
LLNL-TR-824455

On ParELAG's Parallel Element-based Algebraic
Multigrid and its MFEM Miniapps for H(curl) and
H(div) Problems: a report including lowest and
next to the lowest order numerical results

D. Z. Kalchev, P. S. Vassilevski, U. Villa

July 13, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

ON PARELAG’S PARALLEL ELEMENT-BASED ALGEBRAIC

MULTIGRID AND ITS MFEM MINIAPPS FOR H(curl) AND H(div)

PROBLEMS:

A REPORT INCLUDING LOWEST AND NEXT TO THE LOWEST ORDER

NUMERICAL RESULTS

DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

Abstract. This paper presents the utilization of element-based algebraic multi-
grid (AMGe) hierarchies, implemented in the ParELAG (Parallel Element Agglom-
eration Algebraic Multigrid Upscaling and Solvers) library, to produce multilevel
preconditioners and solvers for H(curl) and H(div) formulations. This involves the
construction of hierarchies of compatible nested spaces, forming an exact de Rham
sequence on each level. This allows the application of hybrid smoothers on all levels
and AMS (Auxiliary-space Maxwell Solver) or ADS (Auxiliary-space Divergence
Solver) on the coarsest levels, obtaining complete multigrid cycles. Numerical
results are presented, showing the parallel performance of the proposed methods.
As a part of the exposition, this paper demonstrates some of the capabilities of
ParELAG and outlines some of the components and procedures within the library.

Key words. algebraic multigrid (AMG), AMGe, H(curl) solvers, H(div) solvers,
ADS, AMS, de Rham sequence, hybrid smoothers, finite element methods, ParE-
LAG, MFEM

Mathematics subject classification. 65F08, 65F10, 65N22, 65N30, 65N55

1. Introduction

In a number of problems in physics and engineering, that are addressed by advanced
scientific computing methods, arise models and formulations involving the curl
(rotation) and divergence operators. As a part of preconditioning or solving systems
of partial differential equations (PDEs) and multiphysics simulations, finite element
forms and blocks posed on the spaces H(curl) and H(div) emerge. For example, this
includes models of electromagnetism using Maxwell equations (possibly as a part of
larger multiphysics codes) [48, 56, 15], mixed finite element methods for second-order
elliptic equations [17] and coupled systems [60, 8], first-order system least-squares
(FOSLS) finite element methods [20, 54, 6, 7], certain formulations of the Stokes and
Navier-Stokes equations [21, 22, 47], and radiation transport simulations [19].

The solution of the resulting linear systems involves inversion or preconditioning
of H(curl) and H(div) forms. One major source of difficulty is the large null spaces
of the curl and divergence. A variety of approaches have been developed, including
multigrid methods, both geometric and algebraic multigrid (AMG) [29, 55, 14, 34,
28, 10, 27, 13, 61, 9, 62, 58], methods reducing the problem to (geometric) multigrid
[31, 39], a recent approach employing hybridization and static condensation [24], and
methods in the field of domain decomposition [49, 63, 64, 52, 33]. Hiptmair and Xu
[32] proposed auxiliary space preconditioners employing stable regular decompositions;

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-TR-824455).

The work of the second author was partially supported by NSF under grant DMS-1619640.

1

2 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

see also [16]. Based on those ideas quite successful parallel H(curl) and H(div) solvers
were developed as a part of HYPRE [1]: AMS [40] and ADS [41]. Furthermore,
recent developments of generic auxiliary space preconditioners [38, 37], utilizing
nonconforming reformulations and static condensation, can potentially be employed
to implement efficient preconditioners for H(curl) and H(div) problems.

This paper describes and demonstrates the utilization of an AMGe (element-based
AMG; see [35, 57, 58]) approach for preconditioning conforming discrete H(curl)
and H(div) formulations. While AMGe methods were originally developed in the
context of symmetric positive definite (SPD) systems coming from H1-conforming
formulations [23, 45], they demonstrate the capacity for a broader applicability. An
important role in the construction of the AMGe multilevel methods is played by
the de Rham sequence (i.e., in three dimensions, H1 → H(curl) → H(div) → L2)
of Sobolev spaces. It provides a quite elegant tool in the theory of finite elements
for a variety of problems; see [30, 11]. Namely, a discrete version of the sequence
of conforming finite element spaces, maintaining the exactness and commutativity
properties, delivers numerical stability (inf-sup compatibility) for a variety of mixed
finite element methods. These ideas are used and investigated in [46, 44, 53] for the
construction of multilevel element-based algebraic hierarchies of de Rham sequences
of spaces. The last constitutes the foundation for the current work expounded in
this paper.

A fundamental idea in AMGe, as presented in this work and implemented in
ParELAG [5], is the element-based construction of coarse levels that structurally
resemble (fine) geometric levels composed of standard finite elements. This involves
the identification of coarse meshes, contrived of coarse elements, with properly
established coarse mesh topologies in the form of relations between coarse elements
and coarse lower-dimensional mesh entities (facets, edges, and vertices), similarly to
geometric levels. Consequently, utilizing the coarse topology, each coarse space is
built via independent local coarse-element-by-coarse-element computations, whose
combined effect is a conforming global coarse space. The independence of the local
work makes the construction of AMGe hierarchies naturally attuned for parallel
computing.

Starting with a given fine mesh T h, a basic idea in AMGe, as outlined in the
previous paragraph, is to build a coarse mesh T H of agglomerated elements — non-
overlapping unions of fine-level elements, which act as coarse elements. Using an
algorithm for identifying minimal intersection sets [58], lower-dimensional coarse
mesh entities, like coarse facets, edges, and vertices, in T H are determined together
with their relationships, forming the topology of T H in virtue of T h. The mesh
topology is needed for the construction of the de Rham sequences as it reflects
a natural structure within the sequence of spaces and the transitional differential
operators (exterior derivatives). In accordance with the ideas of multigrid, the
coarse de Rham sequence (of coarse spaces) is formed in terms of the fine one as a
sequence of subspaces, i.e., coarse basis functions are linear combinations of fine basis
functions. Consequently, the coarsening procedure is algebraic in nature, involving
the construction of coarse basis functions as algebraic vectors and organizing them
in prolongation matrices. The building of coarse bases is an intricate procedure,
entailing the obtainment of target traces, or shortly targets, (e.g., in H(div), these are
normal flux traces on the coarse facets) and a two stage extension process, involving
the solution of small local, on coarse entities, mixed finite element problems to
produce the final coarse basis functions. First, the traces are gradually extended to
higher-dimensional entities (e.g., in H(div), the normal flux traces are extended from

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 3

coarse facets to whole coarse elements) and then an “extension” across spaces, in
reverse direction of the de Rham sequence, is performed to maintain compatibility
(exactness) between the spaces and operators in the sequence. Here, we concentrate on
polynomial targets, while spectral targets (i.e., coming from solving local generalized
eigenvalue problems) can potentially also be used [36]. Note that the obtained coarse
spaces maintain the general finite element structure of the fine spaces. Therefore, as
typical in AMGe, the coarsening can be performed recursively, producing a hierarchy
of nested and compatible, on each level, spaces.

The above shortly described methodology is implemented in ParELAG. This is
a parallel library that builds hierarchies of stable sequences of discrete spaces with
approximation properties, to be utilized typically as discretization tools for numerical
upscaling [59] of mixed finite element formulations. It also provides a set of respective
preconditioners and solvers that can be used for solving the resulting problems
or building further intricate solvers. ParELAG has been successfully applied, e.g.,
in upscaling for reservoir modelling [43] and multilevel Monte Carlo simulations
[51, 50, 25, 26].

This paper discusses the construction of multilevel solvers for H(curl) and H(div)
problems, using the hierarchies of spaces from ParELAG. The availability of entire
de Rham sequences, together with all necessary transfer operators, on all levels
allows the utilization of hybrid (Hiptmair) smoothers [29, 58] on all levels, as well
as AMS and ADS on the coarsest levels, producing complete multigrid cycles. An
outline of the overall methodology is presented and the parallel performance of the
proposed solvers is shown in numerical examples. Part of the goal of this work is to
exhibit ParELAG and some of its capabilities. Therefore, as a demonstration, mini
applications, that invoke ParELAG for solving H(curl) and H(div) problems, are
produced within MFEM [3] — a finite element library, that is a subject of a recent
increase in popularity and becoming a tool of choice. As a part of the exposition
in the paper, describing the methods, a basic overview of some constructs within
ParELAG is provided, as utilized in the mentioned mini applications. To fix the
presentation, the ideas are conveyed for the three-dimensional case, while one can
easily see how they would be applied in a two-dimensional setting.

The outline of the remainder of the paper is as follows. The H(curl) and H(div)
problems of interest are presented in Section 2. Section 3 is devoted to an overview of
the methodology, involving the de Rham sequence, the above mentioned coarsening
and extension procedure, and the transfer operators. Those operators are useful
for implementing the hybrid smoothers on all levels and the AMS and ADS coarse
solvers, as described in Section 4. Numerical results, demonstrating the parallel
performance of the proposed methods, are in Section 5. The conclusions and a
discussion on possible future directions are left for the last Section 6.

2. Problems formulations

This section provides a basic presentation of spaces, some notation, and formula-
tions. Let Ω ⊂ R3 be a bounded contractible1 domain with a Lipschitz-continuous
boundary Γ = ∂Ω. Define the spaces of square-integrable vector fields on Ω with, re-
spectively, square-integrable curl, H(curl), and square-integrable divergence, H(div),
as

H(curl; Ω) =
{
v ∈ [L2(Ω)]3; curl v ∈ [L2(Ω)]3

}
,

1Recall that this intuitively means that Ω has no holes and can be continuously contracted into a
point. That is, Ω is homotopy equivalent to a ball and to a single point.

4 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

H(div; Ω) =
{
v ∈ [L2(Ω)]3; div v ∈ L2(Ω)

}
.

These are Hilbert spaces endowed with the respective norms ‖v‖curl = (‖v‖20 +

‖curl v‖20)1/2 and ‖v‖div = (‖v‖20 + ‖div v‖20)1/2, where ‖·‖0 denotes the norms in
both L2(Ω) and [L2(Ω)]3. Introduce also the space H1(Ω) = { v ∈ L2(Ω); grad v ∈
[L2(Ω)]3 }, of square-integrable functions with square integrable first derivatives,

which is a Hilbert space with a norm ‖v‖grad = (‖v‖20 +‖grad v‖20)1/2. For consistency,
it can also be denoted by H(grad; Ω) = H1(Ω). Also, L2(Ω) can be conformed to
this notation convention by alternatively denoting it as H(0; Ω) = L2(Ω), where in
such a context 0 represents a generic zero operator. For convenience, “Ω” can be
skipped in the notation, which should not lead to any confusion. This allows the
deployment of a generic notation, using D ∈ { grad, curl,div, 0 } and considering the
respective space H(D) with a norm ‖·‖D.

Consider the symmetric bilinear forms of interest

(2.1)
acurl(u, v) = (α curlu, curl v)0 + (β u, v)0 for u, v ∈ H(curl; Ω),

adiv(u, v) = (α div u, div v)0 + (β u, v)0 for u, v ∈ H(div; Ω),

where α, β ∈ L∞(Ω), α > 0, β > 0, and (·, ·)0 denotes the inner products in both
L2(Ω) and [L2(Ω)]3. The bilinear forms are positive definite and posses coefficient-
dependent continuity in term of ‖·‖curl and ‖·‖div, respectively. If the coefficients
are bounded away from zero, then the bilinear forms satisfy respective coefficient-
dependent coercivity.

