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Evaluating Spatial Accelerator Architectures with
Tiled Matrix-Matrix Multiplication

Gordon E. Moon∗, Hyoukjun Kwon†, Geonhwa Jeong†, Prasanth Chatarasi†, Sivasankaran Rajamanickam
‡, and Tushar Krishna§

Abstract—There is a growing interest in custom spatial accelerators for machine learning applications. These accelerators employ a
spatial array of processing elements (PEs) interacting via custom buffer hierarchies and networks-on-chip. The efficiency of these
accelerators comes from employing optimized dataflow (i.e., spatial/temporal partitioning of data across the PEs and fine-grained
scheduling) strategies to optimize data reuse. The focus of this work is to evaluate these accelerator architectures using a tiled general
matrix-matrix multiplication (GEMM) kernel. To do so, we develop a framework that finds optimized mappings (dataflow and tile sizes) for
a tiled GEMM for a given spatial accelerator and workload combination, leveraging an analytical cost model for runtime and energy. Our
evaluations over five spatial accelerators demonstrate that the tiled GEMM mappings systematically generated by our framework achieve
high performance on various GEMM workloads and accelerators.

Index Terms—spatial accelerator, DNN accelerator, dataflow, GEMM mapping.
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1 INTRODUCTION

S EVERAL custom ASIC accelerators have emerged in the recent
past and have been successfully used to exploit massive

parallelism and locality in the machine learning (ML) applications.
The most popular examples are systolic arrays such as TPU [1],
xDNN [2], RAPID [3] and advanced forms such as NVDLA [4],
Eyeriss [5], ShiDianNao [6] and MAERI [7]. Accelerators such
as these are already being integrated in Petascale systems. For
example, the Lassen system at Lawrence Livermore National Labs
has a Cerebras accelerator integrated with it. Recent results show a
0.86 PFLOPS on a single wafer scale chip [8] on stencil problems.
Graphcore IPUs and SambaNova are starting to be use in traditional
HPC applications [9], [10]. The advantages provided by these
accelerators vary from reduced data movement due to the data flow
on chip and opportunities to accelerate new applications that were
not amenable to accelerators like GPUs. These benefits and recent
successes demonstrate potential for these accelerators to be part of
future exascale systems.

As more such heterogeneous systems are expected in the
exascale era, it is important to develop a methodology for modeling
such accelerators. These accelerators have demonstrated lower
runtime and higher energy efficiency relative to existing popular
architectures such as multi-core CPUs and many-core GPUs [1].
The primary architectural features that distinguish these “spatial”
accelerators for ML from CPUs and GPUs are parallelism using
hundreds to thousands of processing elements (PEs), a fast
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network-on-chip (NoC) connecting these and use of private/shared
scratchpad buffers for data reuse. Different accelerators differ in
their dataflow, i.e., mechanism for data reuse over buffers and
wires.

GEMM (General Matrix-Matrix Multiplication) is a key compu-
tational kernel within ML, computational science and engineering
(CSE) applications, and other computational kernels [11], [12].
In this work, we focus on modeling and evaluating multiple
spatial accelerator architectures using this important kernel. GEMM
kernel has been studied heavily on traditional architectures in the
context of CSE and ML workloads. Evaluating all the algorithm
choices for GEMM, while considering workload dimensions,
tiling strategies etc. on even a single new spatial accelerator
is a challenge. We aim to do this evaluation on five different
accelerators (via simulation). Optimizing the GEMM mapping on
spatial accelerators poses the following challenges. (i) the sizes of
input matrices vary significantly; (ii) the space of possible mappings
involving multi-level tiling, parallelization, and loop orders could
be in the billions (see Section 5.2 for an example); (iii) the dataflow
choice of the accelerator and its internal structures (e.g., multi-cast,
reduction tree) have to be accounted for as constraints (e.g., Table 2
summarizes these restrictions in five ML accelerators); (iv) accurate
cost models to model diverse accelerator dataflows and estimate
performance of a mapping on the accelerator are needed.

To address the challenges highlighted above and evaluate the
different accelerators, we take a systematic approach. First, we
develop a methodology for modeling accelerators for the tiled
GEMM kernel (Section 3) which could be extended to other kernels
in the future. Next, we develop a framework shown in Fig. 1
which is the second contribution of this work. Our framework
finds the best mappings and tile sizes (defined based on projected
runtime) of tiled GEMM over multiple spatial accelerators using
an accurate analytical model. Our framework is comprised of
two key components. (1) a mapping explorer FLASH (Flexible
Linear Algebra dataflow via Spatio-temporal Hierarchical-mapping)
that can explore a high dimensional space of tile sizes, loop
ordering choices, parallelization, by pruning the search space
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Fig. 1: An overview of the proposed framework for searching for optimal mappings with walk-through of steps.

given a workload, hardware description and dataflow constraints
(addressing challenges (i)-(iii) above); (2) an analytical cost model
MAESTRO-BLAS that can be used to evaluate the accelerators
for mappings generated by FLASH (addressing challenge (iv)).

The third contribution of this work is a thorough experimental
evaluation of the dataflows and tile sizes for six representative
GEMM workloads on five popular spatial accelerators (which offer
varying levels of flexibility in their dataflow) and two accelerator
configurations (cloud and edge). We also evaluate the performance
of the five accelerators on Deep Neural Networks (DNNs) where
GEMM kernel is foundational to training and inference.

These contributions result in significant new results. The novel
pruning approach in our framework reduces the search space by
99.7% for a (256×256)×(256×256) GEMM and still finds a correct
mapping. This also leads to decreasing the time for searching
through the space using MAESTRO-BLAS by 99.9%. We derive
the tile sizes for GEMM on spatial accelerators analytically and
show the tile sizes chosen by FLASH reduces runtime up to 94%
and energy by up to 96%. The experimental evaluation using the
analytical model shows the importance of loop order, matrix shape,
and how flexible dataflow accelerators (e.g., MAERI [7]), can
provide significant runtime and energy improvements as opposed
to fixed dataflow accelerators. The novel coupling of search space
pruning that accounts for hardware, workload, and algorithm choice
with an analytical model is a generalizable framework for other
workloads and architectures in the future.

2 BACKGROUND

2.1 General Matrix-Matrix Multiplication (GEMM)
GEMM kernel multiplies two input matrices A of size M×K and B
of size K×N to obtain an output matrix C of size M×N, as shown
in Algorithm 1. GEMM performs M×N×K MACs (Multiply-
ACcumulate operations) within three nested loops. The order of
three loops can be changed to exploit various data reuses of matrices
A, B and C across space and time.

Algorithm 1: General Matrix-Matrix Multiplication
Input: A[M][K], B[K][N]
Output: C[M][N]

1 for m = 0 to M−1 do
2 for n = 0 to N−1 do
3 for k = 0 to K−1 do
4 C[m][n] += A[m][k] × B[k][n]

Several state-of-the-art Deep Neural Network models spend
a large fraction of the training/inference time on GEMM opera-
tions [13]. In addition, GEMM is the key computational kernel in
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Fig. 2: An overview of mapping a GEMM workload on temporal
architecture such as GPU, and spatial architecture such as TPU
and NVLDA. GEMM mapping (middle) shows how the data for
GEMM (top) could be partitioned (middle left) temporally or
spatially and appropriate tile size are chose (middle right).

CSE applications, level 3 BLAS kernels such as LU factorization,
triangular matrix-matrix multiply, triangular-solve [11], [12], sparse
direct methods for LU/QR factorizations [14], and sparse iterative
solvers [15]. There are also smaller batched GEMM kernels that are
critical for multiphysics codes [16], [17], [18]. Thus, addressing the
performance of GEMM kernel would have a broad impact across
CSE and ML applications. The primary difference between all
these use cases is the size and shape of input matrices for GEMM.
Experiments in this paper vary the size and shape of matrices, tile
sizes and loop order to cover all these use cases. The key difference
that emerges in this study is that while one loop order is typically
the best among GPUs (or CPUs) even from different vendors, the
same is not true for spatial accelerators as they are quite diverse.
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Fig. 3: Data reuse in the example mapping on two PEs. Spatial
and spatial-temporal reuse are leveraged via the NoC wires
while temporal reuse is leveraged via scratchpad buffers. Yellow
boxes and numbers inside them represent data and data indices,
respectively.

