,2) is the corresponding weight vector.
Let F € R"™*" be the discretization of the above integral operator, and order the
candidate locations as z, 22, ..., g,2. Then

d 2
(A2,
(d?+ llzi — zj11%)3/? (42)

F(@i, j) =

fori, j=1,2,..., n?. Let W =diag(w). The relaxed problem is

min ¢ ((FTWF —|—01nz)1>

st 0wl Yw=|m?| ©<r<, (53)
i
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where o is not a variance but the ratio of 0,0i5¢ and o,,;. We keep the number of
sensors in a proportion r to the number of candidate locations, as discussed at the end
of Sect. 2.5.

Using the solver Ipopt in Julia, we compute w,.; and then construct a feasible
integer vector w;,, via the sum-up round approach we developed in this paper. Our
experiments are run on a laptop with one CPU processor (1.6 GHz Intel Core i5)
and 4 GB of memory, and we provide the Hessian of the objective and the relevant
objective and constraint gradients. By far the most expensive part of the computation is
the Hessian. For example, for the case where ¢ (-) = tr(-), the entry i j in the Hessian is
proportional to tr(]"_lﬁfl.TF_lfjijI"_l), where I" = (FTWF + O'Inz) and f; is
the ith column of F7. Here 1 <i < j< n?. Note that I is a dense matrix, and for the
rest of discussion in this paragraph, n represents the size of I". While the computation
can be streamlined to carry out the factorization of I" once per iteration, followed by
solving n linear systems of equations with f;, then computing ~ % inner products,
each of these operations is O(n?). The largest problem we solve has n = 3600 (a
60 x 60 two-dimensional grid) and Ipopt takes about 3 hours to produce a solution for
it, though our code is far from optimized. Interestingly, note that computing even one
entry in the gradient, whose ithe entry is —tr(I" ! f; fiTI" ~1) would still take O (n?)
as atleast one linear system with I” needs to be solved. For this reason it is doubtful one
can do much better, as most convex integer programming solvers need gradients of the
objective. In any case, we had difficulties comparing with other approaches, as most
of the ones we had reasonably easy access to required the function to be expressible
in a modeling environment such as JuMP or AMPL. This does not occur for matrix
functions, as they cannot atomically be expressed in terms of standard libraries. An
alternative was to reformulate the problem (53) as a semidefinite program with integer
variables, which we aimed to do with Pajarito. However, solving the n = 50 case
(in one dimension) took one hour to achieve a gap of less than 1%. Therefore this
did not appear to be an easy way to go either. Solving larger problems will probably
require reaching towards other ideas, such as perhaps exploiting the (approximate)
hierarchical off diagonal low rank structure, as we recently proposed in [14].

In any case, results for D-optimal and A-optimal designs using Ipopt as described
above are demonstrated below. The E-optimal design is not considered because the
largest eigenvalue is extremely close to 1/o0 irrespective of w and there is not much
difference in objective values for different designs.

We compare our sum-up rounding design with a thresholding heuristic: let w =
(w1, wa, - -+, w,2) be the relaxed solution and its components are ordered by w;, >
Wi, = -+ = w; ,. The thresholding integer solution w is given by

[y ifje[il,iz,...,iLsz];
wj = .
0, otherwise.

In other words, we set elements to 1 if they have the largest values in the relaxation, up
to the available budget of sensors. We will compare the performance of two strategies
by measuring integrality gap.
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—4 - —== Sum-up Rounding
\ Thresholding Rounding
—6 4 —— Relaxed Solution
\\\
—8 =

objective value
|
A
N
)

4 10 20 30 40 50 60
Number of Candidate Locations on Each Side

Fig.1 Objective value, D-optimal design

5.1 D-optimal design

The parameters we choose are 0 =1,d =0.1, r =0.1. Figure 1 shows the objective
value (i.e. log determinant) with the continuous relaxation, sum-up rounding and
thresholding strategy as n increases from 4 to 60. For the thresholding heuristic, it
does not seem to converge at n = 40, or at least its gap decreases more slowly than
sum-up rounding. We note that this validates the result of Theorem 3. One point we
want to add is the objective value in Fig. 1 converges to a fixed number (around —
11.3), which is related to our choice o0 = 1. Notice, when o = 1, that

2

2
n n
1
logdet(Ipost) =) _ log N ) () (54)
k=1 k=1

o+ Ar

and Y A is finite, see (31). For other values of o, the objective value will approach
infinity, but the gap will still converge to zero as proved by our theorem.