Remark 2.1. One can actually consider β ≥ 0, in which case the bilinear forms in
(2.1) are generally semi-definite since they are singular in regions where β = 0. For
simplicity in the examples here, we use β > 0. More generally, β can be an essentially
bounded symmetric positive (semi-)definite tensor. The bilinear forms are positive
definite when β is positive definite, generally semi-definite when β is semi-definite,
and coercivity depends on β being uniformly (on Ω) positive definite.

Problems involving (2.1), arising in practice, are posed on corresponding conform-
ing discrete finite element spaces. This results in discrete versions of the bilinear
forms, represented by respective symmetric positive (semi-)definite matrices. The
goal in this paper is to present preconditioners for linear systems with such matrices.
The corresponding conforming finite element spaces, defined on a given fine mesh T h,
are denoted by Vh(grad) ⊂ H(grad), Vh(curl) ⊂ H(curl), Vh(div) ⊂ H(div), and
Vh(0) ⊂ H(0). They are spaces of, respectively, continuous piecewise polynomial La-
grangian (nodal), Nédélec, Raviart–Thomas, and discontinuous piecewise polynomial
finite elements [17]. In the case of lowest order finite elements, the degrees of freedom
(dofs) in the spaces are associated with mesh entities of increasing dimensionality,
one dof per entity. Namely, these are, respectively, point values at vertices, tangential
flow along edges, normal flux across facets, constant values in elements (sometimes
referred to as cells).

3. Overview of the multilevel de Rham sequence

Here, the basics of the de Rham sequence of interest, its discrete version, the
coarsening methodology, and the involved operators and procedures are presented and
discussed. While the topic is the preconditioning of H(curl) and H(div) formulations,
the methodology here, as it becomes clear in Section 4, needs the consideration and
utilization of the entire de Rham complex.

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 5

Dh
1−−−→

Dh
2−−−→

Dh
3−−−→

Figure 3.1. An illustration of the mapping between dofs in a tetra-
hedral element for the lowest order case.

3.1. De Rham sequences of spaces. Consider the de Rham complex of Sobolev
spaces on Ω together with a respective subcomplex of conforming finite element
spaces

(3.1)

R H(D1) H(D2) H(D3) H(D4) { 0 }

R Vh(D1) Vh(D2) Vh(D3) Vh(D4) { 0 }

D0=I D1=grad

Πh
1

D2=curl

Πh
2

D3=div

Πh
3

D4=0

Πh
4

Dh
0=I Dh

1 Dh
2 Dh

3 Dh
4=0

,

where “R” represents the constants, I is simply an injection that maps a real number
to a corresponding constant function on Ω, Πh

i : H(Di) → Vh(Di) for i = 1, . . . , 4
are respective appropriate (cochain) projection operators, Di : H(Di) → H(Di+1)
for i = 1, . . . , 3 are the respective differential operators mapping between the Sobolev
spaces, and Dh

i : Vh(Di)→ Vh(Di+1) are their corresponding discrete versions with
matching semantics but formulated on the finite element spaces. Clearly, in the
finite-dimensional setting, the functions in Vh(Di) for i = 1, . . . , 4 can be identified
with algebraic vectors defined on the respective dofs. Hence, Dh

i for i = 1, . . . , 3

can be viewed as matrices in Rd
h
i+1×dhi , where dhi = dim(Vh(Di)), expressed in terms

of the bases in Vh(Di). They can be assembled via an overwriting finite element
assembly2 procedure from local, on elements, versions of the operators and their
matrices. Particularly, in the lowest order case, Dh

i from left to right map mesh
entities from lower to higher dimensionality, i.e, vertices → edges, edges → facets,
and facets→ elements, respectively; see Fig. 3.1. The matrices for Dh

i are provided
by MFEM [3]. It is assumed that Πh

i for i = 1, . . . , 4 are bounded operators, i.e.,
‖Πh

i ‖Di < ∞, where ‖·‖Di also denote the corresponding induced operator norms.
This holds for the considered finite element spaces and implies the quasi-optimality
property ‖u−Πh

i u‖Di ≤ ‖I −Πh
i ‖Di infvh∈Vh(Di)‖u− v

h‖Di for all u ∈ H(Di).

Observe that it generally holds that Di+1Di = 0 (i.e., Range(Di) ⊂ Ker(Di+1)) for
i = 0, . . . , 3. The sequence is called exact if Range(Di) = Ker(Di+1) for i = 0, . . . , 3,
which depends on the topological characteristics of Ω. The connectivity of Ω is
sufficient to demonstrate this property for i = 0 and 3, whereas it holds for i = 1
using that Ω is simply-connected. The contractibility of Ω provides the property for
i = 2 as a consequence of Poincaré’s lemma; see, e.g., [30]. The discrete subcomplex of
spaces Vh(Di) also mirrors the exactness property. This depends on the corresponding
topological characteristics of the mesh cells. Therefore, we also require that the cells
and their facets and edges be contractible.

The null space of the gradient, D1, can be eliminated by considering the quotient
spaces H(D1)/R and Vh(D1)/R of functions with a zero mean and replacing “R” in

2Overwriting means that during the assembly the entries in the global matrix are overwritten by the
values of the entries in the local matrices rather than accumulating (adding) them.

6 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

(3.1) with “{ 0 }”, turning the de Rham sequence into { 0 } → H(D1)/R → · · · →
H(D4) → { 0 }. This is also the case when boundary conditions3 are imposed on
the functions in H(D1) and Vh(D1) on a portion of the boundary Γ0 ⊂ Γ. Note
that this affects the de Rham sequence. Recall that the natural notion of a trace,
denoted by a trace operator γ1, in H(D1) is an extension of the notion of a function
value (a restriction of a function) on a surface, the trace γ2 in H(D2) extends the
tangential flow, v×n, along a surface, and the trace γ3 in H(D3) extends the normal
flux, v · n, across a surface. Here, n denotes an appropriate outward unit normal
vector to the surface (portion of the boundary). Thus, using a convenient intuitive
notation, working with a space of functions v ∈ H(D1) such that γ1v|Γ0

= 0 requires
considering, in the de Rham sequence, spaces of vector fields v ∈ H(D2) such that
γ2v|Γ0

= 0 and v ∈ H(D3) such that γ3v|Γ0
= 0. This is mirrored by the discrete

subcomplex. However, this is mostly a formality. Note that, for the utilized finite
elements, such boundary conditions are mapped and imposed directly on respective
dofs associated with the boundary, allowing to be viewed as respective essential
boundary conditions, as needed, in the context of Galerkin-type formulations, i.e.,
boundary conditions that are explicitly imposed on the spaces, via the elimination of
the corresponding boundary dofs in the respective matrices, rather than as a natural
part of a variational formulation.

Remark 3.1. A special case is when the boundary conditions are posed on the entire
boundary Γ, obtaining the spaces H0(Di) for i = 1, . . . , 3. Since the exactness
is related to the divergence theorem

∫
Ω div v dx =

∫
Γ γ3v dσ = 0 for v ∈ H0(D3),

one needs to either consider H0(D4) = H(D4)/R in (3.1), or consider the entire
H(D4) = L2(Ω) but formally replace the zero operator, D4 = 0, with the integral on
Ω, whose null space is precisely the functions with a zero mean, and further replace
“{ 0 }” in (3.1) with “R”, turning the de Rham sequence into { 0 } → H0(D1) →
H0(D2)→ H0(D3)→ H(D4)→ R.

Importantly, for the used finite element spaces, the following commutativity prop-
erty holds:

(3.2) Dh
i ◦Πh

i = Πh
i+1 ◦Di for i = 1, . . . , 3.

That is, the diagram in (3.1) is commutative. The exactness of the continuous de Rham
complex provides, e.g., stable decompositions (like the Helmholtz decomposition
[48] and the so-called regular ones in [32]), while the commutativity of (3.1) and
the exactness of the discrete subcomplex contribute to the inheritance of some
important properties in the discrete setting, like the discrete stable decompositions
in [32] and the provision of the (inf-sup) stability of certain mixed finite element
methods; see [17, 30, 11]. Such stability, together with the approximation properties
of the discrete spaces, are important for the convergence of those mixed finite
element methods. ParELAG, which is intended both as a discretization tool and
for the construction of multigrid solvers, builds de Rham sequences of coarse spaces
satisfying the exactness and commutativity properties with the goal of further
maintaining important characteristics (like stability [46, 44, 53]), that are innate to
the fine sequence, on coarse levels. While no discretizations of mixed finite element
formulations are explicitly considered in this work, these features of ParELAG
are potentially beneficial since both the solvers in [32, 40, 41] and the utilized
hybrid smoothers [29][58, Appendix F] are formulated with a fine-like finite element
construct, i.e., geometric-like spaces, in mind. The element-based multilevel approach

3Without loss of generality, all boundary conditions are considered homogeneous (i.e., zero).

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 7

(a) Agglomerates of fine elements (b) Agglomerates of agglomerates

Figure 3.2. Examples of agglomerates. (The gaps between agglom-
erates are for illustrative purposes.)

implemented in ParELAG provides such a geometric-like finite element structure on
all levels.

3.2. Coarse de Rham sequences. The fundamentals and notions associated with
the coarsening of the de Rham sequence are now described. This also serves as a
preparation for Section 3.3.

While ParELAG can concentrate only on a portion, {H(Di) }4i=s for any s =
1, . . . , 4, of the complex, the entire sequence is discussed here as needed. Consider
the de Rham complex of fine-scale spaces together with a respective subcomplex of
coarse subspaces

(3.3)

R Vh(D1) Vh(D2) Vh(D3) Vh(D4) { 0 }

R VH(D1) VH(D2) VH(D3) VH(D4) { 0 }

Dh
0=I Dh

1

ΠH
1

Dh
2

ΠH
2

Dh
3

ΠH
3

Dh
4=0

ΠH
4

DH
0 =I DH

1 DH
2 DH

3 DH
4 =0

.

3.2.1. The coarse mesh. The first step is the generation of a coarse mesh T H , from
the given fine one T h, including all mesh entities: coarse elements, facets, edges, and
vertices. The foundation of this is the construction of coarse elements as agglomerates
(or agglomerated elements) T , which provide a non-overlapping partition of the fine
elements; see Fig. 3.2a. One customary way to achieve that is via partitioning (e.g.,
using METIS [2]) of the dual graph of T h — a graph whose nodes are the elements
in T h and any two nodes are connected in the graph when the respective mesh
elements share a facet. It is not difficult to generate the agglomerates as contiguous
partitions in terms of the dual graph, e.g., using METIS or simply identifying the
connected components of the partitioning after it is generated. Moreover, ParELAG
provides additional tools that can help, via weighting the dual graph and further
splitting of agglomerates, improve the topological properties of the coarse elements,
which are relevant if H(curl) is utilized. ParELAG contains a set of partitioner
classes, which generate an element partitioning on the current level that composes
the agglomerated elements. For example, the class MFEMRefinedMeshPartitioner

constructs agglomerates in the form of geometric coarse elements by reverting previous
refinements performed by MFEM, while the class MetisGraphPartitioner invokes
METIS internally.

8 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

dofs facets (fine scale)

T1 T2

F

Figure 3.3. A two-dimensional illustration of the designation of a
coarse facet F as a set of fine-scale facets, serving as an interface
between agglomerates T1 and T2.

