

1 Techno-Economic and Life Cycle Analysis of Synthetic Methanol

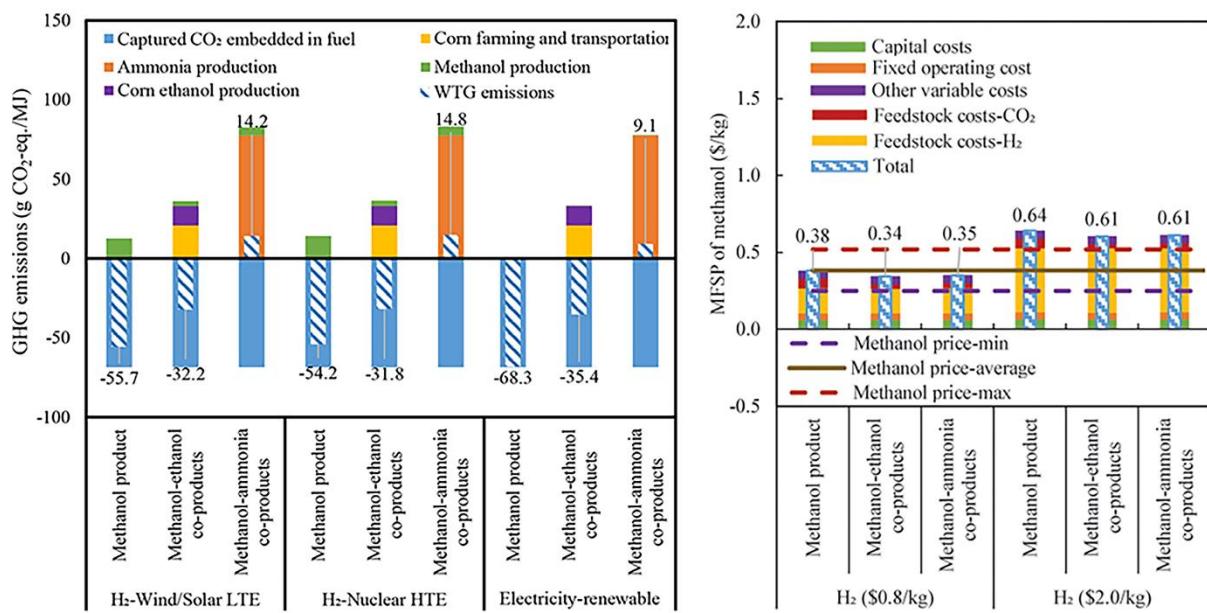
2 Production from Hydrogen and Industry By-product CO₂

3 *Guixian Zang*, Pingping Sun, Amgad Elgowainy, and Michael Wang*

4 Systems Assessment Center, Energy Systems Division, Argonne National Laboratory, 9700

5 South Cass Avenue, Lemont, Illinois 60439, United States

6 **KEYWORDS**


7 Synthetic methanol; Techno-economic analysis; Life cycle analysis; GHG emissions; High-

8 purity CO₂ sources; E-fuels; CO₂ utilization

9 **ABSTRACT**

10 CO₂ capture and utilization provides an alternative pathway for low-carbon hydrocarbon
11 production. Given the ample supply of high purity CO₂ emitted from ethanol and ammonia plants,
12 this study conducted techno-economic analysis and environmental life cycle analysis of several
13 systems: integrated methanol-ethanol co-production, integrated methanol-ammonia co-
14 production, and stand-alone methanol production systems, using CO₂ feedstock from ethanol
15 plants, ammonia plants, and general market CO₂ supply. The cradle-to-grave greenhouse gas
16 emissions of methanol produced from the stand-alone methanol, integrated methanol-ethanol, and
17 integrated methanol-ammonia systems are 13.6, 37.9, and 84.6 g CO₂-eq./MJ, respectively,
18 compared to 91.5 g CO₂-eq./MJ of conventional methanol produced from natural gas. The
19 minimum fuel selling price (MFSP) of methanol (\$0.61–0.64/kg) is 61–68% higher than the
20 average market methanol price of \$0.38/kg, when using a Department of Energy target renewable

hydrogen production price of \$2.0/kg. The methanol price increases to \$1.24–1.28/kg when the hydrogen price is \$5.0/kg. Without CO₂ abatement credits, the H₂ price needs to be within \$0.77–0.95/kg for the MFSP of methanol to equal the average methanol market price. With a CO₂ credit of \$35/MT according to tax credit per metric ton of CO₂ captured and used, the methanol price is reduced to \$0.56–0.59/kg.