2.2 Spatial Accelerators

Architecture. Fig. 2 shows an abstract spatial accelerator architec-
ture, which consists of a processing element (PE) array, a global
shared scratchpad memory (called S2), and a controller. This tem-
plate is common across all state-of-the-art ASIC accelerators [1],
[4], [5], [6], [7]. Table 1 lists the ones we consider in this work.
Network-on-chips (NoCs) interconnect the PEs and S2 global
scratchpad memory. PEs are the compute units of accelerators that
contain ALUs or Multiply-Accumulate units with a small local
scratchpad (called S1). Like a cache memory, scratchpad memory
reduces the number of remote buffer accesses. However, unlike
a cache memory, data layout and insertion/eviction of data to
a scratchpad memory are fully customizable for programmers
or accelerator designers. Spatial accelerators exploit not only
global buffer-PE communication but also inter-PE communication
patterns [19] (i.e., dataflow among PEs and global buffer). The
inter-PE communication pattern could be flexible or fixed. Fixed
inter-PE communication pattern restricts which (GEMM) algorithm
could be run on an accelerator. Our framework takes into account
the fixed/flexible communication patterns in addition to the typical
architecture features such as number of PEs and S1/S2 size to
faithfully simulate different accelerators.
Data Reuse in Spatial Accelerators. Efficiency in spatial accel-
erators comes from exploiting data reuse. Data reuse in spatial
accelerators can be categorized into three types using the temporal
and spatial nature [20]. Fig. 3 provides an example mapping
and data reuse analysis on the mapping. Temporal reuse occurs
when a PE accesses the same set of data across time, and can be
leveraged via the S1 scratchpad. For example, data 2 in Fig. 3 is
accessed in PE0 across time 1 and 2 (red arrows). Spatial reuse
occurs when multiple PEs access the same set of data at the same
time via a multicast/broadcast over the NoC. For example, data
1 and 2 at time 1 in Fig. 3 are accessed by both PE0 and PE1
(blue arrows). Spatio-temporal reuse occurs when two adjacent
PEs access the same set of data in a skewed schedule, and they
are interconnected via point-to-point connections (i.e., wire). For
example, data 2 and 3 in Fig. 3 are accessed in PE1 at time 1
and in PE0 at time 2. Those data can be directly forwarded from
PE1 to PE0 so that PE0 does not need to fetch the data from S2.
The ability of an accelerator to leverage all three kinds of reuse
depends on its internal microarchitecture (i.e., size of S1 and S2
buffers for temporal and NoC topology for spatial/spatio-temporal).
These reuse features have to be taken into account in addition
to scratchpad sizes when developing mapping strategies for any
algorithm running on this hardware.
Comparison to GPUs. Fig. 2 also shows the differences between
spatial accelerators and temporal ones such as GPUs. Some of

the major logical differences are 1) ALUs in spatial accelerators
communicate directly using the NoC without register file interven-
tion, unlike ALUs in GPU’s which communicate via writing and
reading from the register file, and 2) Spatial accelerators provide
spatial, temporal, and spatio-temporal data reuse (via hardware
support for multi-cast, broadcast, direct forwarding and spatial
reduction as part of the NoC) as opposed to only temporal reuse
(via scratchpads) on GPUs. This allows spatial accelerators to
achieve higher performance, better runtime and lower energy usage.

To summarize, spatial accelerators are considerably different
from traditional accelerators and diverse. Developing a framework
(Section 4) to map widely used kernels on these accelerators and
evaluating these accelerator designs (Section 5) is a key first step
in understanding their value. This is the focus of this work.

2.3 Dataflow Directives and Mapping
Dataflow. Spatial accelerators carefully encode the data movement
for reuse and parallelization into the accelerator’s hardware micro-
architecture. This is also known as “dataflow”1. Specifically, the
dataflow includes two key components: (i) parallelization strategy,
i.e., which dimensions of the tensors can be run in parallel. (ii)
computation order, i.e., the order in which the dimensions of the
tensor are scheduled over the accelerator.

The dataflow has two implications. First, it determines the
amount of data reuse on the inputs and outputs. Prior work has
studied this relationship for the ML use case [20], [21] and
concluded that the reuse efficiency of the dataflow depends on the
target DNN layer dimensions and shape. We extend this to GEMM
of different sizes and shapes by developing a framework that can
find the optimal tile sizes and pruning the search space for a variety
of workloads and accelerator combinations. Second, dataflow
choices also have implications on accelerator microarchitecture
aspects. The parallelization strategy directly affects the NoC
implementation. Also, given accelerator microarchitecture (as
in this study), the dataflow choices are restricted. For example,
parallelism across the dimension being reduced (e.g., K in a
GEMM or input channels in a convolution) leads to different
PEs computing partial sums for the same output and needs
reduction via the NoC (e.g., a reduction chain or tree). We take
these hardware functionality into account when mapping GEMM
to an accelerator. Supporting complex dataflows requires more
complexity in the accelerator hardware [7], [20]. Different spatial
accelerators (commercial [1], [4] and research prototypes [5], [6])
have picked different dataflows [21] trading off reuse-efficiency
and hardware complexity.
Dataflow Directives. In this work, we leverage the dataflow
directives introduced by MAESTRO [20] to express the exact
dataflows for various accelerators under consideration.

There are three directives: TemporalMap, SpatialMap, and
Cluster which are described in Fig. 4. TemporalMap implies that
the data changes over time, and remains same over space (i.e.,
across PEs). SpatialMap implies that the data changes over space
(i.e., parallelism). Cluster helps describe hierarchical dataflows by
grouping PEs into clusters of certain Size.

One could recursively define dataflows within clusters. For ex-
ample, NVDLA [4] maps convolutions by employing SpatialMap
across input channels as its intra-cluster dataflow, and SpatialMap
across output channels as its inter-cluster dataflow. The relative

1. Note that this is different from dataflow style of programming that was
popular few decades ago.
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order among the directives specifies computation order. We provide
a concrete example later in Section 3.2. The specific amount of
reuse depends on the overall dataflow, workload dimensions and
tile sizes (together called mapping).

TABLE 1: Specifications of target spatial accelerator architec-
tures. Note that input-, weight-, and output-stationary dataflows
correspond to input matrix A-, input matrix B-, and output matrix C-
stationary dataflows in GEMM operation, respectively. More details
of the dataflow are in Table 2. For our evaluations, we provide equal
hardware resources (PEs and buffers) to all accelerators (Table 4).

Spatial
Accelerators

HW Configuration Dataflow# PEs (row×col) NoC
Eyeriss [5] 12×14 Buses input row stationary

NVDLA [4] 64×8 Bus + Tree weight-stationary
TPUv2 [1] 128×128 Mesh weight-stationary

ShiDianNao [6] 8×8 Mesh output-stationary

MAERI [7]
256

(any aspect ratio)
Custom
Fat Tree flexible

Mapping. The number of compute units and amount of on-chip
buffers in accelerators are typically not sufficient to cover entire
workload (e.g., BLAS operations on a node are on matrices of size
O(103−104) and Resnet50 [22] contains 3.8×109 FLOPs while
accelerators have hundreds [23] to thousands [1] PEs). Therefore,
tiling the computation and data of workload and time-multiplexing
the target accelerator is necessary.

The relationship between mapping and dataflow is shown in
Fig. 2. Specifically, the dataflow of the accelerator, the tile sizes for
all tensors, and scheduling of these tiles for the entire workload is
known as a mapping, as shown in Fig. 2. The mapping determines
the data needed at each PE at each instance of time. The proportion
of this data that needs to be moved across the memory hierarchy
(from off-chip DRAM to S2, and from S2 to S1) and the proportion
that can be reused depends on the accelerator’s dataflow.