We also plot the absolute and relative gaps for the two rounding strategies in Fig. 2,
in logarithmic scale. The relative gap is defined as the ratio of absolute gap and the
lower bound from the relaxation. We observe that sum-up rounding has a relative gap
below 1% at n =40, compared with 5% for the thresholding heuristic.

Figures 3, 4 and 5 give the relaxed solution, the sum-up rounding solution and
thresholding solution, respectively, when n = 40 (there are 1600 variables). The
design is symmetric since both f(x,y) and the output domain [0, 1] x [0, 1] are
symmetric. Sensors are placed toward the boundary and also in the interior. We note
that the design highly depends on d: When d goes to zero or infinity, the relaxed solu-
tion tends to be uniform. Therefore, if we hope to observe interesting designs, d should
be neither too big nor too small. For the thresholding heuristic, a common feature is
that sensors tend to be placed together when values in the relaxation change smoothly,
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) N —-== SUR - absolute difference
10% 4 N SUR - relative difference
\"\ —-= THS - absolute difference
—— THS - relative difference
100 4
3
-1 J
& 10
10—2 .
1073 4

4 10 20 30 40 50 60
Number of Candidate Locations on Each Side

Fig.2 Integrality gap, D-optimal design (SUR = sum-up rounding; THS = thresholding rounding)

Fig.3 Relaxation, D-optimal 0 10 20 30 40
design

0.8

0.6

0.4

0.2

and we do not see sensors placed near the center. Sum-up rounding, however, has
the property that the O or 1 value in the relaxation will remain the same in the inte-
ger solution, and the sensor placement is less concentrated than for the thresholding
heuristic.

5.2 A-optimal design

We investigate the A-optimal design with the same setting and parameters as in the
D-optimal design case: 0 =1,d =0.1, r =0.1, and n starting at 4 and ending at 50.
We observe in Fig. 6 a similar decaying trend as in the D-optimal design case, which
validates the finding of Theorem 4. We would like to mention that in the trace case,
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Fig.4 SUR solution, D-optimal 0 10 20 30 40
design
1.0

0.8

0.6

1
N
5

0.4
|
- 0.2
- :
ol

0.0

Fig.5 THS solution, D-optimal 0 10 20 30 40
design

n?

1
tr(Fpost) = ) = 0(n), (55)

Py + Ak

so the optimal objective value increases about linearly with respect to the number of
candidate locations. However, both the absolute and relative gaps between the upper
bound induced by sum-up rounding and the lower bound obtained from the relaxation
approach zero for large n, as shown in Fig. 6 and as claimed in Sect. 4.

The designs in Figs. 7, 8 and 9 also have patterns similar to those in Figs. 3,4 and 5,
although they are slightly more centered. It is worth mentioning that, as indicated by
Figs. 2 and 6, monotonicity with #n is unlikely. Indeed, kinks at n = 20, 30, ... are
related to the particularities of sum-up rounding design. When n reaches those values,
there is a change in shape which induces a small increase in the gap, but the gap will
be under control and eventually go to zero.
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Fig.6 Integrality gap, A-optimal design (SUR = sum-up rounding; THS = thresholding rounding)

Fig.7 Relaxation, A-optimal 0 10 20 30 40
design 0

10 08
0.6
20
0.4
30 0.2

40

5.3 Discussion

In practice, we normally do not wish to see clusters of sensors because data are usually
informative of other data nearby, while sum-up rounding tends to place sensors close
to each other because of smoothness in the relaxed solutions. One can request the
sensor density not to exceed a given value in any region. An alternative is to use a
space-filling curve approach for the sum-up rounding path to “randomize” the choices
of 1. For this initial study, we note the significant improvement in the objective, and
we leave such issues to further research.
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Fig.8 SUR solution, A-optimal 0 10 20 30 40
design
ol = 8 N R E o E R 1.0

0.0

Fig.9 THS solution, A-optimal 0 10 20 30 40
design
1.0

0.0

6 Conclusions

Using a Bayesian estimation framework, we propose a multidimensional sum-up
rounding strategy to compute asymptotically optimal sensor locations for systems
where the output depends on input through an integral equation. The approach is an
extension of recent ideas by Sager et al. that were proposed in the context of mixed-
integer optimal control [26,27]. Our method can be used on systems for which the
input to output relationship is linear or can be well approximated by one. The opti-
mization problems obtained by relaxing the binary site selection constraints are convex
and can be solved efficiently with interior-point algorithms. Our main result is that
for different optimal experimental design criteria (called A-optimal and D-optimal
in DOE terminology), the integrality gap between the objective value of the relaxed
solution and the rounded-up solution shrinks to zero in the limit of increasingly fine
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meshes on which the integral equation is approximated. We validate this finding with
two-dimensional numerical experiments from the gravity surveying problem.