26 SYNOPSIS

27 This study evaluated GHG emissions and the cost of methanol produced from industrial waste
28 CO₂ with a comprehensive sensitivity analysis.

29 INTRODUCTION

30 The transportation and industry sectors accounted for 36% and 26% of U.S. carbon dioxide (CO₂)
31 emissions from fossil fuel combustion in 2018, respectively, including both direct fossil fuel use
32 and electricity use.¹ Given that CO₂ emission is the main driver for global warming, there has been

33 increased interest in replacing fossil fuels in these sectors by accelerating the deployment of low-
34 carbon fuels.^{2,3} CO₂ capture and utilization (CCU) provides opportunities to synthesize low-carbon
35 hydrocarbon fuels and chemicals by using captured CO₂ as the feedstock and zero-carbon
36 electricity or renewable hydrogen as the energy source.⁴ CCU essentially extends the life of CO₂
37 over another fuel or chemical product cycle.⁵ Thus, CCU for fuel production can reduce
38 consumption of fossil sources and the resultant emissions.⁶

39 Although the industrial sector emitted 970 MMT (million metric ton) of CO₂ in 2018,¹ the CO₂
40 capture from the industrial sector is limited to about 1% of total industrially produced CO₂.⁷ The
41 CO₂ emissions from industrial sources can be distinguished as combustion emissions (occurring
42 from fuel combustion) and process emissions (e.g., due to non-combustion chemical reactions).⁸
43 Some process emissions from biochemical or chemical reactions, for example, CO₂ emissions
44 from ethanol fermentation and amine separation, have a purity higher than 97%.⁹ With about
45 44 MMT and 19 MMT CO₂ emissions from ethanol plants (fermentation) and ammonia plants
46 (amine separation) each year, the high-purity CO₂ supply in the United States is abundant.^{7,10}
47 Given that the higher-purity CO₂ emissions translate into lower capture costs,¹¹ the present study
48 uses high purity CO₂ from ethanol and ammonia plants as the feedstock for CCU.

49 Electro-fuels (e-fuels) or synthetic hydrocarbons production from water and waste CO₂ streams,
50 with zero-carbon electricity as the primary energy source, are of increasing interest recently.¹²
51 Among various production routes, synthetic methanol has been extensively researched due to its
52 potential as a low-carbon fuel, energy carrier, or fuel blending component, and the relative ease of
53 its production.¹³ Low- or zero-carbon electricity is used as an energy source to split water and
54 produce hydrogen (H₂) for methanol product in a one-step (directly) or two-step process.¹⁴ The
55 one-step process produces methanol from CO₂ and H₂ directly,¹³ while the two-step process

56 converts CO₂ to CO through a reverse water gas shift (RWGS) reaction, and then hydrogenates
57 CO with H₂ to form methanol.¹⁵ Relative to the one-step pathway, the two-step pathway has a
58 higher methanol yield per pass, lower catalyst cost, and smaller hydrogenation reactor size.¹⁶ Thus,
59 this study focuses on the techno-economic analysis (TEA) and life cycle analysis (LCA) of the
60 two-step pathway of e-fuel methanol synthesis.