Using the partitioning of T h and viewing each agglomerate T ∈ T H as a collection
of fine facets, an intersection procedure (see [58, section 1.9]) over these collections
provides the coarse facets as sets of fine facets (see Fig. 3.3), that can be consistently
interpreted as interface surfaces between coarse elements. Further viewing the ob-
tained coarse facets as collections of fine edges, their intersection identifies coarse
edges as sets of fine edges. Finally, the intersection of coarse edges in terms of fine ver-
tices identifies the coarse vertices. ParELAG collects all these coarse entities together
with relationships between them in the form of so called (agglomerated) topology
of T H , represented by an object of the ParELAG class AgglomeratedTopology.
Note that such a topology object in itself also represents a complex related to (3.3).
It further contains relations between agglomerated entities and their comprising
fine ones. In more detail, the AgglomeratedTopology object on the finest level is
obtained from the given mesh T h (i.e., using MFEM). Having a topology on the
current level, a new coarser agglomerated topology is generated by invoking the
CoarsenLocalPartitioning() member function of AgglomeratedTopology, using
the agglomerated elements produced on the current level by a partitioner class.

Coarse facets and edges additionally carry information about the orientation of
their constituting fine entities. Such a set of fine-scale orientations for a coarse
entity represents the orientation of that coarse entity. More precisely, these are +1
and −1 data entries in the agglomerated topology relating each coarse entity to its
comprising fine-scale ones, respectively representing the preservation or the reversion
of the original orientation of the fine entity within the coarse-scale one, so that each
agglomerated entity has a consistent orientation. For example, a coarse facet F has
an associated vector of +1 and −1, denoted by ϕF , that based on the orientation of
the constituting fine facets devises a consistent orientation for F , so that the normal
vector to F points everywhere from one of its adjacent agglomerates to the other,
e.g., from T1 to T2 in Fig. 3.3.

Furthermore, coarse facets associated with the domain boundary, or portions of
it, are identified, thus also determining, via relationship, respective coarse edges
and vertices on the boundary. This allows considering boundary dofs and boundary
conditions on coarse levels. Also, the coarse elements can be optionally made to
conform to material (coefficient) interfaces by splitting agglomerates that cross such
interfaces.

3.2.2. The element-based construction of the coarse bases and the prolongation matri-
ces. The coarse spaces VH(Di) for i = 1, . . . , 4 are obtained via the construction of
coarse bases as sets of algebraic vectors in terms of the respective dofs in Vh(Di), i.e.,

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 9

coarse basis functions are linear combinations of fine basis functions. These algebraic

vectors constitute the columns of corresponding prolongation matrices Pi ∈ Rdhi ×dHi ,
Pi : VH(Di) → Vh(Di), with full column ranks, where dHi = dim(VH(Di)). Sim-
ilarly to the fine level, the coarse basis functions are supported locally and built
by local agglomerate-by-agglomerate procedures (more details in Section 3.3). The
VH(Di)-dofs are identified with the columns of Pi, i.e., with the respective coarse
basis functions. Moreover, the VH(Di)-dofs associated with an agglomerate T ∈ T H
are the ones whose basis functions have supports intersecting T , and the restrictions
of those basis functions (i.e., the coarse shape functions) on T are precisely the
restrictions of the respective algebraic vectors on the Vh(Di)-dofs of T , which are the
Vh(Di)-dofs associated with the fine elements τ ∈ T h such that τ ⊂ T . Therefore,
local-on-T prolongation matrices PT,i can be defined and they are submatrices of Pi
on the respective dofs in Vh(Di) and VH(Di) on T .

Next, we consider a generic bilinear form aij(·, ·) defined on H(Di)×H(Dj) for

some i, j = 1, . . . , 4. On the conforming discrete subspaces Vh(Di) and Vh(Dj),
using their finite element bases, the bilinear form is represented by a (global) matrix

Ahij ∈ Rd
h
j×dhi on the dofs in Vh(Di) and Vh(Dj). That is, for every entry of Ahij

indexed (l, k), it holds

(Ahij)lk = aij(φ
h
i,k, φ

h
j,l) for l = 1, . . . , dhj , k = 1, . . . , dhi ,

where {φhi,k }
dhi
k=1 denotes the basis of Vh(Di). This global matrix is obtained via

a standard assembly from local element matrices Ahτ,ij for the elements τ ∈ T h

formulated on the Vh(Di) and Vh(Dj)-dofs associated with τ . The coarse matrices
are produced by standard “RAP” procedures. Indeed, the representations of aij(·, ·)
in terms of the bases of VH(Di) and VH(Dj) is the matrix AHij = P Tj A

h
ijPi ∈ Rd

H
j ×dHi .

Also, for T ∈ T H , using a standard assembly locally with Ahτ,ij for τ ⊂ T , the local-

on-T fine-scale matrix AhT,ij is obtained on the Vh(Di) and Vh(Dj)-dofs associated

with T . Thus, AHT,ij = (PT,j)
TAhT,ijPT,i forms the coarse element matrices, which can

produce AHij via a standard assembly. In the case of mixed finite element formulations,
where the matrices have a block form, coarse matrices can be obtained either by using
the appropriate Pi prolongators for each block separately and combining the results
in a coarse block matrix, or equivalently constructing a block diagonal prolongator
with the appropriate Pi matrices as diagonal blocks and coarsening the entire block
matrix in a monolithic “RAP”.

3.2.3. On the construction of the coarse discrete differential operators and the actions
of the coarse cochain projection operators. Similarly to above, local transition matrices
Dh
τ,i are available in terms of the bases and dofs in Vh(Di) and Vh(Di+1) for i =

1, . . . , 3, which produce Dh
i by an overwriting assembly, where Dh

τ,i are effectively

submatrices of Dh
i . Also, local-on-T versions Dh

T,i can be obtained as needed either via

an overwriting assembly or as submatrices of Dh
i . While the procedures constructing

coarse bases in ParELAG provide sequences of spaces with desired properties, even
in the most basic case the least that can be expected is that DH

i should map VH(Di)
into VH(Di+1) for i = 1, . . . , 3. That is, the equality (with a slight abuse of notation)

DH
i vH = Dh

i Piv
H = ΠH

i+1D
h
i Piv

H = Div
H holds for all vH ∈ RdHi , viewed4 as

4Recall that functions in finite element spaces and algebraic vectors in terms of the respective dofs
are identified.

10 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

DeRhamSequence

DeRhamSequenceAlgDeRhamSequenceFE

DeRhamSequence3D_FEDeRhamSequence2D_Hdiv_FE

Figure 3.4. An illustration of the hierarchy of ParELAG classes for
de Rham sequences.

vH ∈ VH(Di), where the actions of the operators and the equality signs need to be
interpreted in the sense of functions. Note that ΠH

i (see Section 3.3.4) for i = 1, . . . , 4
can be represented as matrices with the dimensions and structure of P Ti . ParELAG
builds the actions of ΠH

i and DH
i via independent local procedures as the entire

coarse bases construction process is local (see Sections 3.2.2 and 3.3, [46, 44, 53, 36]).
Observe that the equality DH

i = ΠH
i+1D

h
i Pi holds in the sense of matrices; cf. (3.5)

below. Moreover, the local actions ΠH
T,i, recognizable as submatrices of ΠH

i on the

appropriate dofs, are accessible, and one can obtain DH
T,i as ΠH

T,i+1D
h
T,iPT,i or as a

submatrix of DH
i on the respective dofs.

3.2.4. The exactness and commutativity properties. The procedures of constructing
the bases (outlined in Section 3.3) and the operators that ParELAG supplies are
specially designed to provide the desired properties exactness

Range(DH
i) = Ker(DH

i+1) for i = 1, . . . , 3(3.4)

and commutativity (cf. (3.2))

DH
i ◦ΠH

i = ΠH
i+1 ◦Dh

i for i = 1, . . . , 3.(3.5)

It is important to highlight that the obtained coarse spaces and topology of
the coarse mesh exhibit fine-like (geometric-like) finite element features. This is a
significant property of AMGe utilizing agglomeration of elements, which, together
with the algebraic nature of the approach, allows the recursive (cf. Fig. 3.2b)
application of the procedures outlined above and in Section 3.3. This provides the
capacity of the methodology to supply multilevel hierarchies of nested spaces forming
exact and commutative de Rham complexes on all levels.

3.2.5. On the ParELAG classes for de Rham sequences. ParELAG delivers a small
hierarchy of classes for de Rham sequences. The base class is DeRhamSequence, which
contains the main toolset necessary for constructing and working with de Rham
sequences, including the procedures for building coarse spaces outlined in this paper.
Furthermore, it is convenient to have specializations in the form of subclasses for
algebraic levels (class DeRhamSequenceAlg), which are coarse levels produced by
ParELAG that are not associated with a given mesh (i.e., that are not geometric), as
well as for the finest (geometric) level (class DeRhamSequenceFE), which is produced
employing MFEM. The class DeRhamSequenceFE is further specialized to address
special cases like the dimensionality of the domain. See Fig. 3.4 for an illustration of
the class hierarchy.

3.3. Coarse bases and the extension procedure. The abstract construction of
coarse basis functions, which is applicable on all levels, is outlined now. The target
traces and the extension process are discussed. A detailed presentation of a closely
related procedure for coarse space construction can be found in [46].

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 11

(a) Coarse elements (b) H1 boundary basis function (c) H1 interior basis function

(d) H1 bubble basis function (e)H(div) boundary basis function (f) H(div) interior basis function

(g) H(div) bubble basis function (h) L2 basis function

Figure 3.5. A two-dimensional illustration of coarse basis functions.
Their supports match exactly the respective coarse elements.

3.3.1. Basics. The coarse mesh T H with all its entities (elements or agglomerates,
facets, edges, and vertices) and its topology is available. Note that coarse basis
functions are obtained in terms of the fine ones using an extension procedure involving
the solution of local finite element problems, which translates into inverting local
matrices. This uses information on the association between fine dofs and coarse
entities, which is easily derived from the association between fine dofs and the fine
entities that constitute each coarse entity. In the terminology of ParELAG, this is
called dof agglomeration (or aggregation), implemented in the DofAgglomeration

class.
As indicated in Section 3.2.2, the extension can be viewed in the local context of

an agglomerate T ∈ T H and its associated lower-dimensional coarse entities. Note
that some basis functions are supported on multiple agglomerates. Nevertheless,
they are constructed by independent local agglomerate-by-agglomerate processes.

12 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

The procedures executed on a single agglomerate T produce the respective shape
functions. Shape functions that form a particular basis function agree on fine-scale
dofs shared between agglomerates. In the formation of the prolongation matrices, the
final basis functions are obtained by joining together all associated shape functions.
The shape functions on T alone comprise the local-on-T prolongation matrices, PT,i;
see Section 3.2.2. Other basis functions are entirely supported in a single agglomerate
T . As it is customary, they are called bubble functions; see [17]. More specifically,
for i = 1, . . . , 3, a Vh(Di) bubble function in T is nonzero in T , vanishes outside
T , and it is globally a function in H(Di), i.e., its γi-trace (see Section 3.1) on ∂T
vanishes. To facilitate the discussion of the extension process below, the notion
of bubble functions in Vh(Di) is used in a slightly extended context to allow the
consideration of such functions on lower-dimensional agglomerated entities. This
should be intuitively clear and lead to no confusion since the discussion concentrates
on local settings associated with particular agglomerated entities. In the case of
Vh(D4), all coarse basis functions are supported on a single respective agglomerate.
Figure 3.5 illustrates coarse basis functions on agglomerates in two dimensions.