An optimized mapping is crucial for overall efficiency, since
data movement dominates energy in accelerators [23]. The Size
parameter in the MAESTRO’s SpatialMap and TemporalMap
directives in Fig. 4 can be used to specify the tile sizes for each
dimension of the matrices.

3 ACCELERATOR MODELING METHODOLOGY

Table 1 shows the key features of five target spatial accelerators
explored in our study. The diversity of the chosen accelerators adds
to the complexity of evaluating even one kernel on all of them. We
discuss our methodology below.

3.1 Modeling Spatial Accelerators using Dataflow Di-
rectives

A key challenge in performing an apples-to-apples comparison
of the accelerators described above is the fact that they differ in
the number of PEs, buffer sizes, dataflow, internal microarchitec-
ture (and software stacks [1], [4] or lack-there-of for research
prototypes [5], [6], [7]). To address this issue, we contrast the
accelerators based on “how” they map GEMM on the spatial
substrate2. Furthermore, in our evaluations, we provide the same
hardware resources to all accelerators (Table 4)3.
Example of GEMM Mapping. We employ the dataflow directives
described in Section 2.3 to analyze and describe how each
accelerator runs a GEMM, constrained by their dataflow. We refer
to the GEMM mappings using the abbreviated directive order,
where we use T for TemporalMap, S for SpatialMap and for
introducing a cluster (i.e., hierarchy). For example, a simple TTT
mapping is nothing but triple nested GEMM loop on sequential core
with the loop order determined by the binding of M, N and K loops
(Section 2.1) to each directive; TTT TTT is the hierarchical/cache-
blocked version of the same. An STT mapping with MNK as the
loop order would be a triple nested GEMM where rows of matrix A
(i.e., dimension M) are spatially mapped (i.e., parallelized) across
CPU cores or GPU CUDA threads or PEs in a spatial accelerator.
GEMM Mappings supported by Spatial Accelerators. Table 2
presents the GEMM mappings that can be supported by our
target accelerators. Each mapping has directives for describing
the dataflows both across the clusters (written above the Cluster

2. Note that except for the TPU, the other four accelerators are originally
designed to directly run convolutions and leverage reuse across sliding windows.
We map GEMM on these convolution accelerators by expressing it as a
convolution with one row and one channel. To the best of our knowledge,
previous studies at mapping GEMM have not addressed how to map GEMM
efficiently on existing state-of-the-art spatial accelerators.

3. This is why we refer to our mapping descriptions as *-style as they are
not running on the actual accelerator instances.
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TABLE 2: Comparison of various GEMM mappings constrained by state-of-the-art spatial accelerators where P and λ denote total
number of PEs and size of cluster (i.e., number of PEs in each cluster), respectively. Tout/in

dim. denotes the tile size for each of dimensions
M, N and K in the outer/inner clusters. TMap and SMap refer to TemporalMap and SpatialMap directives, respectively.

Spatial Accelerator Eyeriss [5] NVDLA [4] TPU [1] ShiDianNao [6] MAERI [7]
Dataflow:

Parallel Dim
Inter-Cluster: M
Intra-Cluster: K

Inter-Cluster: N
Intra-Cluster: K

Inter-Cluster: N
Intra-Cluster: K

Inter-Cluster: M
Intra-Cluster: N

Inter-Cluster: M or N or K
Intra-Cluster: M or N or K

Dataflow:
Compute Order

Inter-Cluster: <m, n, k>
Intra-Cluster: <m, n, k>

Inter-Cluster: <n, k, m>

Intra-Cluster: <n, m, k>
Inter-Cluster: <n, m, k>
Intra-Cluster: <n, m, k>

Inter-Cluster: <m, n, k>
Intra-Cluster: <m, n, k>

Inter-Cl.: <m/n/k, n/m/k, k/m/n>
Intra-Cl.: <m/n/k, n/m/k, k/m/n>

Cluster Size (λ ) 1 ≤ λ ≤ 12
(compile time-flexible)

16 ≤ λ ≤ 64
(design time-flexible)

256 or
√

P 8 or
√

P
Tout

M /Tout
N /Tout

K

(tile size of the last dimension)

GEMM Mapping

SMap (Tout
M ,Tout

M ) M
TMap (Tout

N ,Tout
N ) N

TMap (Tout
K ×λ ,Tout

K ×λ ) K
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M) M
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M ,Tout
M ) M
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K ×λ ,Tout

K ×λ ) K
Cluster (λ )
TMap (Tin

N ,Tin
N ) N

TMap (Tin
M,Tin

M) M
SMap (Tout

K ,Tout
K ) K

SMap (Tout
M ,Tout

M ) M
TMap (Tout

N ×λ ,Tout
N ×λ ) N

TMap (Tout
K ,Tout

K ) K
Cluster (λ )
TMap (Tin

M,Tin
M) M

SMap (Tout
N ,Tout

N ) N
TMap (Tin

K ,Tin
K ) K

TMap (Tout
M ,Tout

M ) M
SMap (Tout

N ,Tout
N ) N

TMap (Tout
K ,Tout

K ) K
Cluster (Tout

K )
TMap (Tin

M,Tin
M) M

TMap (Tin
N ,Tin

N ) N
SMap (1,1) K

Mapping Name STT TTS-MNK
(Eyeriss-style)

STT TTS-NKM
(NVDLA-style)

STT TTS-NMK
(TPU-style)

STT TST-MNK
(ShiDianNao-style)

TST TTS-MNK
(MAERI-style)

for (m = 0; m < M; m++)
  for (n = 0; n < N; n++)
    for (k = 0; k < K; k++)
      C[m][n] += A[m][k] x B[k][n]
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Fig. 5: Walk-through example of TST TTS-MNK (i.e., MAERI-style) GEMM mapping. (a) shows the example GEMM with for loops
and (b) shows the abstract picture of the target accelerator in this example. (c) is the example mapping that is described using the
aforementioned dataflow directives. (d) shows the assignment of entries of input matrices A and B to the PEs in four clusters. Each
cluster computes one entry of output matrix C. We evaluate five such accelerators with different hardware configurations.

directive) and within the cluster (written below the Cluster
directive). This implies that all GEMM mappings use a 2D-tiled
approach. The cluster size is tied to accelerator microarchitecture
(e.g., it represents the number of PE rows in Table 1), while the
maximum tile size is constrained by S1 and S2 sizes.

Each mapping encodes the dataflow and hardware constraints
from the specific accelerator. We provide some details next. As
mentioned in Section 2.3, the dataflow determines the parallelizing
dimension, and compute order.

We first focus on the parallelizing dimension. Recall that the
K dimension in a GEMM is reduced when generating the output.
Eyeriss, TPU, NVDLA and MAERI all provide NoC support for
spatial reduction; Eyeriss and TPU via store-and-forward across
the column and NVDLA and MAERI via reduction trees. Thus,
for GEMM, we map the K dimension spatially within each cluster
for these four accelerators. Outside the cluster, the same dimension
needs to be mapped temporally, with a tile size that can cover
the tiles needed by all the clusters. Either M or N can be mapped
spatially outside the clusters. In ShiDianNao, however, there is no

support for spatial reduction, and hence the K dimension is mapped
temporally; the parallelism comes from N dimension instead within
the cluster.

Next, the compute (or loop order) is determined by the relative
order of the temporal directives. The TPU and NVDLA keep the
weight matrix (i.e., matrix B) in GEMM stationary, and stream
the input matrix (i.e., matrix A). This is reflected by keeping
the N dimension as the outermost loop, both within and across
the clusters. Eyeriss keeps the input rows stationary, and this is
specified by keeping M as the outermost dimension. ShiDianNao
keeps the output stationary, forcing a M followed by N loop order.
MAERI allows all loop orders4. In each mapping, the tile sizes are
free variables, constrained by the S1 buffer (for intra-cluster) and
S2 buffer (for inter-cluster). Our policy for determining optimized
tile sizes for GEMM mappings is described in Section 4.