61 Previous TEA analysis results showed that the minimum fuel selling price (MFSP) of synthetic
62 methanol produced from waste CO₂ and H₂ using wind or solar electricity is \$1.00–1.50/kg, more
63 than two times higher than the market methanol price of around \$0.45/kg.^{15,17–20} However, the
64 synthetic methanol pathway can provide significant greenhouse gas (GHG) emissions reduction
65 benefit. For example, previous studies showed that synthetic methanol can be produced from waste
66 CO₂ using H₂ from water electrolysis. When the H₂ is produced via electrolysis using renewable
67 electricity, the cradle-to-gate (CTG) GHG emissions of the synthetic methanol are lower than -
68 49.7 g CO₂-eq./MJ.^{15,17–21} Thus, compared to the CTG GHG emissions of 23.7 g CO₂-eq./MJ for
69 conventional methanol production from natural gas (does not include methanol combustion CO₂
70 emissions), the synthetic methanol produced from waste stream CO₂ and renewable electricity is
71 a low-carbon production pathway.²²

72 Although previous studies evaluated the LCA and/or TEA of e-fuel (synthetic) methanol
73 production in different regions and from various sources, the synthetic methanol production
74 utilizing high purity CO₂ waste from ethanol and ammonia plants in the United States, considering
75 expanded system boundary and various hydrogen pathways, has not been thoroughly evaluated.
76 To fill this gap, the LCA and TEA of this study used three CO₂ waste sources from ethanol plants
77 (process CO₂ from fermentation), ammonia plants (with amine scrubbing), and general market
78 CO₂ supply.

79 Three CO₂ collecting costs of \$17.3/MT (metric ton), \$20.6/MT, and \$38.6/MT for high purity
80 CO₂ from the ethanol plant, the ammonia plant, and market supply were used for the TEA.²³ The
81 LCA of synthetic methanol production was evaluated by defining three system boundaries:
82 integrated methanol-ethanol co-production system boundary, integrated methanol-ammonia co-
83 production system boundary, and stand-alone methanol production system boundary. For the LCA
84 and TEA, the synthetic methanol was produced from renewable H₂ (via water electrolysis) and
85 high purity CO₂, through the two-step reaction process, which was simulated using the Aspen Plus
86 model. The LCA was conducted using the GREET® (Greenhouse gases, Regulated Emissions and
87 Energy use in Technologies) 2020 model, whereas the TEA leveraged the H2A model
88 framework.²⁴ Both of the CTG and cradle-to-grave GHG emissions of the synthetic methanol were
89 evaluated for various H₂ pathways, and electricity types. The sensitivity of methanol MFSP to a
90 wide range of H₂ prices and potential CO₂ credits was evaluated.

91 **METHODOLOGY**

92 **Synthetic Methanol Production Overview**

93 Using various CO₂ supply options, the present study focused on three systems: methanol-ethanol
94 co-production, methanol-ammonia co-production, and stand-alone methanol production, as shown
95 in Figure 1. GREET® includes detailed mass, emissions, and energy inventory information for
96 ethanol production (dry milling corn ethanol process with corn oil extraction), ammonia
97 production, and H₂ production. Aspen Plus software was used to simulate the methanol produced
98 from H₂ and CO₂, which provided mass and energy balance and flow information for LCA and
99 TEA. Methanol is produced from H₂ and CO₂ through a two-step pathway: H₂ reacts with CO₂ to

100 produce CO through an RWGS reaction, denoted as (R1);²⁵ and CO/CO₂ react with H₂ to generate
101 methanol through synthesis reactions, denoted as (R2) and (R3).²⁶