3.3.2. Target traces. The first step is to select so called targets. The results in this
paper are obtained using global polynomial targets due to their simplicity and inherent
approximation properties following from standard polynomial approximation theory.
Global polynomial targets are set once in ParELAG on the finest level via simple call
to the SetUpscalingTargets() member function of the DeRhamSequenceFE class.
The procedure in ParELAG for building the targets is quite simple. Namely, on
the finest level, respective monomials, up to a prescribed order, interpolated (i.e.,
via Πh

i) on the respective finite element spaces constitute the targets. On coarse
levels, the targets are transferred as needed via projection, i.e., by applying the
operators ΠH

i , i = 1, . . . , 4. Note that it is admissible to utilize polynomial targets
of order higher than the order of the finest-level finite elements. In such a case,
coarse basis functions are obtained, having a high-order complexion but represented
piecewise by lower-order polynomials. Alternatively, local targets on coarse entities
can be used, obtained, e.g., via solving local eigenvalue problems, which also provide
approximation properties (cf. [36, 18]); or a combination of different targets can
be utilized. In any case, for the approach outlined here, appropriate respective
target traces on coarse entities (elements or agglomerates, facets, edges, vertices) are
obtained and available as needed, represented in terms of respective Vh(Di) dofs,
i = 1, . . . , 4.

The lowest-dimensional sensible traces for Vh(D1), . . . ,Vh(D4), from which ex-
tensions are initiated, are respectively on agglomerated vertices, edges, facets, and
elements5. On these entities, respective separately generated so called PV traces
(coming from [53]) are included with the (polynomial) targets. These traces alone
provide generic lowest-order coarse spaces on T H . In Vh(D1), the PV traces in
algebraic form are simply the unity scalar (a vector with a single entry equal to 1) on
each agglomerated vertex, while in Vh(D4) these are (piecewise) constant functions
on each agglomerate. Note that algebraically the latter need not be represented by
constant vectors. On the finest level they are obtained via interpolation, Πh

4 , and are
typically represented by constant vectors, while on coarse levels they are produced
by successive projections, via ΠH

4 , and are not represented by constant algebraic
vectors.

5Note that consequently no extension is needed to construct VH(D4).

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 13

In Vh(D2) and Vh(D3), the PV traces represent the constant unity traces (tan-
gential flow or normal flux) and their associated coarse dofs on the respective
agglomerated entities (edges or facets). For example, considering Vh(D3), a coarse
facet F , and its orientation provided by the vector ϕF , as described in Section 3.2.1,
the normal flux trace on F of the respective PV basis function, φF

PV,3
, is the following:

φF
PV,3
· nF =

∑
f⊂F

(ϕF)f φ
f
PV,3
· nf , satisfying

∫
F
φF

PV,3
· nF dσ = 1,

where nF and nf are the corresponding normal vectors to the coarse facet F and its

constituting fine facets, f , which respect their particular orientations, (ϕF)f denotes

the vector entry associated with f , and φf
PV,3

are the respective finer-level PV basis

functions, which on the finest level are extracted from MFEM. Thus, the algebraic
representation of the PV trace on F is derived from the vector ϕF .

The other target traces on their respective agglomerated entities are othogonalized
and made orthogonal to the PV traces in the respective L2 sense on those entities,
removing any linear dependence, using SVD and local mass matrices formulated on
the respective trace spaces. Note that this implies that all target traces, apart from
the PV traces, have a zero mean and the corresponding trace-space mass matrices
produced via “RAP” on all levels, apart from the finest one, are diagonal. This
completes the construction of the coarse basis functions for VH(D4), while the rest
of the spaces utilize an extension process.

3.3.3. Extension process. The extension procedure moves from right to left in the de
Rham sequence (3.3) and is quite intricate. A most basic formal outline is provided
here and an expository illustration is shown in Fig. 3.6. For a more detailed related
discussion, including the feasibility of the extension problems, the demonstration of
the exactness (3.4) and commutativity (3.5) properties, and further analysis, see [46].

All intricate extension processes outlined here, producing the final interpolation
matrices (cf. Section 3.2.2), together with the construction of the coarse cochain
projection and discrete differential operators (cf. Sections 3.2.3 and 3.3.4), the initial
selection of PV traces and distribution of target traces to agglomerated entities (cf.
Section 3.3.2), and all other necessary tasks that compose a complete coarse de Rham
sequence are executed via a simple call to the Coarsen() member function of the
DeRhamSequence class. It produces a complete working coarse de Rham sequence,
as an object6 of DeRhamSequence, from a current (fine) de Rham sequence.

Extension from the lowest-dimensional traces. The first extension is from the lowest-
dimensional, for the respective space, agglomerated entity to a one-dimension-higher
agglomerated entity; see Figs. 3.6a and 3.6b for an illustration. That is, for i =
1, . . . , 3, the extensions are respectively vertex to edge, edge to facet, and facet to
element. The discussion here is associated with the method hFacetExtension() of
the class DeRhamSequence, called within DeRhamSequence::Coarsen().

Let L be a lowest-dimensional entity, K a one-dimension-higher entity such that
L ⊂ ∂K, and µ a given target trace on L. Using an intuitive abuse of notation, the
respective extension of µ to K, φe, in Vh(Di) is obtained by solving the local PDE
formally expressed as:

φe +D∗K,i ψ = 0 in K,

6More particularly, as an object of the subclass DeRhamSequenceAlg suited for algebraic levels; see
Section 3.2.5.

14 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

extension−−−−−−→

(a) Extension of the PV trace on the agglomerated facet

extension−−−−−−→

(b) Extension of a trace, on the agglomerated facet, L2-orthogonal
to the PV trace

extension←−−−−−−

(c) Cross-space extension from an L2 basis function to an H(div) bubble function

Figure 3.6. A two-dimensional illustration of local extension proce-
dures producing shape functions in H(div) on a sample agglomerated
element, involving respective traces on an agglomerated facet (marked
with a light shade) and bubble functions in the agglomerate.

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 15

DK,i φe = c φKPV,i+1 in K,

γi φe = µ on L,

γi φe = 0 on ∂K \ L,

where φKPV,i+1 is the PV trace in Vh(Di+1) associated with K, ψ is a local-on-K

function in Vh(Di+1), which is constrained, for solvability, to have a respective zero
mean in K, and c is the scalar Lagrangian multiplier associated with that constraint,
which represents a scaling, that is a part of the unknowns, providing compatibility of
the PDE in terms of properly relating the exterior derivative value, DK,i φe, and the
boundary value, µ, in the Stokes’ theorem. Clearly, c = 0 for all traget traces µ, except
when µ represents the respective PV trace in Vh(Di) associated with L, i.e., c = 0
for all zero-mean targets µ on L. Recall that DK,i denotes the differential operator
Di on the entity K, which in the discrete setting, since everything is formulated on
the respective local dofs, is represented by a corresponding submatrix of Dh

i , while
D∗K,i denotes a formal adjoint, which in the setting of a mixed finite element (weak)
discrete formulation is obtained via a corresponding matrix transposition. Note that
here the notation γi slightly, but intuitively, expands the basic definition of γi-traces
in Section 3.1. Namely, for i = 1, . . . , 3, L is respectively an agglomerated vertex,
edge, and facet, while γi on L is respectively a point value on the vertex, tangential
flow on the edge, and normal flux on the facet.

Next, Vh(Di) bubble functions on K are obtained by a cross-space extension from
Vh(Di+1) to Vh(Di); see Fig. 3.6c for an illustration.. This assists the procurement
of the exactness (3.4). Denote by φK⊥,i+1 any L2-orthogonal to φKPV,i+1 (i.e., having

a respective zero mean) Vh(Di+1) target trace on K. For each such φK⊥,i+1, the
corresponding bubble function, φb, is obtained by solving

φb +D∗K,i ψ = 0 in K,

DK,i φb = φK⊥,i+1 + c φKPV,i+1 in K,

γi φb = 0 on ∂K,

where c is present for stabilizing the system and clearly c = 0 in the actual solution.
To enhance the approximation properties, further DK,i-free7 bubble functions on

K in Vh(Di) are produced by projecting the given target traces in Vh(Di) associated
with K onto the respective space of DK,i-free bubble functions and filtering out any
linear dependence. In the case of i = 3, this finishes the process and no further
extension is needed.

Further extensions to higher-dimensional agglomerated entities. For the case of i = 2,
one more major extension step (facets → elements) is necessary, while two such
steps (edges→ facets→ elements) are required for i = 1. Each such step, involving
cross-space extensions, has the following generic form. The discussion here, for each
extension step, is associated with the method hRidgePeakExtension() of the class
DeRhamSequence, called within DeRhamSequence::Coarsen().

Let N be a lower-dimensional agglomerated entity (but not a lowest-dimensional
one), M a one-dimension-higher agglomerated entity such that N ⊂ ∂M , and η a
trace on N produced by a previous (lower-dimensional) extension. Observe that at
the current stage the construction of VH(Di+1) is already completed and the nature
of the extension procedure, that provided η, makes already known the VH(Di+1)

7That is, functions for which applying DK,i gives zero.

16 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

function to which Di would map the final VH(Di) basis function related to η. Thus,
appoint the trace on M of that known VH(Di+1) function, expressed in Vh(Di+1)
dofs, as the value of DM,i η, notwithstanding that η is defined only on N . Then, the

respective extension of η to M , φE , in Vh(Di) is obtained by solving the following
formal local PDE:

φE +D∗M,i χ = 0 in M,

DM,i φE −D∗M,i+1DM,i+1 χ = DM,i η in M,

γi φE = η on N,

γi φE = 0 on ∂M \N,

where χ is a local-on-M function in Vh(Di+1).
To facilitate the exactness (3.4), Vh(Di) bubble functions on M are produced.

During the construction of VH(Di+1), the basis functions that span Ker(DH
i+1) are

known and their traces on M , φM0,i+1, are available. Such basis functions are the
ones associated with respective Di+1-free bubble functions and target traces with a
zero mean (i.e., orthogonal to the respective PV targets). For each such φM0,i+1, the
corresponding bubble function, φB, is obtained by solving

φB +D∗M,i χ = 0 in M,

DM,i φB −D∗M,i+1DM,i+1 χ = φM0,i+1 in M,

γi φB = 0 on ∂M.

The term D∗M,i+1DM,i+1 χ helps to stabilize the system and here it is zero for the
final solution.

Finally, the given target traces in Vh(Di) associated with M are projected on the
space of DM,i-free bubble functions on M in Vh(Di) and added towards the basis

(possibly awaiting further extension) for VH(Di), filtering out any linear dependence.
Notice that this is not sensible for Vh(D1), since any such bubble function would
vanish everywhere. After sufficiently many sweeps (one or two) of the above procedure,
the extension process is completed and the coarse de Rham sequence is constructed.

3.3.4. The coarse cochain projection operators. Together with the construction of
the coarse de Rham sequence, ParELAG builds the projection operators ΠH

i for
i = 1, . . . , 4, that are obtainable in sparse matrix form and satisfy the commutativity
property (3.5). Their construction parallels the production of the coarse basis
functions, starting from the designation of the target traces through moving to higher-
dimensional local entities. As indicated in Section 3.2.3, similar to the construction
of the prolongation matrices, the projection operators are obtained via independent
local agglomerate-by-agglomerate procedures. As a result, on each coarse entity of
any admissible dimensionality a local version of the projection operator is obtained
from which the global ΠH

i can be assembled by piecing together the local actions,
since those actions naturally agree on dofs shared between coarse entities. The
independent production of each such local projection operator involves the inversion
of a small coarse-scale local mass matrix on the respective coarse entity. More details
can be found in [46]; see also [53, 44].

