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What is scientific machine learning?

=il Data___
Traditional scientific Traditional machine
computing: learning:
Known model, known No physics, unknown
theory leading to good input/output

discretization with

FEM, data primarily

for V+V, parameter
estimation

relationship, learn on
huge amounts of data
+ universal
approximation

Physi
ScimL: o Physies

Known model form, unknown constitutive
relationships or closures, small amount of
high fidelity data

Objective: Develop ML tools to extract physics preserving data-

driven models and learn inexpensive surrogates
2
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What’s out there right now?

Most methods pursue some notion of physics regularization to weakly endow network with desirable properties
Make list of desired features and penalize them after the fact: PDE structure, BC, IC, conservation, etc

L = Lgua + eLphysics &
L = ||udata “‘“NNH%Q + €| L]udata] — L]

The Good.... o x
It actually works — many first of their kind results in surrogate models, SPDE, inverse problems, etc
The Bad....

Many penalty parameters lead to large numbers of hyperparameters, challenging to train, demonstrate
convergence/stability, difficult to handle multiphysics

Can we use ideas from physics-compatible PDE discretization to do physics-informed
machine learning in a strong sense?

Isaac E Lagaris, Aristidis Likas, and Dimitrios | Fotiadis. Articial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998
Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems., 2019.
Xuhui Meng and George Em Karniadakis. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems., 2020.
Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks for high-speed flows., 2020.

Dongkun Zhang, Ling Guo, and George Em Karniadakis. Learning in modal space: Solving time-dependent stochastic pdes using physics-informed neural networks, 2019.

Zhiping Mao, Zhen Li, and George Em Karniadakis. Nonlocal flocking dynamics: Learning the fractional order of pdes from particle simulations. 2019 3



What are physics compatible discretizations for
PDEs?

Methods for solving PDEs which:

Use generalized Stokes theorems to
approximate differential operators

Jd Jd
Preserve topological structure in 0 <_0’,0703 0103 Cy

governing equations

Mimic properties of continuum operators
(thus sometimes called mimetic

discretizations) Arnold, D. N., Bochev, P. B.,

Lehoucq, R. B., Nicolaides, R. A,,
& Shashkov, M. (Eds.). (2007).
Compatible spatial discretizations
(Vol. 142). Springer Science &
Business Media.




Two key ingredients:

1: A topological structure

In PDE discretization this is a
mesh, with boundary
operators linking cells, faces,
edges, and nodes

We will use a graph as an
inexpensive low-dimensional
mesh surrogate

2: Metric information

Measures associated with
mesh entities, ensuring
discrete exterior derivatives
converge to div/grad/curl

Graphs are purely topological
with no natural metric, we
will use ML to extract metric
information from data




Sandia
Exterior calculus preliminaries: chain complex @m

Oo

Compat. PDE | Comb. Hodge

Mesh entities K-cliques




Sandia
Exterior calculus preliminaries: chain complex ) feima

Exact s

quence property: Vk, OpOpi11 = @




Sandia
Exterior calculus preliminaries: cochain complex i) feoma

Coboundary operators define maps dj, : C* — C*1 satisfyi

Boundary and coboundary operators satisfy the generalized Stokes theorem

f du mf U
w ow
Comb. Hodge Compat. PDE

d[s](i,§) = Vs-dl = s; — 8 I
radlsling) = | Vs dl=o; s grad(s|(i, ) = s; — s;

curl[ X]|(F) = LV x X -dA = ﬁ;FLX—dl mwm}q‘(%% k‘) — Xij e Xjk + X

8




Sandia
Exterior calculus preliminaries: codifferentials ) foor

A S
Co«— C1 < Cy < Cs

Introducing inner products (-, -)x, we define the codifferential operator

dy : C*t1 — CF as
(v, dfu)r = (dkv, U)K 41

Again, d; , *d; =0




Sandia
Exterior calculus preliminaries: codifferential examples i) feoma

3?3

03
a4 a4

d3
(@w dz%%i - (dk% %)iﬁiﬂ

How to choose inner-products?

PDE context Graph context

Covolume methods - Hodge star Purely topological, so no concern with
consistency

Mimetic finite difference — As
needed to get accuracy Therefore, classically choose ¢, inner

Mixed FEM — L2, but carefully product. 80 that codifferential is S|mply
: the adjoint of the coboundary matrix
design FEM spaces

Why not use data to bridge
the gap? 10




What does all this give you?