This initial work has several limitations. We give complete proofs only for a rect-
angular domain, but the extensions to many other domains seem straightforward, if
perhaps technically complex from a geometrical content standpoint. The two-level
nature of our sum-up rounding allows inclusion of more sophisticated strategies in the
subdomains, such as those based on space-filling curves. These may result in better
rounding schemes, particularly at avoiding the excess clustering that is clearly sub-
optimal for small numbers of sensors. In this work we assumed that the relationship
between input and output is given by an explicit linear integral operator. Many real
systems are governed by nonlinear partial differential equations, and we may be unable
to write an explicit formula for the dependence of output on input. For nonlinear sys-
tems, computing posterior distributions is hard even under the assumption of Gaussian
prior and Gaussian measurement error; this can in a first stage be fixed with a Lapla-
cian approximation [2]. Another limitation is our assumption that the prior covariance
matrix is a multiple of the identity (which we need in order to obtain a nondegenerate
posterior density). While this choice, the original Tikhonov regularization, is a com-
mon one in inverse problems [12,18], in many cases one would use a different prior or
regularization operator, such as the discrete Laplacian [12]. Future work will address
these limitations.
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A Other rounding strategies
A.1 Another sum-up rounding procedure for rectangular domains

We present the sum-up rounding algorithm II based on the following compatible two-
level decomposition, with concepts defined in Definition 1. We use the notation

ki(n) = Vnil, and k(n) = ki(n)ki(n2)..ki(np).

(1) On [li,lé] fori=1,2,..., P, group the first ki (n;) intervals {Ii,j}kfn") as G 1,

j=1
group the next ki (n;) intervals {Z; 1}312157531,-) 41 as Gi 2, and so forth until we get

Gi ki (n;)- The remaining intervals {Zi’f};l':kl(n,-)zﬂ are grouped as G; j4s, and the

number of intervals in G; ;45 equals n; — k; (nl-)z. Note that

Vi =1 <ki(n) = [Vni] < n;.
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We can bound the number of intervals in the last group by

ni — (V) <ni —ki(ni)* < nj — (Jni — 1)
0 < n; —ki(n)? < 2y/m;,

so the cardinality of G; is O(/n;), and its size is O(1//n;).
(ii) Consider a subdomain V; of the form

l_[ Gij-
Jiell, 2 ..... kl(n ) last}

This decomposition has the following parameters and properties, in reference to Def-
inition 1.

P P
k(n) = [[Lvnil, ko) = [ [rvmil, r@n) = k), (56)
i=1 i=1
pvp= |3 (B2) L — i w (57)
/ —\ Ll ) T

Theorem 5 Under the assumptions of Theorem 1, there exists a C such that the sum-up
rounding algorithm Il construction satisfies

C
= /2P

|37 Feo () — " () A
k=1

Proof We use the definitions of the sum-up rounding procedure parameters (56)—(57),
and the inequalities (21)—(22) to infer the following inequalities:

1 1 1 1 (21) 2%
—<c¢, ?n 2P, i=1,2,...,P;, — < . (58)
N > H AN
For the maximum diameter of V; we obtain from (57) and (21)
. li _ li
max ,O(Vj) < ﬁrnlaXt._LZ ..... P 2 1)
J=12 k) Tmini_iop /17
22 . i _ g
2 2 G2l (59)
3v/c1
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We also obtain

k(n)r(n) L Lmil? L 2\ 22) 1N\
e fl e fi( ) F et

In turn, from the mean value theorem applied to (1 — x)? for x € [0, 1] and the last
inequality, we have

1

_1
<2Pc¢ *n 7P, (60)

1—(1-x)7F < Px, v;ce[o,l]=>1—M
n

We now use Theorem 1 along with (21)-(22), (58), (59), and (60) to obtain the
statement of this theorem for the sum-up rounding algorithm 11 with the choice

max;—1 ... p(5 —1))

NG

C = max LFOI(V)2T + 2Lp(VIVP

_1
+4max | f(x)|u(V)Pc, 2.
xeV
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