4. Accelerators like LAP [24] implement GEMM with SUMMA algorithm.
SUMMA is a subset of the MAERI-style TST TTS mapping with the <k, m,
n>/<k, n, m> loop order.
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3.2 Walk-through Example of TST TTS Mapping

Fig. 5(a) shows a simple GEMM (with M=4, N=4 and K=4) which
we want to map on a 16 PE spatial accelerator (Fig. 5(b)). Fig. 5(c)
shows an example mapping for this GEMM using the dataflow
directives. Note that this TST TTS (MAERI-style) mapping is
one of many possible mappings as we discussed in Section 3.1.
We describe three key facets of this mapping, that can be seen
in Fig. 5(d) from the perspective of the accelerator: Clustering,
Intra-Cluster Behavior, and Inter-Cluster Behavior.

(i) Clustering. In this mapping, the 16 PEs are divided into
four clusters, 4 PEs each (specified via the Cluster directive)
corresponding to the accelerator columns in Fig. 5(d). This allows
the mapping to exploit the 2D PE array by spatially distributing
two GEMM dimensions.

(ii) Intra-Cluster Behavior. Directives below the cluster di-
rective specify the intra-cluster mapping. Within each cluster
(i.e., column of the accelerator in Fig. 5(d)), the K dimension
is mapped spatially (specified via the SpatialMap), while the M
and N dimensions are mapped temporally (i.e., remain same across
all the PEs and only change with time). All directives use a Size
and Offset of 1. These directives specify that each PE receives one
unique element from the row and column of the matrices A and B
respectively, since M and N stay the same, but K changes in each
PE. This can be visualized from Fig. 5(d). During this operation,
each PE computes a partial sum and forwards it to its neighbor
along the column for accumulation. Each cluster thus computes
one element of matrix C.

(iii) Inter-Cluster Behavior. Directives above the cluster direc-
tive specify the inter-cluster mapping. Across the clusters, the N
dimension is mapped spatially, while the M and K dimensions
are temporal. This means that the elements of the matrix B gets
distributed across the different clusters, while the elements of the
matrix A remain the same (and can thus be multicast). The size
and offset field for K is 4 to specify that each cluster receives
4 elements from each matrix (which then get distributed among
the 4 PEs within the cluster as discussed above). If this field is
not set appropriately, it can lead to under-utilization within the
cluster. FLASH takes care of this as we discuss later in Section 4.
From Fig. 5(d), it can be seen that each time-step of the mapping
computes one row of outputs C0,: for the matrix C, and would move
on to the next row in the next time-step. If the dimensions of the
matrix exceed the dimensions of the physical array, the computation
would need to be tiled. The computation order across tiles of the
three matrices depends on the order in which the directives are
specified (Fig. 5(c)).
Example of Tiling in MAERI-style (TST TTS) Mapping.
Fig. 6 shows the impact of different tile sizes on the matrices
A and B of size 4×4 with eight PEs. We use the notation Tout

M
(T in

N ) for tile size of M (N) dimension in outer (inner) loop or
inter-cluster (intra-cluster). Assume that Tout

M =Tin
M=1, Tout

N =Tin
N =1,

Tout
K =4, and Tin

K =1 as shown in Fig. 6 (a). Suppose there are total
of two clusters that contain four PEs each. The four PEs in each
cluster are spatially mapped onto dimension K (column of A and
row of B). Since two clusters are spatially mapped onto dimension
N, entire eight PEs are fully utilized as PEs 0–3 and 4–7 can
compute C0,0 and C0,1 entries, respectively. However, this non-tiled
mapping does not provide the best performance. Hereafter, given
any loop order, if the parallelism in the outer cluster is only on
the innermost dimension (which is K in <m, n, k> loop order)
and the tile sizes of both outer dimensions (M and N here) are set

0

× =

(a) An example of non-tiled mapping, 𝑻𝑴𝒐𝒖𝒕=1, 𝑻𝑵𝒐𝒖𝒕=1 and 𝑻𝑲𝒐𝒖𝒕=4
K=4

M
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(b) An example of non-optimized 2D-tiled mapping, 𝑻𝑴𝒐𝒖𝒕=2, 𝑻𝑵𝒐𝒖𝒕=2 and 𝑻𝑲𝒐𝒖𝒕=2

𝑇&"#$=2

𝑇!"#$=2 𝑇%"#$=2

(c) An example of optimized 2D-tiled mapping, 𝑻𝑴𝒐𝒖𝒕=2, 𝑻𝑵𝒐𝒖𝒕=1 and 𝑻𝑲𝒐𝒖𝒕=2
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Fig. 6: Three examples of TST TTS-MNK mapping when the tile
sizes Tout

M , Tout
N and Tout

K are varied. For all examples, M=4, N=4,
K=4, total number of PEs P=8, Tin

M=Tout
M , Tin

N =Tout
N and Tin

K =1.

to 1, we will call this non-tiled mapping. Fig. 6 (b) shows a 2D
tiling case when Tout

M =Tin
M=2, Tout

N =Tin
N =2, Tout

K =2, and Tin
K =1. Such

mappings with non-unit tile sizes are called tiled mapping. The
tile size chosen Tout

N =2 yields under-utilization of clusters as only
two out of four clusters can be mapped onto N dimension, i.e.,
the last two clusters, Clusters 2 and 3, will be idle. This results in
under-utilization of PEs 4–7 in the accelerator. In the case shown
in Fig. 6 (c), the tile size Tout

N is determined by N/(number of
clusters). The number of clusters in MAERI-style (TST TTS)
mapping is associated with the total number of PEs and the tile
size of the dimension involving the last loop (which is Tout

K in <m,
n, k> dataflow). Hence, the optimal tile size Tout

N can be calculated
by Tout

N =N/(P/Tout
K ) where P denotes total number of PEs. Fig. 6

(c) shows an example of 2D-tiled TST TTS-MNK mapping when
the appropriate tile sizes Tout

M =Tin
M=2, Tout

N =Tin
N =1, Tout

K =2, and Tin
K =1

are chosen for fully utilizing PEs and maximizing data reuse. We
describe how we chose the tile sizes analytically in Section 4. The
key observation is that Clusters 0–3 compute partial outputs of
four entries in matrix C in parallel, while enabling data reuse of
entries in matrix B. While the idea is similar to tiling on temporal
architectures, the mix of spatial and temporal data reuse has to be
handled when tiling.

3.3 MAESTRO-BLAS cost model
Given a GEMM mapping described via the dataflow directives,
we evaluate its performance on a target spatial accelerator using
our cost model which we call MAESTRO-BLAS. MAESTRO-
BLAS builds upon a previously published open-source analytical
cost model called MAESTRO [20], [25] MAESTRO receives a
DNN model, accelerator hardware configuration, and mapping
description as inputs, as shown in Fig. 4. It analytically (i.e., via
detailed equations) analyzes the inputs and produces the expected
runtime, number of buffer accesses, arithmetic intensity, NoC
bandwidth requirement, and so on as outputs. It also reports the
energy consumption based on energy of HW building blocks
of accelerators (fixed point MAC units, SRAMs, buses, and so



7

on) from CAD tools which are scaled based on the hardware
configuration provided as input [20]. Its results have been validated
against the Eyeriss chip [5] and RTL simulations of MAERI [7].
MAESTRO, however, does not accept BLAS operations as is, and
requires users to map BLAS operations such as GEMM onto DNN
operators (e.g., CONV2D). Our MAESTRO-BLAS updates adds
native BLAS kernel frontend in MAESTRO, which allows users
to directly work on BLAS operations without converting them
into DNN operators. MAESTRO-BLAS leverages MAESTRO’s
backend for the performance and energy estimates.

4 FLASH: A MAPPING EXPLORER FOR GEMM
Fig. 1 shows an overview of our framework FLASH for exploring
GEMM mappings. We describe how we derive candidate tile
sizes for the accelerators, prune the search space using dataflow,
hardware and tile sizes constraints, and evaluate the mappings
using the MAESTRO-BLAS cost model.