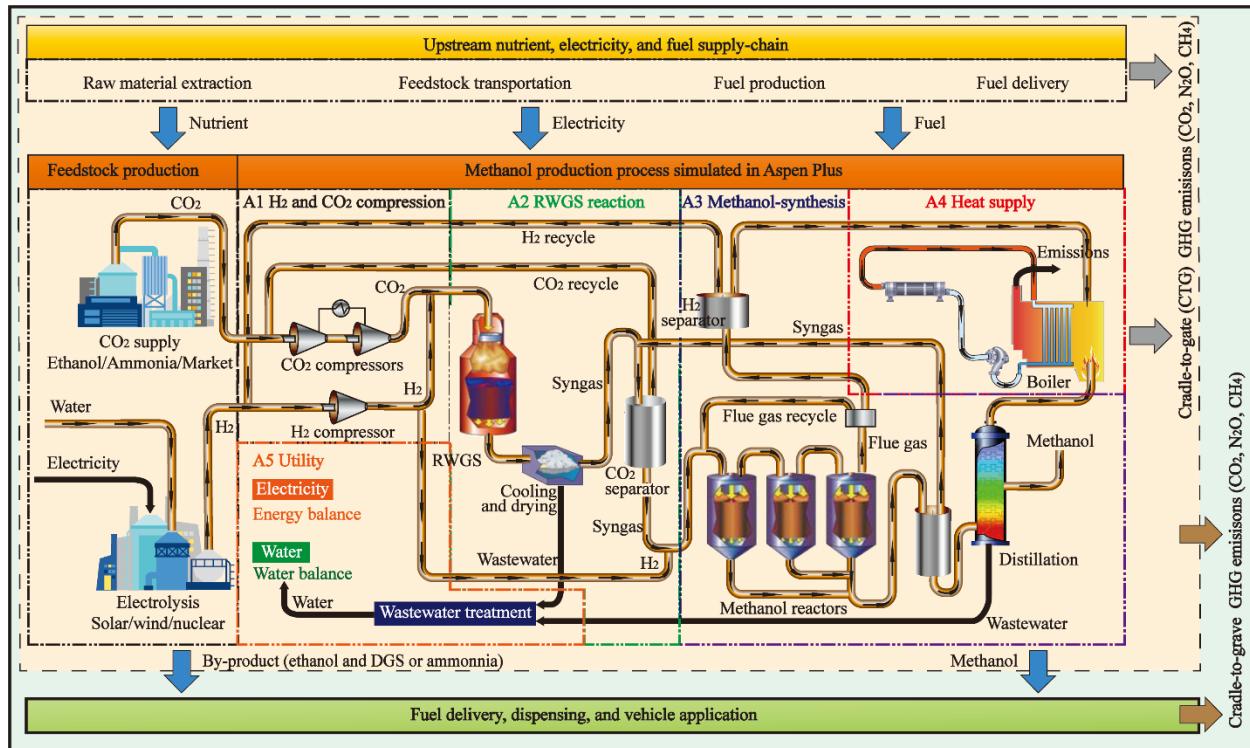
105 RWGS (R1) is endothermic, which requires a high reaction temperature for a reasonable
106 conversion and needs heat supply. Both (R2) and (R3) are exothermic reactions that alleviate the
107 total process of energy demand.

108 The methanol production process is modeled in five reaction areas (see Figure 1), while the
109 detailed technical parameters are provided in Table S1 (Supporting Information). In area A1, H₂
110 and CO₂ are compressed to 2.47 MPa.^{27,28} In A2, compressed H₂ and CO₂, with 1:1 molar ratio,
111 react in the RWGS reactor at 600 °C and 2.45 MPa to convert 36% of CO₂ into CO.²⁹ A Selexol
112 CO₂ capture unit (A2) is utilized to remove CO₂ and increase the CO molar concentration in the
113 syngas from 31% to 60%.³⁰ The RWGS reaction is based on the experimental result of Kim et al.
114 (2014) using BaCe_{0.2}Zr_{0.6}Y_{0.16}Zn_{0.04}O₃ as the catalyst.²⁹ In reaction area 3 (A3), H₂ and CO gases,
115 with 2.1:1 molar ratio, flow through the reactor to synthesize methanol via chemical equilibrium
116 reactions. The methanol reactor has a CO conversion ratio of 17% per pass at 300 °C and 5.1
117 MPa.³¹ Three reactors in series are used in the Aspen model, with 89% of the effluent gas recycled
118 to the methanol reactors (flue gas recycle in Figure 1), around 90% of the total CO is converted
119 into methanol. After the effluent gas recycle, 85% of the H₂ is separated by pressure swing
120 adsorption (PSA) and recycled to the H₂ compressor.³² Finally, methanol is distilled and cooled
121 for product storage, while all the combustible components from A3 are fed to the boiler for