The cochain projection operators do not merely constitute a theoretical tool, but
they are also explicitly utilized. Particularly, they are used internally in ParELAG,
e.g., in the invocation of AMS and ADS; see Section 4.2. Moreover, they are needed
in the implementation of multilevel Monte Carlo methodologies [51, 50] and efficient
multilevel nonlinear solvers like FAS (full approximation scheme) [42].

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 17

Remark 3.2. The implementation in ParELAG allows, and it is a common practice,
the utilization of coefficients in the local extension PDEs. Such coefficients typically
come from the particular given problem for which ParELAG is used. For example,
the coefficients α and β in (2.1) are incorporated in the appropriate local PDEs.
Thus, the extension procedure can be informed about the particular problem of
interest and the obtained coarse bases become problem-dependent.

4. Smoothers, coarse solvers, and the multigrid

Generally, multigrid preconditioners, implemented via multilevel cycles, e.g., the
well-known V-cycle described by Algorithm 4.1 (see [58]), have as components: a
hierarchy of spaces given in the form of a hierarchy of prolongators, a relaxation
(or smoothing) procedure, and a solver or preconditioner for the coarsest problem.
The spaces and prolongators are obtained by the processes outlined in Sections 3.2
and 3.3. This section is devoted to describing hybrid (“combined” a.k.a. “Hiptmair”)
smoothers and coarse AMS and ADS solvers, implemented and utilized in the broad
context of generic de Rham sequences as constructed by ParELAG and outlined in
Section 3. The hybrid smoothers are implemented within ParELAG, while AMS
and ADS are an abstract part of the HYPRE library [1], where ParELAG provides
the necessary ingredients, like general transition and projection operators, to utilize
them. Note that while in principle Algorithm 4.1 can be used iteratively to obtain
a stationary (or fixed-point) iterative method, the main interest here is to apply
the preconditioner B−1

ML in a preconditioned conjugate gradient (PCG) method for
solving problems involving the bilinear forms in (2.1). In that case, Algorithm 4.1 is
invoked with x0 = 0.

Algorithm 4.1 A procedure implementing a single multilevel V-cycle. Computes
the effect of a multilevel preconditioner B−1

ML, i.e., xML = x0 +B−1
ML(b−Ax0).

PROCEDURE: xML ←ML
(
A, b, x0, {Mk}`−1

k=1, {P kk+1}
`−1
k=1, B

−1
` , l

)
INPUT: A matrix A, a right-hand side vector b, a current iterate x0, a hierarchy of
relaxation {Mk}`−1

k=1 and prolongation {P kk+1}
`−1
k=1 operators, a solver or preconditioner

B−1
` on the coarsest level, and a current level l. Here, ` is the number of levels in the

hierarchy, where a smaller index corresponds to a finer level, and P kk+1 is the prolongator
from level k + 1 to level k. Externally, the procedure is to be invoked on the finest level
with a matrix and a right-hand side formulated on the finest level, and with l = 1.
OUTPUT: A new multigrid iterate xML ← x.
STEPS:
Initialize: x← x0.
Pre-relax: x← x +M−1

l (b−Ax).

Correct (evoke B−1
` or recurse):

if l = `− 1 (i.e., coarsest level reached) then
ec ← B−1

` (P ll+1)T (b−Ax);
else

ec ←ML
(
(P ll+1)TAP ll+1, (P ll+1)T (b−Ax), 0, {Mk}`−1

k=1, {P kk+1}
`−1
k=1, B

−1
` , l + 1

)
;

end if
x← x + P ll+1 ec.

Post-relax: x← x +M−T
l (b−Ax).

4.1. Relaxation via hybrid smoothers. A general level-independent smoothing
procedure based on [29] (see also [58, Appendix F]) is outlined here, providing the

18 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

relaxation processes {Mk} in Algorithm 4.1 for all levels and spaces in the de Rham
sequence.

To fix the exposition, consider a generic coarse de Rham complex, using the “H”
(superscript) notation, as in (3.3). By the virtue of (2.1), for i = 1, . . . , 4, regard
bilinear forms aDi(u, v) = (αiDiu,Div)0 + (βi u, v)0 for u, v ∈ H(Di) and αi > 0,
βi ≥ 0. In terms of the bases and dofs of VH(Di), these bilinear forms induce matrices
AHDi

. With respect to that notation, this work concentrates on the implementation

and utilization of Algorithm 4.1 for A = Ahcurl and A = Ahdiv, which arise from the

forms in (2.1). Consider given generic (point) smoothers MH
Di

for the respective AHDi
.

The “combined” procedure here employs these point smoothers to obtain hybrid
smoothers, denoted by MH

Di
, that are used as {Mk} in Algorithm 4.1.

Let MH
D1

= MH
D1

, while for i > 1, the hybrid smoothers need to “reach” in the
reverse direction of the de Rham sequence. Clearly, such a “combined” approach is
not necessary for i = 4, thus the main utility of these smoothers is for i = 2, 3. The
procedure is founded upon certain decompositions of the spaces and the exactness
in (3.4), similar to the methods in Section 4.2 below. The basic intuitive idea, for
i > 1, is to regard a decomposition VH(Di) = Ker(DH

i) ⊕ [Ker(DH
i)]⊥ and utilize

smoothers that are respectively efficient on Ker(DH
i) and [Ker(DH

i)]⊥. Smoothing
the component in Ker(DH

i) is based on (3.4), which allows the utilization of MH
Di−1

and DH
i−1 as a transition operator, whereas the [Ker(DH

i)]⊥ component is addressed

by MH
Di

. Namely, for i > 1 and a given x0, x1 = x0 + (MH
Di

)−1(b − AHDi
x0) is

computed via the following two steps:

x 1
2

= x0 + (MH
Di

)−1(b−AHDi
x0),

x1 = x 1
2

+DH
i−1 (MH

Di−1
)−1 (DH

i−1)T (b−AHDi
x 1

2
).

(4.1)

That is, the error propagation operator satisfies

I − (MH
Di

)−1AHDi
=
[
I −DH

i−1 (MH
Di−1

)−1 (DH
i−1)T AHDi

] [
I − (MH

Di
)−1AHDi

]
.

Notice that, since generally DH
i D

H
i−1 = 0, recursively utilizing MH

Di−1
in place of

MH
Di−1

in (4.1) changes nothing. Therefore, there is no need to “reach” further

than one step backwards into the de Rham sequence. To compute an iteration with
(MH

Di
)−T , reverse the order of the steps in (4.1), while respectively using (MH

Di
)−T

and (MH
Di−1

)−T in place of the ones in (4.1).

In general, only AHDi
may be given and AHDi−1

may not be readily available to derive

MH
Di−1

. In such a case, a practical alternative way is to obtain it “variationally” by

setting AHDi−1
= (DH

i−1)T AHDi
DH
i−1, which is the matrix of a bilinear form on VH(Di−1)

expressed in terms of the dofs and basis in VH(Di−1). In fact, the respective bilinear
form represents a restriction of aDi(·, ·) onto Ker(DH

i). That is, the variational AHDi−1

represents AHDi
on the space Range(DH

i−1) = Ker(DH
i), equipped with the dofs and

basis from VH(Di−1). This is precisely what ParELAG uses.
In this work, the so called `1-scaled symmetric block Gauss-Seidel smoother [12],

as implemented in HYPRE, is used for MDi . For more details on the analysis of the
hybrid approach in a multigrid setting, which counts on the exactness property (3.4),
see [58, Appendix F].

4.2. Coarse solvers using AMS and ADS. Similarly to Section 4.1, special (a.k.a.
regular) decompositions (cf. [32]) of the finite element spaces of interest are used that

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 19

allow breaking the problem of obtaining a holistic preconditioner into preconditioning
the separate components of the decomposition. This provides an auxiliary space
preconditioner that reduces the problem to preconditioning a few H1-type forms,
which can be efficiently addressed by AMG, and smoothing. As a part of HYPRE,
BoomerAMG is used in this case. In this work, AMS and ADS, possibly wrapped in
PCG and performing multiple iterations up to a given tolerance, are to be used as
coarse solvers B−1

` in Algorithm 4.1.
For simplicity of exposition, a fine-scale de Rham sequence is considered, using

the “h” (superscript) notation, as in (3.1). The utility of such decompositions and
methods is general and applicable on generic coarse levels as well, which is of main
interest in this work. This is shortly discussed below. Denote the following vector
finite element space as Vh(D1) = Vh(grad) = [Vh(grad)]3 and the following restricted

interpolation operators as Π̂h
2 : Vh(grad)→ Vh(curl) and Π̂h

3 : Vh(grad)→ Vh(div),

where Π̂h
i r

h = Πh
i r

h, in the sense of functions, for i = 2, 3 and any rh ∈ Vh(grad).

Notice that Π̂h
i for i = 2, 3 can be viewed as matrices with respect to the corresponding

dofs and bases in the discrete spaces. They can be assembled (using overwriting)
from locally computed element matrices. Also, the notation in Section 4.1 is utilized.

Consider first the case of Vh(curl) and the auxiliary space preconditioner for Ahcurl

associated with (2.1). The decomposition of interest is

(4.2) vh = ṽh + Π̂h
2 r

h +Dh
1z

h for vh ∈ Vh(curl),

where ṽh ∈ Vh(curl), rh ∈ Vh(grad), and zh ∈ Vh(grad). The exactness and
commutativity properties of the sequence, as in (3.4) and (3.5), are instrumental for
the existence and stability properties of such decompositions, as shown in [32]. This
decomposition inspires an (additive) auxiliary space preconditioner of the following
general type:

(4.3) (Bh
curl)

−1 = (Mh
curl)

−1 + Π̂h
2 (Bh

grad)−1 (Π̂h
2)T +Dh

1 (Bh
grad)−1 (Dh

1)T ,

where Mh
curl is a smoother for Ahcurl, while Bh

grad is a preconditioner derived from

a vector H1-type formulation and its matrix, Ahgrad, and Bh
grad is a preconditioner

derived from a scalar H1-type formulation and its matrix, Ahgrad, which are typ-

ically implemented by invoking AMG. While Ahgrad and Ahgrad can be explicitly
provided, assembled from given bilinear forms, ParELAG defaults to utilizing vari-

ationally obtained, from the given Ahcurl, matrices like Ahgrad = (Π̂h
2)T Ahcurl Π̂

h
2 and

Ahgrad = (Dh
1)T AhcurlD

h
1 . The exposition here presents only basic considerations.

AMS implements preconditioners like Bh
curl and other variations, e.g., multiplicative

versions and ones that treat Vh(grad) in a scalar component-wise fashion. For more
details see [40] and the documentation of HYPRE [1].

Next, consider Vh(div) and the auxiliary space preconditioner for Ahdiv associated
with (2.1). The decomposition now is

(4.4) vh = ṽh + Π̂h
3 r

h +Dh
2z

h for vh ∈ Vh(div),

where ṽh ∈ Vh(div), rh ∈ Vh(grad), and zh ∈ Vh(curl). Reusing the above notation
in a slightly modified context, the respective (additive) auxiliary space preconditioner
is of the following general type:

(Bh
div)−1 = (Mh

div)−1 + Π̂h
3 (Bh

grad)−1 (Π̂h
3)T +Dh

2 (Bh
curl)

−1 (Dh
2)T ,

20 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

where Mh
div is a smoother for Ahdiv, Bh

grad is a preconditioner for a Ahgrad matrix

(typically, AMG), and Bh
curl is a preconditioner like the one in (4.3) for a Ahcurl matrix.