Given a GEMM dataflow for an accelerator-style, a GEMM
workload and hardware configurations, exploring search space
for all possible mappings is extremely compute-intensive if every
feasible loop order, every cluster size, and every possible tile size
are taken into consideration. Therefore, we propose a new search
space reduction algorithm which systematically prunes the possible
mappings by seeking the candidate (near optimal) tile sizes within
the FLASH mapping explorer.
Dataflow and Hardware Constraints. FLASH honors the hard-
ware constraints (expressed via the dataflow in Table 2) across the
various accelerators, as described next. (i) The GEMM dimensions
bound to the directives (i.e., loop order) is fixed except for MAERI-
style mapping where all loop orders are supported by the hardware.
(ii) Cluster size is fixed in every GEMM mapping except the
MAERI-style mappping (TST TTS). (iii) Tile size is a flexible
input to any directive.
Candidate Mapping Selection. Algorithm 2 in Appendix shows
the pseudo-code for generating mapping candidates in FLASH.
Given the type of accelerators (e.g., Eyeriss/NVDLA), hardware
parameters (e.g., S1/S2 buffer sizes), and the sizes of M, N, and
K as inputs, FLASH generates mapping candidates. Based on
the accelerator chosen by the user, FLASH first determines three
parameters – dataflow directive order, all feasible loop orders,
and all possible cluster sizes that can be explored in the mapping
candidates based on the hardware constraints (line 1). Next, FLASH
computes the candidate tile sizes using problem dimensions and
hardware parameters (lines 7 and 8). These tile sizes are used to
prune a huge number of possible mappings (lines 9 and 10).
Tile Size Selection. Given an arbitrary accelerator and a large-
scale GEMM workload, for each feasible loop order, all possible
combinations of the tile sizes can be obtained by using the
maximum tile size acceptable for each dimension in outer and
inner clusters. In most cases, each of the maximum tile sizes in the
outer-cluster are equivalent to its actual dimension size if there are
no other constraints. We consider these as the baseline candidates.
Three constraints are imposed to reduce the candidates further: (1)
the inter-cluster tile sizes of the three matrices, A, B and C, should
fit within the S2 buffer; (2) the required memory for all clusters to
be less than the S2 buffer; (3) the required memory for each PE to
be less than the S1 buffer. In other words, the inner tile sizes must
fit into the S1 buffer and must be a subset of the outer tile sizes
(e.g., Tin

M <= Tout
M ). Determining the candidate tile sizes is shown

in lines 7–9 in Algorithm 2 in Appendix.

We show how these tile sizes can be calculated for one example,
the MAERI-style TST TTS mapping with <m, n, k> loop order
(last column of Table 2) using the constraints discussed above.

For a MAERI-style mapping, note Tout
N can be computed as

described in Section 3.2 because N is spatially-mapped. Hardware
parameters such as S1/S2 buffer sizes must be considered to
calculate near optimal candidate tile sizes Tout

M and Tout
K involved in

the temporally-mapped dimensions M and K, respectively. Hence,
given S2 and S1 buffer sizes, the tile sizes for outer cluster and
inner cluster will be limited by the constraints in Equations 1 and
2, respectively. We assume double-buffering for latency hiding in
these calculations.

Tout
M ×Tout

K +Tout
K ×

(
Tout

N ×
( P

Tout
K

))
+Tout

M ×
(

Tout
N ×

( P
Tout

K

))
≤ β × 1

2
(1)

Tin
M×Tin

K +Tin
K×Tin

N +Tin
M×Tin

N ≤ α× 1
2

(2)

where α and β denote S1 buffer size and S2 buffer size, respectively.
For the candidate outer tile sizes for S2 buffer size, as the dimension
N is spatially mapped in the outer cluster-level, Tout

N in Equation 1
can be replaced with N/(P/Tout

K ). Then if Tout
M and Tout

K are assumed
to be equal, the candidate tile sizes are shown in Equation 3. We
iteratively decrease the largest tile size when the tiles do not fit in
the S2 buffer. Such corner cases might occur due to assumptions
like Tout

K and Tout
M are the same.

1≤ Tout
M ≤

√
β

2
+N2−N , 1≤ Tout

K ≤
√

β

2
+N2−N , Tout

N =
NTout

K
P

(3)

If Tin
M and Tin

N are assumed to be equal, the solution to Equation 2
for S1 buffer size is shown in Equation 4 (the tile size Tin

K is always
one in MAERI-style <m, n, k> loop order).

1≤ Tin
M ≤

√
α +2

2
−1 , 1≤ Tin

N ≤
√

α +2
2
−1 , Tin

K = 1 (4)

For the tile sizes Tout
M , Tout

K , Tin
M and Tin

N , the largest power of two
(constrained by Equations 3 and 4) result in better performance with
respect to energy consumption and execution time. Equations 1 and
2 can be used to find the candidate tile size for different mapping
schemes such as STT TTS and STT TST. We avoid derivations
for other mappings due to space constraints. The candidate tile sizes
for other mapping schemes can be derived in a similar way. Table
6 in Appendix summarizes the candidate tile sizes for all mapping
schemes for all accelerators based on the same inequalities.
Mapping Candidates Generation. Once the candidate tile sizes
are selected for each matrix dimension in the outer and inner
clusters, all other tile sizes outside this range can be pruned. The
tile sizes can then be combined with the chosen directive, loop order,
cluster size selections to enumerate all the mapping candidates.
Mapping Candidates Selection using MAESTRO-BLAS. Given
the pruned mapping candidates generated by Algorithm 2 in
Appendix, FLASH uses them as inputs to the MAESTRO-BLAS
cost model described earlier in Section 3.3 and selects the best
mapping based on the lowest projected runtime.

5 EXPERIMENTAL EVALUATION

In this section, we divide the evaluation into two parts. First we
demonstrate the impact of our framework by showing the effect
of pruning in Section 5.2 and tiling in Section 5.3. Second, we
evaluate the accelerator architectures for different matrix shapes,
loop orders and cluster sizes in Section 5.4.
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5.1 Evaluation Methodology

GEMM Workloads. We select six distinct GEMM workloads,
as listed in Table 3, inspired from several use cases to cover a
wide variety of sizes and shapes [11], [14], [15]. The workload
includes GEMM with large number of FLOPs (up to 549 GFLOPs)
and different aspect ratios to show impact. We also choose the
shapes considering their applicability in real applications especially,
tall-skinny, short-fat, square, rank-K update like problems.

TABLE 3: The GEMM workloads we use for evaluations.
Matrix

Dimension
Workload ID

I II III IV V VI
M 8192 1024 8 8 8192 512
N 8192 1024 8 8192 8 256
K 8192 8192 8192 1024 1024 256

GFLOPs 549.8 8.59 0.001 0.067 0.067 0.03

Mappings. We use five mapping schemes following the style
of the five accelerators, as shown in Table 2. As MAERI-style
mapping TST TTS has the flexibility to use different loop order,
we use <m, n, k> loop order unless specified. We use the
best performing candidate tile sizes computed using the method
discussed in Section 4 or their closest power of two that fit in
S2 buffer. We also select the best cluster size parameter (λ ) for
each mapping considering the micro-architectural constraints from
accelerators that motivated each mapping (Table 2).
Hardware Configuration. For a fair evaluation of the design of
the architecture (as opposed to the instance of an architecture), we
use the same hardware parameters (number of PEs, buffer sizes
and NoC bandwidth) for each one of them targeting edge and cloud
devices with a 2D PE array, as described in Table 4. We assume
1GHz clock and 28nm node. The configurations are based on those
of previously proposed DNN accelerators [1], [4], [5] to show the
performance of the accelerators under realistic settings.

TABLE 4: Hardware configurations we use for evaluations. We
assume a 1 GHz clock for the accelerators at 28nm. Performance
goal is based on the number of PEs and the clock rate.

ID
# of
PEs

S1
Size

S2
Size

NoC
BW

Perf
FLOPS

Off-chip
Mem

Edge 256 0.5 KB 100 KB 32 GB/s 256 G DRAM
Cloud 2048 0.5 KB 800 KB 256 GB/s 2 T HBM

.
Hardware Modeling.. The modeling of each accelerator is done
by MAESTRO-BLAS (Section 3.3), which uses MAESTRO’s
analytical equations and hardware backend [20]. The S2 buffers are
double-buffered to allow prefetches of the next tiles from memory
while the current tiles are being computed. The reported energy
in our evaluations is for the on-chip data accesses and movement,
since the total off-chip data movement to fetch all operands and
write all outputs remains similar across mappings [26].