(v, dru)r = (dkv, u) k41

e Differential operators which locally and globally conserve fluxes, circulations, poten-
tials

e Invertible Hodge Laplacians Ag = dj | ;dgy1 + didj
e Exact sequence properties dy1dr = dpd;, ; =0
Corollary: Treatment of non-trivial nullspaces

Linear PDE V x V x u = f admit @ = u + V¢, Vo

Can restrict solutions perpendicular to null space by imposing gauge condition
didiu + doA = f




Data-driven codifferential i)

O3t 32303
a4 d

(@7 dz%)k = (dk@w %)k+1
For finite dimensional space, defining inner-product amounts
to finding SPD matrix My, such that (z,y)r = 27 Mgy

Options for parameterizing inner-product:

e Any SPD matrix can be expressed via Cholesky decomp M = QQT, upper-triangular
Qi; with trainable weights

e Simpler example, M}, = diag(§), with & > 0 trainable weights

Second choice corresponds to higher-order generalizations of resistor networks

12




Physics-informed graph neural networks (pigNNs)

V-F=7f diF = f
F + {dop + Ny(¢) =0

High-fidelity PDE Apply graph-cut to Average over
solution coarse-grain partitions to obtain
chain complex training data

13



Sandia
Ideal optimization problem i) feema_

Invertible bilinear Nonlinear
form perturbation

Rewriting as variational problem, we have a nonlinear
perturbation of a nice elliptic problem. Conservation is
encoded strongly via codifferential

|6 — Bdatall” + €]

S.1. d%} [ = ()

If we can fit the model to data while imposing equality
constraint, then during training we restrict to manifold of
solvable models preserving physics

argmin|
&:m
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Optimization problem (PINNs version) ) foor

Invertible bilinear Nonlinear
form perturbation

: - ": - — 1 2 | | o 2 | A 3 * / 2
argmin||¢ — Gaatal|? + |[€]| + M|ds F
3 s 7] - ™~ |
Penalty Physics
parameter residual
An obvious choice to find

our desired model is to
regularize PINNSs style

i Wang, Sifan, Yujun Teng, and Paris Perdikaris. "Understanding

and play with penalty and mitigating gradient pathologies in physics-informed neural

pa rameter networks."arXiv preprint arXiv:2001.04536(2020).
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Optimization problem (“PDE”-constrained)

Vector of Physics
Lagrange residual at each
multipliers node

e Solve forward problem with current parameters

An iterative algorithm ¢« VaLeya(d) =0
guaranteeing exact
enforcement of physics

at each iteration: A VyLenr(d) =0

e Solve adjoint problem to get Lagrange multipliers

e Update model coefficients

§,m < V{f,n ﬁé,n,k(¢) = ()

16
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Back to Darcy... Isborsnes
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Comparison to traditional covolume: improved accuracy at low resolution & Sandia
Laboratories

N - 22 o.oo

N = 52 0.00

N =10 | -

Comparison of pressure for same # DOF for FVM (left) and pigNN (center)

Right: profile along diagonal shows better fit to solution (green) by pigNN (blue) vs FVM (orange)
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Nonlinear Darcy

4

doF = f
F +&dod + Ny(¢) =0
T



Nonlinear Darcy: potential profile across diagonal
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Nonlinear Darcy — Dirichlet2Neumann map

040 1
0.38 -

0.36 1

Flux

034 1

032 4

030

0.28

101 10¢ 107

Potential drop

Training on five PDE solutions across three decades of data

An effective parameterization of D2N map, which may be

embedded in other schemes )1



Compact models for semiconductors: PN-diode

https:/hwww._electronics-tutonals ws/diode/diode 3 _html

PN Junction Vielip= —(p—n—!—NE—N;‘J

N-region l P-region dn 1F< R I L)

- = _:+'+++ ;_it ql n n n b,

= e = - R e P i 2 :

. T [ ‘|- 3t = 7" (BaPE ~ Dp¥p) — Ry(m.p)
= ! + +
1 = = !-.—.;'i = | + + +
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o H aai

=L

Conventiona Current Flow
Traditional compact models fit ideal diode + resistor, and
can be tuned to match either small or large voltage regimes

0t e 40

1t S i%h

Lo 30
Locally exponential: . | 25 Locally linear:
.0 moded - " / resistor model

e / 15

waq S i
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Current

. : o i
Matching IV-curve — linear scale Isboroas
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Extract a conservative surrogate accurate over
fifteen orders of magnitude

May be embedded in a circuit simulator (e.g. Xyce) to
couple coarse-grained high-fidelity PDE model in
multiscale model w/ millions of components
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Applications

Non-equilibrium closures for autoignition in turbulent combustion
Pulse shaping for pulsed power fusion applications on Z-machine
Development of surrogate models for radiation modeling of circuits

Fracture mechanics closures for ice sheet models
Multiscale modeling of lithium-ion batteries during failure
Multiscale closure for subsurface flow through fracture networks
Multiscale data-driven closures for kinetic effects and turbulence in plasmas

Several new projects — please reach out (natrask@sandia.gov) if you’re on the job market!
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