Notice that in this setting the term Dh
1 (Bh

grad)−1 (Dh
1)T in (4.3) is dropped, since

Dh
2D

h
1 = 0. Again, Ahgrad and Ahcurl can be obtained via assembly from given bilinear

forms, including Ahcurl can be associated as above with (2.1), but it is convenient to use

matrices obtained variationally from the given Ahdiv. Namely, Ahgrad = (Π̂h
3)T Ahdiv Π̂

h
3

and Ahcurl = (Dh
2)T Ahdiv D

h
2 . ADS implements preconditioners like Bh

div including

multiplicative variants and a scalar component-wise approach. Note that Bh
div

presented here indicates that ADS calls AMS internally as a part of the process.
Alternatively, the decomposition (4.2) can be applied in (4.4) to further decompose the
component zh ∈ Vh(curl), obtaining directly a final decomposition and a respective
preconditioner utilizing only smoothers and H1-type forms. For more details see [41]
and the documentation of HYPRE [1].

The utilization of these methods necessitates the provision of matrices Dh
i−1, Π̂h

i

or DH
i−1, Π̂H

i for i = 2, 3, where the coarse versions are of interest in this paper.

Those are supplied as input parameters to AMS and ADS. Note that Dh
i−1, Π̂h

i , and

DH
i−1 are readily obtainable from MFEM (via an overwriting assembly from element

matrices) and the coarsening process in ParELAG, while Π̂H
i : VH(grad)→ VH(Di)

are separately constructed within ParELAG. Namely, considering the setting in

(3.3), Π̂H
i = ΠH

i Π̂h
i P 1, where P 1 : VH(grad)→ Vh(grad) is the interpolation matrix

formed as P 1 = diag(P1, P1, P1), while P1 and ΠH
i are constructed during the

coarsening process of Sections 3.2 and 3.3. This is performed recursively to obtain

Π̂H
i on any level.

4.3. Comments on the solver structures in ParELAG. The ParELAG library
provides access to a variety of solvers for sparse linear systems, including for block
systems. Some of them are implemented within the library, like the hybrid smoothers
of Section 4.1 and the V-cycle of Algorithm 4.1 for AMGe, while others appropriately
setup and invoke external libraries, like HYPRE. Furthermore, these can be properly
combined to obtain a final solver method for a linear system of interest.

ParELAG achieves this by first generating a solver (or preconditioner) library
(an object of class SolverLibrary) from a parameter XML file with a very basic
and simple syntax. Such a file declares, for a particular computational program, all
utilized solvers and preconditioners together with their specific parameters and how
they are combined. A solver declaration is essentially assigning a name and a list of
parameters for a particular method that ParELAG provides internally. For example,
one can declare a solver in the XML file that represents a multigrid method like
the one in Algorithm 4.1 and appoint other solvers from the solver library to act as
smoothers and coarse solvers, which in turn have their own parameters set up and
may internally, as a part of a targeted complex procedure, employ other solvers or
preconditioners from the solver library. This is the case when utilizing the methods
of this section. A solver library is generated via an invocation of the static member
function CreateLibrary() of SolverLibrary, which builds a SolverLibrary object
from a provided XML configuration.

To computationally evoke a solver, declared in the XML file, one uses the produced
solver library to obtain a respective solver factory (an object of class SolverFactory),
for the particular method being utilized from the ones declared in the solver library,
by calling the GetSolverFactory() member function of SolverLibrary. Such a

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 21

factory is applied to construct, via calling the member function BuildSolver() of
SolverFactory, an individual solver (an object of class8 Solver) for a particular
given linear system of interest, which then can be invoked to solve the system.
The particular solver is invoked following the MFEM style, i.e., by a call to the
Mult() member in the respective Solver class. During the solver construction, the
parameters from the XML file are automatically set in the obtained solver, and
all necessary related solvers and preconditioners are constructed with the provided
parameters using their corresponding factories, which are respectively obtained from
the generated solver library. For example, during the construction of a multigrid
preconditioner, the respective smoothers and the solver on the coarsest level are
built as a part of the process of manufacturing the multigrid preconditioner. Such a
paradigm of solver structuring may sound familiar to a reader that has been exposed
to some of the popular available solver libraries.

Respective parameter XML files, employing and combining solvers relevant to this
work and outlined in this paper, and their utilization are demonstrated with the
ParELAG mini applications in MFEM. Generic solver factories for AMS, ADS, Krylov
space methods, hybrid smoothers, AMGe cycles, block preconditioners, other methods
within HYPRE and MFEM, etc. are implemented and available in ParELAG, and
they are accessible for use in parameter XML files.

5. Numerical examples

This section contains numerical results employing ParELAG in the context of the
discussed AMGe multigrid solvers for (2.1). The numerical examples are preceded
by a short comment on the ParELAG mini applications in MFEM, also used for
computing the results, and a description of the sample problem.

5.1. On the mini applications. A brief comment on the demonstrative ParELAG
mini applications [4] in MFEM is presented here. Two respective mini applications
are provided withing MFEM together with corresponding sample XML parameter
files (cf. Section 4.3) – one mini application for the H(curl) case and another for
H(div). While for simplicity and clarity they are separate applications, their general
structure is analogous as summarized below.

After loading and refining, as appointed, a given mesh file, the applications follow
the overall procedure outlined above; cf. Sections 3.2 and 3.3. Namely, successively the
coarse meshes and topologies are constructed (Sections 3.2.1 and 3.3.1) by reverting
MFEM-performed geometric refinements (utilizing MFEMRefinedMeshPartitioner),
coarse polynomial traces are identified (Section 3.3.2), and coarse spaces are con-
structed by producing their basis functions via the intricate extension procedure
(Section 3.3.3), including the construction of prolongation matrices (Section 3.2.2),
and coarse discrete differential operators and cochain projectors (Sections 3.2.3
and 3.3.4). All these are achieved via simple invocations of ParELAG. Moreover, the
matrices for the respective bilinear forms (2.1) are obtained on all levels (cf. Sec-
tion 3.2.2). Note that boundary conditions are imposed through standard elimination
of the respective dofs, which is performed on all levels, including the coarse9 ones,
since respective boundary dofs are distinguishable on all levels (cf. the last paragraph
of Section 3.2.1).

8The base Solver class is declared within MFEM.
9In more detail, in the case here, coarse matrices are obtained via “RAP” within the solver portion
of ParELAG, where the boundary dofs are directly eliminated in the prolongation matrices.

22 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

(α, β) = (1.641, 0.2) (α, β) = (0.00188, 2000)

Figure 5.1. Domain, initial or starting mesh (including a close-up
of the graded mesh in the upper right) of 116640 hexahedral elements,
and piecewise constant coefficients for the numerical examples.

In the end, the solver of interest, using PCG preconditioned by an AMGe V-cycle
with the respective smoothers and coarse solvers as described in Section 4, is invoked
to solve the corresponding fine-level system associated with (2.1). Note that the
solver and the particularities concerning it are entirely formulated and selected in
the respective XML parameter files (Section 4.3) and there are no solver specific
constructs indicated in the code of the mini applications.

5.2. On the experiments settings. The particular test setting is inspired by
a “crooked pipe” problem, which involves scalar coefficients with large jumps and
a graded mesh with highly stretched (anisotropic) elements. For demonstration,
the methodology is applied for solving linear systems coming from discretizations
of formulations using the bilinear forms in (2.1), a constant right-hand side, and
homogeneous essential boundary conditions for simplicity. The utilized domain,
(coarsest) mesh, and piecewise constant coefficients are depicted in Fig. 5.1, where
(α, β) = (1.641, 0.2) in the lighter portion of the domain and (α, β) = (0.00188, 2000)
in the darker portion.

The systems coming from (2.1) are solved using PCG preconditioned by a single
AMGe V-cycle; see Section 4. The iterative process is stopped when the relative size
of the residual, measured by the preconditioner-induced norm, is reduced by 10−6.
Note that the settings in the XML files take the relative reduction of the norm as
a parameter in the criteria, i.e., the parameters are set to 10−6, whereas the inner
solver displays and works with the respective inner products (without square roots),
making the utilized tolerance appear and be automatically internally squared to
10−12.

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 23

refs # procs # elems `
H(curl) H(div)

dofs # ite # ita # dofs # ite # ita
2 72 7,464,960 3 22,772,484 131 93 22,583,232 36 31

3 576 59,719,680 3 180,667,656 198 118 179,912,448 55 44

4 4,608 477,757,440 3 1,439,303,184 231 148 1,436,285,952 86 60

3 576 59,719,680 4 180,667,656 169 118 179,912,448 54 44

4 4,608 477,757,440 5 1,439,303,184 190 148 1,436,285,952 77 60

Table 5.1. Solver results with lowest order finite elements for both
H(curl) and H(div), as provided by (2.1) and Fig. 5.1. In all cases,
elems / # procs = 103,680 on the finest level.

The V-cycles use AMGe hierarchies, as described above, and hybrid smoothers
for pre and post-relaxation; see Section 4.1. An application of the hybrid smoother
invokes two sweeps of `1-scaled symmetric block Gauss-Seidel for each primary and
auxiliary smoothings within the hybrid approach. A fixed number of five iterations of
PCG preconditioned by AMS or ADS, respectively, serves as a solver on the coarsest
level10; see Section 4.2.

In the tests, the mesh in Fig. 5.1 is refined to obtain a fine-grid problem, which is
consequently solved in parallel by the methods discussed in this paper. Experiments
are performed in a weak scaling setting, in the sense that as the mesh is refined
uniformly, the number of processors is increased accordingly so that the number of
elements per processor is maintained constant.

5.3. Results. Computational results on solving systems induced by (2.1) in parallel
for these generally challenging problems are presented here, employing lowest and next
to the lowest order finite elements and uniformly refining the initial mesh in Fig. 5.1.
The tests utilize the Quartz cluster at Lawrence Livermore National Laboratory. It is
equipped on each node with 128 GB of memory and two 18-core Intel Xeon E5-2695
v4 CPUs at 2.1 GHz, resulting in 36 computational cores per node, and the total
number of computational nodes (cores) is 2,988 (107,568). The peak single CPU
memory bandwidth is 77 GB/s and the Cornelis Networks Omni-Path provides the
inter-node connection.

The number of PCG, using AMGe, iterations (# ite), the number of dofs (# dofs),
and the number of elements (# elems) on the finest level are reported, as well as
the number of uniform mesh refinements (# refs) employed to obtain the fine mesh,
the total number of levels (denoted by `) in the AMGe hierarchy, and the number of
utilized processors11 (# procs).

For completeness, respective results with AMS and ADS are provided as state of
the art methods. This includes the number of PCG, using AMS or ADS, iterations
(# ita) and wall-clock timings.

5.3.1. Results for lowest order elements. Problem information and solvers iterations
are shown in Table 5.1 for both H(curl) and H(div). Two test cases are demonstrated:
one where the number of AMGe levels is kept fixed (equal to 3) as the fine mesh
is refined, essentially also refining the coarsest level, and another where as the fine

10The particular choice is largely motivated by the objective to demonstrate the functionality of the
library and the ability to combine a variety of solvers and smoothers in the XML files to obtain a
sophisticated combined final method. Using a singe or a few applications of the respective AMS or
ADS, without PCG, is also a valid option here.
11Strictly speaking, this is the number of individual independent computational units, i.e., cores.

24 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

13.6

13.8

14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

const levels
const coarse

(a) Coarse de Rham sequences build

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(b) Solver initialization

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(c) Total solve time

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(d) Average time per iteration

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(e) Total program execution

Figure 5.2. Weak scaling with lowest order finite elements, where
elems / # procs = 103,680 on the finest level.