5.2 Search Space Pruning & Mapping Candidates Re-
duction

We begin by evaluating search space pruning in FLASH. Given
M=256, N=256 and K=256, a MAERI-style mapping with <m,
n, k> loop order, and hardware constraints such as S1 buffer
size=0.5 KB, S2 buffer size=100 KB, NoC bandwidth=32 GB/s
and total number of PE=256, the total number of possible tile size

Optimal mapping 
determined by FLASH

2153.51ms<=bin_1<2239.36ms 6961.23ms<=bin_57~bin_100<=10738.72ms3784.70ms<=bin_20<3870.55ms

Fig. 7: Histogram of the projected runtime of the pruned mapping
candidates for a NVDLA-style STT TTS-NKM mapping for a
GEMM of size (8192×8192)×(8192×8192). In this case, FLASH
generates a total of 7,387 mapping candidates. Each bin holds the
uniform width (85.85 ms) of runtime and each bar represents the
number of mapping candidates included in each bin.

combinations would be 7,250,826,667 sets and would take ∼9.3
hours to even generate the mapping candidates for MAESTRO-
BLAS if there are no further constraints. In order to reduce the
search space of tiling, we first came up with the tile size constraints
for each dimension of the matrices which can be obtained by
Equations 3 and 4. By effectively pruning the search space based
on the candidate tile size constraints, we could obtain a total
of 14,992,384 sets of tile size combinations which requires just
27.75 seconds to generate the candidate inputs. In this instance,
FLASH decreases the number of mapping candidates by a factor
of 483.63 and reduces the time for generating mapping candidates
for MAESTRO-BLAS by 99.9% on a standard laptop. Similar
results were observed for other workloads as well. We omit these
experiments as evaluating the baseline candidates will require
unreasonable amount of time. Note that this demonstrates the
effect of pruning only based on the tile size. FLASH also uses the
hardware constraints to restrict the search space at the outer loop
level which results in even better performance as the number of
candidates grow even further.

Fig. 7 demonstrates effectiveness and importance of FLASH
with a different experiment. It shows an NVDLA-style GEMM
mapping with a <n, k, m> loop order for every cluster size, a
total of 7,387 pruned mapping candidates are grouped into 100
bins based on their projected runtime values from MAESTRO-
BLAS. FLASH selected mapping is in the bin with the lowest
runtime. The figure also demonstrates that a “bad” mapping for
this particular accelerator can be up to 4.02× slower than the
best mapping. We also ran random sampling [26] and found
that FLASH consistently provided the same or better quality of
mappings. To summarize, FLASH reduces the time required for
generating mapping candidates through the pruning phase while
maintaining low projected runtime. We plan to explore the multi-
objective problem of choosing the mapping that is good in more
than one quantity of interest in the future.

5.3 Impact of FLASH Tiling

We demonstrate the impact of tiling chosen by FLASH for MAERI-
style mapping for different loop orders. Table 5 compares the
number of buffer accesses of the two scratchpads for non-tiled and
tiled MAERI-style mappings running workload VI with different
loop orders. The number of total S2 accesses with tiled mappings
was significantly smaller compared to that of non-tiled mappings
for every loop order because the tiled version exploits data reuse
using different strategies based on the loop order. Overall tiling
reduces runtime by 94% and energy reduces by 96% for the <m,
n, k> loop order. Similar improvements are seen with other loop
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Fig. 8: Runtime, energy, throughput, and data reuse of five mappings listed in Table 2 on (a) edge and (b) cloud accelerators. We apply the best
performing cluster size (λ ) and tile size (T) for each mapping. The amount of data reuse is calculated by total number of S1 buffer accesses/total
number of S2 buffer accesses. One can observe a correlation of data reuse to energy.

TABLE 5: The impact of tiling on the number of buffer accesses,
runtime, and energy. We use non-tiled (NT) and tiled (T) MAERI-
style mappings for different loop orders on workload VI and the
edge configuration.

Loop
Orders

NT/
T

Total S1 Access Total S2 Access Performance

Matrix
A

Matrix
B

Matrix
C

Matrix
A

Matrix
B

Matrix
C

Run
time
(ms)

Energy
(mJ)

<m,n,k>
NT 3.3E7 6.6E7 6.7E7 2.6E5 3.3E7 2.6E5 2.23 570.02
T 3.3E7 3.3E7 6.7E7 2.6E5 4.7E5 6.5E5 0.13 21.22

<n,m,k>
NT 6.7E7 3.3E7 6.7E7 3.3E7 1.3E5 2.6E5 2.23 570.02
T 3.4E7 3.3E7 6.7E7 1.1E6 1.3E5 1.1E6 0.13 37.76

<m,k,n>
NT 3.3E7 6.7E7 6.7E7 2.6E5 3.3E7 3.3E7 1.31 1132.31
T 3.3E7 3.3E7 6.7E7 2.6E5 4.7E5 2.6E5 0.13 14.61

<n,k,m>
NT 6.7E7 3.3E7 6.7E7 3.3E7 1.3E5 3.3E7 1.31 1132.31
T 3.4E7 3.3E7 6.7E7 6.0E5 1.3E5 2.6E5 0.13 14.61

<k,m,n>
NT 3.3E7 3.3E7 6.7E7 2.6E5 1.3E5 3.3E7 1.31 571.12
T 3.3E7 3.3E7 6.7E7 2.6E5 1.3E5 1.1E6 0.13 24.26

<k,n,m>
NT 5.0E7 3.3E7 6.7E7 1.6E7 1.3E5 3.3E7 1.31 852.26
T 3.3E7 3.3E7 6.7E7 2.6E5 1.3E5 6.5E5 0.13 15.44

orders. Since S2 scratchpad accesses consume significantly more
energy compared to S1 access or computation, the reduction in
S2 accesses leads to dramatic improvements in energy costs. The
runtime is also improved by reducing the amount of traffic between
a PE and the S2 scratchpad, reducing the on-chip communication
delay of an accelerator. The impact of tiling is more significant
than that of loop order as 91.25% runtime reduction is observed
by tiling on average while loop orders with the best and the worst
runtime show 0.8% difference in runtime within tiled mappings.
Similar results were observed for tiling for other accelerators as
well. Tiled versions with the tile size chosen by FLASH were used
for all mappings in the rest of the paper.

5.4 Evaluation of Accelerators and Workloads
The reduced search space based on the tile sizes and hardware
constraints with FLASH in addition to having a fast analytical
model in MAESTRO-BLAS allows us to study a larger space with
five accelerators, two configurations, and six workloads for the
pruned loop order, cluster size and tile sizes. We summarize these
results in this sub-section.
The Impact of Matrix Shape. Fig. 8 shows the runtime, energy,
throughput, and data reuse of five mappings for four selected
workloads to show the impact of matrix sizes and shapes. These
experiments use a fixed loop order for fair comparison.

NVDLA-style mapping does better than other mappings, 81.0%
lower runtime and 93.8% less energy on the edge accelerator for
square matrices (workload I). However, on the cloud accelerator,
all the mappings except ShiDianNao-style mapping achieve near-
peak throughput (2 TFLOPS) and similar runtime. NVDLA-style
mapping results in 87.8% less energy, on average across mappings.
When loop orders are fixed, NVDLA-style mapping scheme is
the best among five mapping schemes for the square matrices
(workload I).

Such results on square matrices are mainly based on two factors;
loop order and tile size. The loop order with K at the inner-most
position requires data tiles on both matrices A and B because
both of them are coupled with dimension K. That is, it is hard to
leverage any data reuse if we place dimension K at the inner-most
position, which leads to bad energy efficiency. The second aspect
is the tile size that determines the balance between computation
and communication delay in combination with loop order and NoC
bandwidth [27]. If the communication delay for data tile fetch is
longer than the computation delay of computation tiles on sub-
clusters (or, PEs), the communication latency hiding fails, which
leads to significant runtime increase. We observe such cases on edge
accelerators running MAERI-, Eyeriss-, and TPU-style mappings;
they show near-peak bandwidth when the NoC bandwidth is larger
in the cloud accelerator.

