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What is scientific machine learning?

Traditional scientific
computing:

Known model, known
theory leading to good

discretization with
FEM, data primarily
for V+V, parameter

estimation

Small Data

Lots of Physics
Some D-ata

PHYSI GS 
,,
Some Physics

No Physics
SciML:

Known model form, unknown constitutive
relationships or closures, small amount of

high fidelity data
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Traditional machine
learning:

No physics, unknown
input/output

relationship, learn on
huge amounts of data

+ universal
approximation

Objective: Develop ML tools to extract physics preserving data-
driven models and learn inexpensive surrogates
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What's out there right now?

Most methods pursue some notion of physics regularization to weakly endow network with desirable properties

Make list of desired features and penalize them after the fact: PDE structure, BC, IC, conservation, etc

Iteration: 0
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The Good....
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It actually works — many first of their kind results in surrogate models, SPDE, inverse problems, etc

The Bad....

Many penalty parameters lead to large numbers of hyperparameters, challenging to train, demonstrate
convergence/stability, difficult to handle multiphysics

Can we use ideas from physics-compatible PDE discretization to do physics-informed

machine learning in a strong sense?
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What are physics compatible discretizations for
PDEs?

Methods for solving PDEs which:

Use generalized Stokes theorems to

approximate differential operators

Preserve topological structure in

governing equations

Mimic properties of continuum operators

(thus sometimes called mimetic

discretizations)

les

O dc 3 dc 3 C 3

•
Pavel & Both,
Richard B. Lehoucy
Roy A. Nicolaides
Mikhail Shashkov

Compatible
Spatial
Discretizations

Arnold, D. N., Bochev, P. B.,
Lehoucq, R. B., Nicolaides, R. A.,
& Shashkov, M. (Eds.). (2007).
Compatible spatial discretizations
(Vol. 142). Springer Science &
Business Media.
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Two key ingredients:

1: A topological structure 

In PDE discretization this is a
mesh, with boundary

operators linking cells, faces,
edges, and nodes

We will use a graph as an
inexpensive low-dimensional

mesh surrogate

2: Metric information 

Measures associated with
mesh entities, ensuring

discrete exterior derivatives
converge to div/grad/curl

Graphs are purely topological
with no natural metric, we

will use ML to extract metric
information from data
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Exterior calculus preliminaries: chain complex

Compat. PDE Comb. Hodge

Mesh entities K-cliques
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Exterior calculus preliminaries: chain complex
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Exterior calculus preliminaries: cochain complex

Coboundary operators define maps dk Ck

<
a2

C
Ck±i satisfying dk±idk

Bo aid and cd1b© d operators satisfy the generalized Stokes th

du

Comb. Hodge Compat. PDE

grad[s](i, -) Vs • dl — si

curl[X]I(F) = V x X • dA = X - dl

grad s Si

rl[X(. = X - Xki
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Exterior calculus preliminaries: codifferentials

c

In o ucing nner products (
c11;,

d 2

d*2

c

)k, we define the codiffe
ck+1 b ck as

(v, d*ku) (dkv, u)k

Again, dk = 0

n a o
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Exterior calculus preliminaries: codifferential examples

c 411111111,

(dkv, u)k

How to choose inner-products?

PDE context 

Covolume methods - Hodge star

Mimetic finite difference — As
needed to get accuracy

Mixed FEM — L2, but carefully
design FEM spaces
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Graph context 

Purely topological, so no concern with
consistency

Therefore, classically choose -e 2 inner
product so that codifferential is simply
the adjoint of the coboundary matrix

Why not use data to bridge
the gap? 10



What does all this give you?

• Diffe e
tials

(v,

ial operators which locally

d1

(dkv, u)k

d globally conserve

• Invertible Hodge Lapl s Ak = dlkr _Fidk+1 dkek

• Exact sequence properties dk_Fidk = crkr di:+1  0

Corol

es, circ

Treat ent of non-trivial ul spaces

inear PDE Vx xu—f

Can restrict solutions er endicular to null

dirdltt. do,A

do*u

flp

= u + VO,

by  posing g uge condi ion
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Data-driven codifferential

• A

Qi-
3r

c 411111111,

(v, d*kt)k

For fin. e di ensional s
to finding SPD mat

Options for p

SPD a rix c be expressed
th trainable weights

@kV, tOk 1

e, efining er- roduct amounts
Mk, S ch th t (x, y)k = rMky

eterizing inner-p duct:

Cholesky eco p QQT, u per-

• S. pler example, Mk = diag(0, h > 0 tr able weights

Second choice correspon s to higher-o der generalizations of tor networks
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Physics-informed graph neural networks (pigNNs)

F

High-fidelity PDE
solution

f
F (t) chN

P•1111•1111•1111111W

1111111111111111111111111111111111111111111.1

Apply graph-cut to Average over
coarse-grain partitions to obtain
chain complex training data
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Ideal optimization problem

d*F

F + dock +./kr
Invertible bilinear

form
Nonlinear

perturbation

Rewriting as variational problem, we have a nonlinear
perturbation of a nice elliptic problem. Conservation is

encoded strongly via codifferential

argimini
,711

s.t. d7oF

If we can fit the model to data while imposing equality
constraint, then during training we restrict to manifold of

solvable models preserving physics
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Optimization problem (PINNs version)

a

An obvious choice to find
our desired model is to
regularize PINNs style
and play with penalty

parameter

7

Invertible bilinear
form

1

71/

V

Nonlinear
perturbation

A
z

Penalty
parameter

1 1
1̀

Physics
residual

Wang, Sifan, Yujun Teng, and Paris Perdikaris. "Understanding
and mitigating gradient pathologies in physics-informed neural
networks."arXiv preprint arXiv:2001.04536(2020).
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Optimization problem ("PDE"-constrained)

Gg

S.

11
9•••••••••111.1

o*F

0

An iterative algorithm
guaranteeing exact

enforcement of physics
at each iteration:

• Solve o

1
Vector of
Lagrange
multipliers
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F

Physics
residual at each

node

ble vrith cu nt pa e ers

oa .Gc A (0)

• Solve adjoint problem to get Lagrange multip iers

A  V Lc (0) 0

• Update model c fficzents

V c, 05) = 0
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Back to Darcy...

~~F=f

F

0)3 4:112 0: 1 i 14 0.6 c; 1::

drY
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Comparison to traditional covolume: improved accuracy at low resolution
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Comparison of pressure for same # DOF for FVM (left) and pigNN (center)
Right: profile along diagonal shows better fit to solution (green) by pigNN (blue) vs FVM (orange)
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Nonlinear Darcy
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Nonlinear Darcy: potential profile across diagonal
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Nonlinear Darcy — Dirichlet2Neumann map
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lv

Training on five PDE solutions across three decades of data

An effective parameterization of D2N map, which may be
embedded in other schemes
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Compact models for semiconductors: PN-diode

https:llwwv.r.eleotronics-tutorials.wsidiocleldiode

PN Junaion

N-iegion P -region

Locally exponential:
ID_ model

V - E (p — n + PilLt — N,-1" )

isIn 1
= —V (-11,,nE — Di, Vn) — Rjn, p)

q

ap
-- V (p,pE Dp Fp) Rptn, p)

N P -0

An rid n

- — -0 +

Can verrticri al Cu rrent flaw

Traditional compact models fit ideal diode + resistor, and
can be tuned to match either small or large voltage regimes

abo. cOg i00 331 ita L75 a:ari aibo 6.15 C50 4.75 i CO' 1.2'5 1.5'4 175 2.:X;
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Matching IV-curve — linear scale

Voltage drop
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Voltage drop

Extract a conservative surrogate accurate over
fifteen orders of magnitude

May be embedded in a circuit simulator (e.g. Xyce) to
couple coarse-grained high-fidelity PDE model in

multiscale model w/ millions of components

1.50 1.75 2.00
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N DOE Early Career — Physics informed graph neural networks for multiscale physics

Applications
Non-equilibriurn closures for autoignition in turbulent cornbustion

Pulse shaping for pulsed power fusion applications on Z-rnachine

Developrnent of surrogate rnodels for radiation rnodeling of circuits

Fracture rnechanics closures for ice sheet rnodels

Multiscale rnodeling of lithiurn-ion batteries during failure

Multiscale closure for subsurface flow through fracture networks

Multiscale data-driven closures for kinetic effects and turbulence in plasrnas

Several new projects — please reach out (natraskgsandia.gol ) if you're on the job market!
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