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 25

refs # procs # elems `
H(curl) H(div)

dofs # ite # ita # dofs # ite # ita
2 720 7,464,960 3 180,667,656 191 166 179,912,448 60 57

3 5,760 59,719,680 3 1,439,303,184 269 223 1,436,285,952 100 78

3 5,760 59,719,680 4 1,439,303,184 285 223 1,436,285,952 84 78

Table 5.2. Solver results with next to the lowest order finite elements
for both H(curl) and H(div), as provided by (2.1) and Fig. 5.1. In
all cases, # elems / # procs = 10,368 on the finest level.

mesh is refined the number of levels is increased so that the coarsest level is constant
and coinciding with the initial mesh presented in Fig. 5.1.

Timing plots, using wall-clock times as reported by the code of the miniapps,
are shown in Fig. 5.2, including wall-clock times for the entire program executions.
Clearly, AMGe(curl) and AMGe(div) denote the AMGe solvers for the H(curl) and
H(div)-conforming problems, respectively, and both cases of constant number of
levels and a constant size of the coarsest problem are shown. The construction of
the whole coarse de Rham sequences is also reported, which includes the element
agglomeration times, the local extension procedures, and building other necessary
constructs. Notice that the construction time does not grow much, especially in the
case of constant number of levels, since the majority of the spent cost is on the local
extension procedures, which scale perfectly, as they involve no communication.

Observe that the AMGe approach performs well and is comparable to the state of
the art represented by AMS and ADS. Quite interestingly, Fig. 5.2 indicates that
the case of increasing the number of AMGe levels demonstrates better scalability.
To exploit this scalability potential in practice for extremely large problems in the
setting of extreme parallelism, parallel redistribution and load balancing would be
needed on coarse levels obtained via AMGe to allow sufficient coarsening when large
number of processors are utilized. This is a subject of an ongoing work.

5.3.2. Results for next to the lowest order elements. For completeness, results using
next to the lowest order finite elements are presented in Table 5.2 and Fig. 5.3,
following the paradigm of the previous subsection. Again, the AMGe methodology
performs well and is comparable to the state of the art.

Note that the finest MFEM-generated level and the coarse ParELAG-generated
levels in the miniapps by default interpret next to the lowest order slightly differently,
even if similar, especially when employing hexahedral elements. Consider for example
the L2-conforming finite elements spaces of piecewise polynomial functions. Being
informed about the geometry of the elements and their tensor-product structure,
MFEM produces bilinear elements with 8 dofs and basis functions per element. In
contrast, ParELAG operates in a generic geometry-agnostic way and by default the
finite element order determines the order of the targets. Thus, by default it produces
targets and spaces that provide piecewise linear interpolation independently of the
shape of the element, resulting in 4 dofs and basis functions per element. Generally,
this behavior can be easily altered by changing the way targets are selected, but the
concentration here is on the default behavior.

6. Conclusions and future work

In this paper, we have introduced an AMGe approach for H(curl) and H(div)
formulations. It involves coarsening of the de Rham sequence, utilizing hybrid
smoothers, and evoking the current state-of-the-art solvers, AMS and ADS, for

26 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

42.6

42.8

43

43.2

43.4

43.6

43.8

44

44.2

0 1000 2000 3000 4000 5000 6000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

const levels
const coarse

(a) Coarse de Rham sequences build

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(b) Solver initialization

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(c) Total solve time

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

0 1000 2000 3000 4000 5000 6000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(d) Average time per iteration

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(e) Total program execution

Figure 5.3. Weak scaling with next to the lowest order finite ele-
ments, where # elems / # procs = 10,368 on the finest level.

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 27

solving the coarsest problems. The methods are described and their performance
shown in numerical examples. Also, an overview of ParELAG is presented. The
approach demonstrates good performance for problems of interest and partially
reveals the utility of ParELAG. The library has capacity and potential to be useful
for addressing a variety of other problems and settings. Currently, ParELAG does
not admit agglomerated elements that are shared or redistributed between processors.
This is a potential limitation of the scalability of the library. The development of
such functionality is a currently ongoing work. Also, the hybridization and static
condensation methods of [24, 38, 37] can be implemented for solving the coarsest
H(div) problems, in lieu of invoking ADS.

References

[1] HYPRE: Scalable Linear Solvers and Multigrid Methods. http://computing.llnl.gov/

projects/hypre-scalable-linear-solvers-multigrid-methods.
[2] METIS: Graph Partitioning and Fill-reducing Matrix Ordering. http://glaros.dtc.umn.edu/

gkhome/views/metis.
[3] MFEM: Modular Finite Element Methods Library. http://mfem.org. doi:10.11578/dc.

20171025.1248.
[4] ParELAG mini applications in MFEM. https://github.com/mfem/mfem/tree/master/

miniapps/parelag.
[5] ParELAG: Parallel Element Agglomeration Algebraic Multigrid Upscaling and Solvers. http:

//github.com/LLNL/parelag.
[6] J H Adler and P S Vassilevski. Improving Conservation for First-Order System Least-Squares

Finite-Element Methods. In Oleg P Iliev, Svetozar D Margenov, Peter D Minev, Panayot S
Vassilevski, and Ludmil T Zikatanov, editors, Numer. Solut. Partial Differ. Equations Theory,
Algorithms, Their Appl., pages 1–19, 2013. doi:10.1007/978-1-4614-7172-1_1.

[7] JH Adler and Panayot S Vassilevski. Error analysis for constrained first-order system least-
squares finite-element methods. SIAM Journal on Scientific Computing, 36(3):A1071–A1088,
2014.

[8] Douglas N Arnold, Richard S Falk, and Jay Gopalakrishnan. Mixed Finite Element Approxima-
tion of the Vector Laplace with Dirichlet Boundary Conditions. Math. Model. Methods Appl.
Sci., 22(09):1250024, 2012. doi:10.1142/S0218202512500248.

[9] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Preconditioning in H(div) and
applications. Math. Comput., 66(219):957–985, 1997. doi:10.1090/S0025-5718-97-00826-0.

[10] Douglas N Arnold, Richard S Falk, and Ragnar Winther. Multigrid in H(div) and H(curl).
Numer. Math., 85(2):197–217, 2000. doi:10.1007/PL00005386.

[11] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus:
from Hodge theory to numerical stability. Bull. Am. Math. Soc., 47(2):281–354, 2010. doi:
10.1090/S0273-0979-10-01278-4.

[12] A Baker, R Falgout, T Kolev, and U Yang. Multigrid Smoothers for Ultraparallel Computing.
SIAM J. Sci. Comput., 33(5):2864–2887, 2011. doi:10.1137/100798806.

[13] Nathan Bell and Luke N Olson. Algebraic multigrid for k-form Laplacians. Numer. Linear
Algebr. with Appl., 15(2-3):165–185, 2008. doi:10.1002/nla.577.

[14] Pavel B Bochev, Christopher J Garasi, Jonathan J Hu, Allen C Robinson, and Raymond S
Tuminaro. An Improved Algebraic Multigrid Method for Solving Maxwell’s Equations. SIAM J.
Sci. Comput., 25(2):623–642, 2003. doi:10.1137/S1064827502407706.

[15] Pavel B Bochev, Jonathan J Hu, Allen C Robinson, and Raymond S Tuminaro. Towards robust
3D Z-pinch simulations: Discretization and fast solvers for magnetic diffusion in heterogeneous
conductors. Electron. Trans. Numer. Anal., 15:186–210, 2003.

[16] Pavel B Bochev, Jonathan J Hu, Christopher M Siefert, and Raymond S Tuminaro. An Algebraic
Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell’s Equations.
SIAM J. Sci. Comput., 31(1):557–583, 2008. doi:10.1137/070685932.

[17] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element Methods and Applications,
volume 44 of Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg, 2013.

http://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
http://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
http://mfem.org
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.11578/dc.20171025.1248
https://github.com/mfem/mfem/tree/master/miniapps/parelag
https://github.com/mfem/mfem/tree/master/miniapps/parelag
http://github.com/LLNL/parelag
http://github.com/LLNL/parelag
https://doi.org/10.1007/978-1-4614-7172-1_1
https://doi.org/10.1142/S0218202512500248
https://doi.org/10.1090/S0025-5718-97-00826-0
https://doi.org/10.1007/PL00005386
https://doi.org/10.1090/S0273-0979-10-01278-4
https://doi.org/10.1090/S0273-0979-10-01278-4
https://doi.org/10.1137/100798806
https://doi.org/10.1002/nla.577
https://doi.org/10.1137/S1064827502407706
https://doi.org/10.1137/070685932

28 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

[18] Marian Brezina and Panayot S Vassilevski. Smoothed Aggregation Spectral Element Agglomer-
ation AMG: SA-ρAMGe. In Ivan Lirkov, Svetozar Margenov, and Jerzy Waśniewski, editors,
Large-Scale Sci. Comput., pages 3–15, Berlin, Heidelberg, 2012. Springer.

[19] Thomas A Brunner. Forms of Approximate Radiation Transport. Technical report, SAND2002-
1778, Sandia National Laboratories, 2002. doi:10.2172/800993.

[20] Z Cai, R Lazarov, T A Manteuffel, and S F McCormick. First-Order System Least Squares for
Second-Order Partial Differential Equations: Part I. SIAM J. Numer. Anal., 31(6):1785–1799,
1994. doi:10.1137/0731091.

[21] Zhiqiang Cai, Charles Tong, Panayot S Vassilevski, and Chunbo Wang. Mixed finite element
methods for incompressible flow: Stationary Stokes equations. Numer. Methods Partial Differ.
Equ., 26(4):957–978, 2010. doi:10.1002/num.20467.

[22] Zhiqiang Cai, Chunbo Wang, and Shun Zhang. Mixed Finite Element Methods for Incompressible
Flow: Stationary Navier-Stokes Equations. SIAM J. Numer. Anal., 48(1):79–94, 2010. doi:
10.1137/080718413.

[23] T Chartier, R Falgout, V Henson, J Jones, T Manteuffel, S McCormick, J Ruge, and
P Vassilevski. Spectral AMGe (ρAMGe). SIAM J. Sci. Comput., 25(1):1–26, 2003. doi:

10.1137/S106482750139892X.
[24] V Dobrev, T Kolev, C S Lee, V Tomov, and P S Vassilevski. Algebraic Hybridization and Static

Condensation with Application to Scalable H(div) Preconditioning. SIAM J. Sci. Comput.,
41(3):B425–B447, 2019. doi:10.1137/17M1132562.

[25] Hillary R Fairbanks, Sarah Osborn, and Panayot S Vassilevski. Estimating posterior quantity
of interest expectations in a multilevel scalable framework. Numerical Linear Algebra with
Applications, page e2352, 2020.

[26] H.R. Fairbanks, U. Villa, and P.S. Vassilevski. Multilevel hierarchical decomposition of finite
element white noise with application to multilevel markov chain monte carlo. SIAM Journal on
Scientific Computing, in press. arXiv:2007.14440.

[27] Robert D Falgout and Panayot S Vassilevski. On Generalizing the Algebraic Multigrid Framework.
SIAM J. Numer. Anal., 42(4):1669–1693, 2004. doi:10.1137/S0036142903429742.

[28] R Hiptmair. Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal.,
6:133–152, 1997.

[29] R Hiptmair. Multigrid Method for Maxwell’s Equations. SIAM J. Numer. Anal., 36(1):204–225,
1998. doi:10.1137/S0036142997326203.