Short-and-fat matrices in workloads II and III (i.e., K >> M
and N) show a different trend based on the skewness of the aspect
ratio of matrices. For the workload II, with aspect ratio of 1:8
between M/N and K, MAERI-style and Eyeriss-style mappings
provide the lowest runtime, which is 57.1% less compared to other
mappings, on average. However, based on the impact of loop order,
the mappings requires 73.6% more energy compared to NVDLA-
style which is the most energy efficient mapping across edge
and cloud accelerators. The energy consumption of Eyeriss-style
mapping on cloud accelerator is larger than that on edge accelerator
because the tiling parameters are changed and it affects the degree
of spatial reuse via multi-casting.

Workload IV is GEMM of a short-and-fat matrix A and a
tall-and-skinny matrix B. We observe NVDLA-style and MAERI-
style mappings provide the lowest runtime on edge and cloud
accelerators, respectively. This use case demonstrates the success
of workload and architecture-aware tiling strategy. The large skew
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Fig. 9: Performance comparison of the mapping variants by varying
all feasible loop orders for MAERI-style (TST TTS) mapping on
two workloads (IV and V) and two accelerators (edge and cloud).

in dimension (M:N=1:1024) results in an extreme tiling strategy for
MAERI-style mapping that maximizes data reuse on the smaller
matrix A, which significantly reduces the number of expensive S2
buffer accesses.

Next, we identify that the amount of data reuse directly impacts
energy usage with a negative correlation. This is because the
number of S2 accesses dominate the on-chip energy [20], and data
reuse indicates the reduction of the number of S2 accesses. We also
observe that high data reuse counts led to high throughput across
workloads except workload III on ShiDianNao-style mapping. This
is because data reuse and throughput do not have a direct correlation.
Also, an output stationary accelerator is not an ideal choice when
the size of output matrix C is small as workload III.

We observe that data reuse dramatically differs between
mappings depending on the matrix sizes and shapes. For example,
NVDLA-style mapping was better suitable for workload I than
III (7.5× more data reuse). However, the trend is not the same
for all the mapping styles. For MAERI-style mapping, we observe
the opposite trend from NVDLA-style mapping; 1.9× more data
reuse on workload III than workload I. This is partially due to
microarchitecture differences, but fixed loop orders also play a role.
Such results show the relationship between mapping and workload
is not trivial, which requires consideration of workload, mapping,
and architecture. Our FLASH will allow architects to systemically
evaluate all the options.

NVDLA-style performs the best across the workloads and
accelerators, providing 69.8% lower runtime and 92.3% less
energy, on average. However, the non-square workloads prefer
different mappings, which implies that no single mapping is ideal
for all the workloads. FLASH enables adapting the mappings
for such workloads and selects the best performing mapping for
each workload. This can provide 4.4% additional runtime and
0.7% energy improvements compared to the mapping (NVDLA-
style) optimized for the average case. In the cloud configuration,
MAERI-style mapping achieves the peak FLOPS in three out of
four workloads shown here. The results could change significantly
if we fully exploit the flexibility in loop order.
The Impact of Loop Order. Fig. 9 presents the runtime and
energy cost of all the evaluated mappings varying six different loop
orders for MAERI-style mapping across workloads IV and V. We
observe the loop order has significant impact on both runtime and
energy in different degrees depending on the mapping scheme. For

Fig. 10: Performance comparison of the mapping variants on
four GEMM workloads (i.e., fully-connected layers) involving
Deep Neural Networks and edge accelerator. A fully-connected
layer performs GEMM of size (batch size×# of nodes in current
layer)×(# of nodes in current layer×# of nodes in the next layer).

example, for the workload IV, energy usage reduces by 76.5% on
MAERI-style mapping (edge configuration) when switched from
<m, n, k> to <n, m, k> loop order. Furthermore, on the cloud
configuration, MAERI-style mapping with <m, k, n> and <n, k,
m> loop orders on workload IV results in 0.03 ms and 0.52 ms of
runtime, respectively. The trend reverses in workload V because
workloads IV and V are transposes.

The preference to loop orders differs by the mapping schemes
and workloads. For example, MAERI-style mapping with <m,
n, k> loop order on workload IV and cloud accelerator achieves
0.03 ms of runtime while Eyeriss-style with <m, n, k> achieves
1.05 ms of runtime. The preference toward loop order based
on workload and mapping scheme implies that the flexibility in
loop order can provide significant runtime and energy benefits.
Across all the mappings and workloads IV and V on the edge
accelerator, we observe that flexible loop order selected from
FLASH provides 49.9% runtime and 49.7% energy reduction across
mapping schemes compared to the average-workload-optimized
fixed loop order of each mapping scheme. On the cloud accelerator,
the potential benefits were more significant on runtime (85.6%
improvements) than energy benefits (26.2%) on average. We also
swept the cluster size across the accelerators. We do not show
results, in the interest of space, but found that it affects utilization,
which in turn affects runtime and energy (up to 42% in our results).
Performance on Deep Neural Networks. As GEMM accounts
for approximately 90% of the total number of operations while
training/testing DNNs such as fully connected Multi-Layer Percep-
tron (MLP), we also evaluated GEMM operations for inference
of MLP model on different accelerators. The MLP model we
used consists of an input layer, three hidden layers and an output
layer, and 512, 256 and 128 nodes for each hidden layer. Fig. 10
shows the runtime and energy cost across the various mappings for
performing GEMM operations involved in inference of DNNs.

In general, batch data processing is used for DNN training/in-
ference. Therefore GEMM kernel is used on batched data between
one layer to the next. For example, using a real-world MNIST
image dataset, a fully-connected (FC) layer 1 shown in Fig. 10
connects 28×28=784 nodes in input layer to 512 nodes in the
first hidden layer. Hence, FC layer 1 corresponds to the first
GEMM operation that multiplies an input matrix of size (128×784)
and a weight matrix of size (784×512) where the batch size
is set to 128. Similarly, FC layer 4 computes GEMM of size
(128×128)×(128×10) to connect 128 nodes in the third hidden
layer to 10 nodes (classes) in output layer. With these four GEMM
workloads we used for four FC layers in MLP model. In these
use cases, MAERI-style and ShiDianNao-style mappings provide
lower runtime and MAERI-style and NVDLA-style provide higher
energy efficiency relative to the other mappings.
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Summary. We summarize our key observations based on all the
experiments:

• FLASH reduces the number of mapping candidates that needs
to be considered by the analytical model by up to 480× and
still finds a mapping that reduces runtime.

• The new tiling strategy for spatial accelerators significantly
reduces runtime and energy usage.

• The evaluation of accelerators on several workloads show loop
order is critical for runtime and energy in different degrees for
each mapping scheme and workload. Matrix shapes also play
an important role.

• Flexible mapping accelerators (e.g., MAERI [7]), with a
framework like FLASH can provide significant runtime and
energy improvements compared to the best mapping optimized
for the average case, showing 65.3% runtime and 30.1% energy
improvements on average.