[30] R Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11:237–339,
2002. doi:10.1017/S0962492902000041.

[31] R Hiptmair, G Widmer, and J Zou. Auxiliary space preconditioning in H0(curl; Ω). Numer.
Math., 103(3):435–459, 2006. doi:10.1007/s00211-006-0683-0.

[32] R Hiptmair and J Xu. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces.
SIAM J. Numer. Anal., 45(6):2483–2509, 2007. doi:10.1137/060660588.

[33] Ralf Hiptmair and Andrea Toselli. Overlapping and Multilevel Schwarz Methods for Vector Val-
ued Elliptic Problems in Three Dimensions. In Petter Bjørstad and Mitchell Luskin, editors, Par-
allel Solut. Partial Differ. Equations, pages 181–208, 2000. doi:10.1007/978-1-4612-1176-1_8.

[34] J Jones and B Lee. A Multigrid Method for Variable Coefficient Maxwell’s Equations. SIAM J.
Sci. Comput., 27(5):1689–1708, 2006. doi:10.1137/040608283.

[35] Jim E Jones and Panayot S Vassilevski. AMGe Based on Element Agglomeration. SIAM J. Sci.
Comput., 23(1):109–133, 2001. doi:10.1137/S1064827599361047.

[36] D Z Kalchev, C S Lee, U Villa, Y Efendiev, and P S Vassilevski. Upscaling of Mixed Finite
Element Discretization Problems by the Spectral AMGe Method. SIAM J. Sci. Comput.,
38(5):A2912–A2933, 2016. doi:10.1137/15M1036683.

[37] Delyan Z Kalchev and Panayot Vassilevski. A Condensed Constrained Nonconforming Mortar-
Based Approach for Preconditioning Finite Element Discretization Problems. SIAM J. Sci.
Comput., 42(5):A3136–A3156, 2020. doi:10.1137/19M1305690.

[38] Delyan Z Kalchev and Panayot S Vassilevski. Auxiliary Space Preconditioning of Finite Element
Equations Using a Nonconforming Interior Penalty Reformulation and Static Condensation.
SIAM J. Sci. Comput., 42(3):A1741–A1764, 2020. doi:10.1137/19M1286815.

[39] Tzanio V Kolev, Joseph E Pasciak, and Panayot S Vassilevski. H(curl) auxiliary mesh precon-
ditioning. Numer. Linear Algebr. with Appl., 15(5):455–471, 2008. doi:10.1002/nla.534.

[40] Tzanio V Kolev and Panayot S Vassilevski. Parallel Auxiliary Space AMG for H(curl) Problems.
J. Comput. Math., 27(5):604–623, 2009. doi:10.4208/jcm.2009.27.5.013.

https://doi.org/10.2172/800993
https://doi.org/10.1137/0731091
https://doi.org/10.1002/num.20467
https://doi.org/10.1137/080718413
https://doi.org/10.1137/080718413
https://doi.org/10.1137/S106482750139892X
https://doi.org/10.1137/S106482750139892X
https://doi.org/10.1137/17M1132562
http://arxiv.org/abs/2007.14440
https://doi.org/10.1137/S0036142903429742
https://doi.org/10.1137/S0036142997326203
https://doi.org/10.1017/S0962492902000041
https://doi.org/10.1007/s00211-006-0683-0
https://doi.org/10.1137/060660588
https://doi.org/10.1007/978-1-4612-1176-1_8
https://doi.org/10.1137/040608283
https://doi.org/10.1137/S1064827599361047
https://doi.org/10.1137/15M1036683
https://doi.org/10.1137/19M1305690
https://doi.org/10.1137/19M1286815
https://doi.org/10.1002/nla.534
https://doi.org/10.4208/jcm.2009.27.5.013

PARELAG’S PARALLEL AMGE FOR H(curl) AND H(div) 29

[41] Tzanio V Kolev and Panayot S Vassilevski. Parallel Auxiliary Space AMG Solver for H(div)
Problems. SIAM J. Sci. Comput., 34(6):A3079–A3098, 2012. doi:10.1137/110859361.

[42] Max la Cour Christensen, Panayot S Vassilevski, and Umberto Villa. Nonlinear multigrid
solvers exploiting AMGe coarse spaces with approximation properties. J. Comput. Appl. Math.,
340:691–708, 2018. doi:10.1016/j.cam.2017.10.029.

[43] Max la Cour Christensen, Umberto Villa, Allan P Engsig-Karup, and Panayot S Vassilevski.
Numerical Multilevel Upscaling for Incompressible Flow in Reservoir Simulation: An Element-
Based Algebraic Multigrid (AMGe) Approach. SIAM J. Sci. Comput., 39(1):B102–B137, 2017.
doi:10.1137/140988991.

[44] I V Lashuk and P S Vassilevski. Element agglomeration coarse Raviart-Thomas spaces with
improved approximation properties. Numer. Linear Algebr. with Appl., 19(2):414–426, 2012.
doi:10.1002/nla.1819.

[45] Ilya Lashuk and Panayot S Vassilevski. On some versions of the element agglomeration AMGe
method. Numer. Linear Algebr. with Appl., 15(7):595–620, 2008. doi:10.1002/nla.585.

[46] Ilya V Lashuk and Panayot S Vassilevski. The Construction of the Coarse de Rham Complexes
with Improved Approximation Properties. Comput. Methods Appl. Math., 14(2):257–303, 2014.
doi:10.1515/cmam-2014-0004.

[47] Ping Lin. A Sequential Regularization Method for Time-Dependent Incompressible Navier-Stokes
Equations. SIAM J. Numer. Anal., 34(3):1051–1071, 1997. doi:10.1137/S0036142994270521.

[48] Peter Monk. Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and
Scientific Computation. Clarendon Press, Oxford, 2003.

[49] Duk-Soon Oh, Olof B Widlund, Stefano Zampini, and Clark R Dohrmann. BDDC Algorithms
with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector
fields. Math. Comput., 87(310):659–692, 2018. doi:10.1090/mcom/3254.

[50] Sarah Osborn, Panayot S Vassilevski, and Umberto Villa. A Multilevel, Hierarchical Sampling
Technique for Spatially Correlated Random Fields. SIAM J. Sci. Comput., 39(5):S543–S562,
2017. doi:10.1137/16M1082688.

[51] Sarah Osborn, Patrick Zulian, Thomas Benson, Umberto Villa, Rolf Krause, and Panayot S
Vassilevski. Scalable hierarchical PDE sampler for generating spatially correlated random
fields using nonmatching meshes. Numer. Linear Algebr. with Appl., 25(3):e2146, 2018. doi:
10.1002/nla.2146.

[52] J E Pasciak and J Zhao. Overlapping Schwarz methods in H(curl) on polyhedral domains. J.
Numer. Math., 10(3):221–234, 2002. doi:10.1515/JNMA.2002.221.

[53] Joseph E Pasciak and Panayot S Vassilevski. Exact de Rham Sequences of Spaces Defined on
Macro-Elements in Two and Three Spatial Dimensions. SIAM J. Sci. Comput., 30(5):2427–2446,
2008. doi:10.1137/070698178.

[54] A I Pehlivanov, G F Carey, and P S Vassilevski. Least-squares mixed finite element methods
for non-selfadjoint elliptic problems: I. Error estimates. Numer. Math., 72(4):501–522, 1996.
doi:10.1007/s002110050179.

[55] S Reitzinger and J Schöberl. An algebraic multigrid method for finite element discretizations with
edge elements. Numer. Linear Algebr. with Appl., 9(3):223–238, 2002. doi:10.1002/nla.271.

[56] R N Rieben, D A White, B K Wallin, and J M Solberg. An arbitrary Lagrangian-Eulerian
discretization of MHD on 3D unstructured grids. J. Comput. Phys., 226(1):534–570, 2007.
doi:10.1016/j.jcp.2007.04.031.

[57] Panayot S. Vassilevski. Sparse matrix element topology with application to amg and precondi-
tioning. Numer. Lin. Alg. Appl., 9:429–444, 2002.

[58] Panayot S Vassilevski. Multilevel Block Factorization Preconditioners: Matrix-based Analysis
and Algorithms for Solving Finite Element Equations. Springer, New York, 2008. doi:10.1007/
978-0-387-71564-3.

[59] Panayot S Vassilevski. Coarse Spaces by Algebraic Multigrid: Multigrid Convergence and
Upscaling Error Estimates. Adv. Adapt. Data Anal., 03(01n02):229–249, 2011. doi:10.1142/
S1793536911000830.

[60] Panayot S Vassilevski and Umberto Villa. A Block-Diagonal Algebraic Multigrid Preconditioner
for the Brinkman Problem. SIAM J. Sci. Comput., 35(5):S3–S17, 2013. doi:10.1137/120882846.

[61] Panayot S. Vassilevski and Junping Wang. Multilevel iterative methods for mixed finite ele-
ment discretizations of elliptic problems. Numer. Math., 63(1):503–520, 1992. doi:10.1007/
BF01385872.

[62] Jinchao Xu, Long Chen, and Ricardo H Nochetto. Optimal multilevel methods for H(grad),
H(curl), and H(div) systems on graded and unstructured grids. In Ronald DeVore and Angela

https://doi.org/10.1137/110859361
https://doi.org/10.1016/j.cam.2017.10.029
https://doi.org/10.1137/140988991
https://doi.org/10.1002/nla.1819
https://doi.org/10.1002/nla.585
https://doi.org/10.1515/cmam-2014-0004
https://doi.org/10.1137/S0036142994270521
https://doi.org/10.1090/mcom/3254
https://doi.org/10.1137/16M1082688
https://doi.org/10.1002/nla.2146
https://doi.org/10.1002/nla.2146
https://doi.org/10.1515/JNMA.2002.221
https://doi.org/10.1137/070698178
https://doi.org/10.1007/s002110050179
https://doi.org/10.1002/nla.271
https://doi.org/10.1016/j.jcp.2007.04.031
https://doi.org/10.1007/978-0-387-71564-3
https://doi.org/10.1007/978-0-387-71564-3
https://doi.org/10.1142/S1793536911000830
https://doi.org/10.1142/S1793536911000830
https://doi.org/10.1137/120882846
https://doi.org/10.1007/BF01385872
https://doi.org/10.1007/BF01385872

30 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

Kunoth, editors, Multiscale, Nonlinear Adapt. Approx., pages 599–659, Berlin, Heidelberg, 2009.
Springer. doi:10.1007/978-3-642-03413-8_14.

[63] Stefano Zampini. PCBDDC: A Class of Robust Dual-Primal Methods in PETSc. SIAM J. Sci.
Comput., 38(5):S282–S306, 2016. doi:10.1137/15M1025785.

[64] Stefano Zampini and David E Keyes. On the Robustness and Prospects of Adaptive BDDC
Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients. In
Proc. Platf. Adv. Sci. Comput. Conf., New York, 2016. Association for Computing Machinery.
doi:10.1145/2929908.2929919.

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551, USA.

Email address: kalchev1@llnl.gov

Department of Mathematics and Statistics, Portland State University, Portland,
OR 97207, USA, and Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551, USA.

Email address: panayot@pdx.edu, vassilevski1@llnl.gov

Electrical & Systems Engineering, Washington University in St. Louis, St. Louis,
MO 63130, USA.

Email address: uvilla@wustl.edu

https://doi.org/10.1007/978-3-642-03413-8_14
https://doi.org/10.1137/15M1025785
https://doi.org/10.1145/2929908.2929919