6 RELATED WORK

Mappers for Spatial Accelerators: Most prior works focus on
developing mappers specific to their architectures. For example,
mRNA [28] for MAERI [7], Auto-TVM [29] for the GEMM core
of the VTA architecture [30] limiting their applicability to generic
spatial accelerators. Mapping optimizers such as Interstellar [31],
dMazeRunner [32] are specific to convolutions and fix certain
aspects of the dataflow (such as choice of parallel loops and loop
order), constraining the search space. To the best of our knowledge,
Timeloop [26] is the only framework that considers all aspects
of a mapping for GEMM kernels on a flexible spatial accelerator.
However, it employs either an exhaustive linear search or a random
sampling-based heuristic.
GEMM Accelerators: Pedram et al., [33] proposed a GEMM
accelerator called Linear Algebra Core (LAC) which consists of a√

P×
√

P 2D grid of PEs. LAC accelerator is based on SUMMA
algorithm [34]. which can be considered as a tiled GEMM with
<k, m, n> loop order with specific multicast between rows and
columns of PEs. Pedram et al., [24] further proposed a multi-core
like GEMM accelerator called Linear Algebra Processor (LAP)
with multiple LACs and tiled matrices A and B. Each LAC acquires
a disjoint tile ALAC id,k and a shared tile Bk,j so as to ensure that
all the LACs in LAP are able to perform GEMM simultaneously.
However, LAP is limited to the SUMMA algorithm and its mapping
style. In contrast, we focus on several accelerators and map several
GEMM variations to them.
Auto-tuning/Tiling for BLAS: Auto-tuning approaches such as
ATLAS [35], SPIRAL [36] are popular in generating efficient,
optimized, and portable codes for BLAS operations over a variety
of platforms. For instance, SPIRAL focuses on auto-tuning of
compiler-generated codes. ATLAS uses auto-tuning techniques
for loop tiling optimizations, and also for exploring recursion-
based alternative implementation choices. The broader ideas of
ATLAS to choose between block based algorithms for portability
and specific parameter tuning are also described as self-adapting
linear algebra [37]. Instead of generating different micro-kernels
to choose tiling as they do, we use a cost model to evaluate the
variants. Recent work has explored tiling and batching of GEMM
on GPUs [38]. Libraries like CUTLASS [39] use a hierarchical
tiling for a temporal architecture. The tiling approach we use is
similar to the block based methods [35] and a variation of Goto et
al. [40] as the accelerator hardware is far simpler (e.g., no TLB).

An analytical derivation of tile size is possible in this work as we
were able to focus on few hardware parameters that is common
among all the accelerators. As accelerators diverge we might have
adapt some of the techniques from the auto-tuning approaches as
well. Most of these past work limit themselves one popular loop
order for CPU architectures. We derive tile sizes for all loop orders
instead of one popular loop order, as the architectures are evolving.

7 CONCLUSION

We develop a framework FLASH for evaluating spatial accelerators
via the GEMM kernel. FLASH considers all aspects of the mapping
(tile sizes and dataflow for temporal, spatial and spatio-temporal
reuse) within the microarchitectural constraints from the accelerator
(number of PEs, NoC capability, buffer hierarchy), prunes the
search space based on these constraints and additional heuristics,
to produce optimized mappings for GEMM. The experimental
results show the importance of different co-design considerations
computer architects and algorithm designers have to take. This
comprehensive study lays the first steps for a heterogeneous HPC
node with these accelerators that can address the need of machine
learning applications and computational science applications. The
ideas in this work could lead to future work studying other dense
and sparse ML and CSE kernels over accelerators.
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APPENDIX

We include finer level details in this appendix.
Mapping Candidate Generation Steps: Algorithm 2 shows how
mapping candidates are generated in FLASH. FLASH generates
mapping candidates given the type of accelerators, hardware
parameters, and the sizes of M, N, and K as inputs. Based on
the accelerator chosen by the user, FLASH first determines three
parameters – dataflow directive order, all feasible loop orders,
and all possible cluster sizes that can be explored in the mapping
candidates according to the hardware constraints described in Table
2 in Section 3.1. After choosing these three parameters, FLASH
computes the candidate tile sizes using problem dimensions and
hardware parameters. These tile sizes are used to prune a huge
number of possible mappings. Finally, FLASH generates the pruned
mapping candidates descriptions as inputs to MAESTRO-BLAS
and analyzes the results of MAESTRO-BLAS to choose the best
GEMM mapping based on projected runtime.
Tile Size Constraints: FLASH is able to restrict the search
space for different accelerators, based on the input dimension
and hardware constraints. While one example derivation and the
corresponding constraints for tile sizes are shown in Section 4,
Table 6 shows all the tile sizes for all the mappings. Restricting the
search space using these constraints helps FLASH in choosing the
near-optimal mapping.

http://maestro.ece.gatech.edu/
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Algorithm 2: Mapping Candidates Generator in FLASH
Input: M, N, K: matrix dimensions, Arch: type of accelerator, P: total number of PEs, α: size of S1 buffer, β : size of S2 buffer, λ : size of cluster
Output: Mapping Candidates: mapping descriptions of all mapping candidates

1 dataflow candidates← get candidate LoopOrders ClusterSzs(Arch, P);
2 num LoopOrders← get num LoopOrders(dataflow candidates);
3 num ClusterSzs← get num ClusterSzs(dataflow candidates);
4 for LoopOrder id = 1 to num LoopOrders do
5 for ClusterSz id = 1 to num ClusterSzs do
6 [λ , DirectiveOrder, outer LoopOrder, inner LoopOrder]← get dataflow(LoopOrder id, ClusterSz id, dataflow candidates);
7 [Tout

M , Tout
N , Tout

K ]← calculate candidate outer Tile Size(λ , DirectiveOrder, outer LoopOrder, β , P, M, N, K); . Eq. 3
8 [Tin

M, Tin
N , Tin

K ]← calculate candidate inner Tile Size(Tout
M , Tout

N , Tout
K , λ , DirectiveOrder, inner LoopOrder, α , P, M, N, K); . Eq. 4

9 pruned TileSzs← get pruned Tile Sizes(Tout
M , Tout

N , Tout
K , Tin

M, Tin
N , Tin

K , DirectiveOrder, α , β );
10 Mapping Candidates← generate mapping candidates(pruned TileSzs, λ , DirectiveOrder, outer LoopOrder, inner LoopOrder, M, N, K);

TABLE 6: The candidate tile size constraints for five different mapping schemes for different accelerators where P, α , β and λ denote
total number of PEs, size of S1 buffer, size of S2 buffer and size of cluster, respectively.

Tile Sizes Eyeriss-style NVDLA-style TPU-style ShiDianNao-style MAERI-style

Tout
M Tout

M = λM
P 1≤ Tout

M ≤
√

N2(λ+1)2+2βλ−N(λ+1)
2λ

1≤ Tout
M ≤

√
N2(λ+1)2+2βλ−N(λ+1)

2λ
Tout

M = λM
P 1≤ Tout

M ≤
√

β

2 +N2−N

Tout
N 1≤ Tout

N ≤
√

M2(λ+1)2+2βλ−M(λ+1)
2λ

Tout
N = λN

P Tout
N = λN

P 1≤ Tout
N ≤

√
M2(λ+1)2+2βλ−M(λ+1)

2λ
Tout

N =
NTout

K
P

Tout
K 1≤ Tout

K ≤
√

M2(λ+1)2+2βλ−M(λ+1)
2λ

1≤ Tout
K ≤

√
N2(λ+1)2+2βλ−N(λ+1)

2λ
1≤ Tout

K ≤
√

N2(λ+1)2+2βλ−N(λ+1)
2λ

1≤ Tout
K ≤

√
M2(λ+1)2+2βλ−M(λ+1)

2λ
1≤ Tout

K ≤
√

β

2 +N2−N

Tin
M 1≤ Tin

M ≤
√

α

2 +(T out
K )2−T out

K 1≤ Tin
M ≤

√
α

2 +(T out
K )2−T out

K 1≤ Tin
M ≤

√
α

2 +(T out
K )2−T out

K 1≤ Tin
M ≤

√
α

2 +(T out
N )2−T out

N 1≤ Tin
M ≤

√
α+2

2 −1

Tin
N 1≤ Tin

N ≤
√

α

2 +(T out
K )2−T out

K 1≤ Tin
N ≤

√
α

2 +(T out
K )2−T out

K 1≤ Tin
N ≤

√
α

2 +(T out
K )2−T out

K Tin
N = Tout

N 1≤ Tin
N ≤

√
α+2

2 −1

Tin
K Tin

K = Tout
K Tin

K = Tout
K Tin

K = Tout
K 1≤ Tin

K ≤
√

α

2 +(T out
N )2−T out

N Tin
K = 1
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