122 combustion to provide heat at 900 °C for the RWGS reactor (A4).³³ The last reaction area (A5)
123 accounts for the energy and water balance of the total system, including cooling towers, material
124 storage, and wastewater treatment units. The cooling tower operates at temperatures between 28
125 °C and 37 °C with a cooling water recycling efficiency of 99.85%.³⁴

126 For the stand-alone system, the methanol production efficiency, cold gas efficiency, and the carbon
127 conversion efficiency are defined by Equations (1), (2) and (3), respectively. For all three system
128 boundaries considered in this analysis, the CTG methanol energy efficiency and CTG total energy
129 efficiency are derived from Equations (4) and (5), respectively.^{35,36}

130
$$\eta_{E,M} = E_M / (E_{H_2} + W_E) \quad (1)$$


131
$$\eta_{E,CM} = E_M / (E_{H_2}) \quad (2)$$

132
$$\eta_{C,M} = (C_M) / C_{CO_2} \quad (3)$$

133
$$\eta_{E,M,CTG} = E_M / (E_{RE,CTG} + W_{FE,CTG}) \quad (4)$$

134
$$\eta_{E,T,CTG} = (E_M + E_O) / (E_{RE,CTG} + W_{FE,CTG}) \quad (5)$$

135 Where, $\eta_{E,M}$, $\eta_{E,CM}$, $\eta_{E,M,CTG}$, $\eta_{E,T,CTG}$, and $\eta_{C,M}$ are the methanol production efficiency from H₂
136 and CO₂; methanol production cold gas efficiency, CTG methanol energy efficiency, CTG total
137 energy efficiency (including energy in co-products), and methanol carbon conversion efficiency
138 from CO₂, respectively. E_M is the energy of methanol, E_O is the energy of other co-products; E_{H_2}
139 and W_E are the H₂ energy and electricity input to the methanol production process from H₂ and
140 CO₂; $E_{RE,CTG}$ is the CTG renewable energy input, and $W_{FE,CTG}$ is the CTG fossil energy input.
141 C_M and C_{CO_2} are the carbon content in methanol and high purity CO₂ input for the stand-alone
142 methanol produced from H₂ and CO₂.

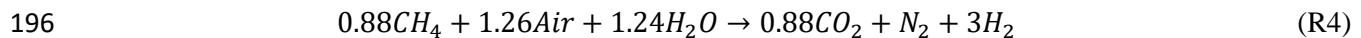
145 **Figure 1.** Process flow chart and system boundary of synthetic methanol production for CTG and cradle-
 146 to-grave life cycle analysis.

147 **Life Cycle Analysis Methodology**

148 Three systems are defined in this work: stand-alone methanol production system, integrated
 149 methanol-ethanol co-production system, integrated methanol-ammonia co-production system. The
 150 system boundaries defined by inputs and outputs are summarized in Table S4. For the stand-alone
 151 system, the CO₂ feedstock is not specified, and the methanol is the only system product (therefore
 152 no allocation is needed). In contrast, for the integrated co-production system, the CO₂ source is
 153 specified, and the methanol process is connected with the CO₂ supply source, e.g., corn ethanol
 154 plant or ammonia plant. For example, for the integrated methanol-ethanol co-production system,
 155 the system inputs are corn, H₂, electricity, as well as process fuels; while the system products are

156 methanol, ethanol, DGS, and corn oil. Given the presence of co-product other than methanol, the
157 total GHG emissions of the integrated system are allocated to all of the co-products (methanol,
158 ethanol, DGS, and oil) based on energy content.

159 Environmental impacts of CTG and cradle-to-grave GHG emissions of synthetic methanol
160 production using various boundaries were evaluated using GREET® 2020 model.²² The CTG life
161 cycle accounts for material and energy input for various stages within each boundary including
162 corn growth/transportation (including the nutrients use), and ethanol production process for
163 ethanol plant CO₂ cases; NG recovery and processing and ammonia production process for the
164 ammonia plant CO₂ cases; renewable H₂ production and methanol production process from H₂ and
165 CO₂ of methanol synthesis; and various transportation activities (Figure 1). The cradle-to-grave
166 life cycle includes all the CTG emissions plus the emissions from methanol's delivery, dispensing,
167 and methanol consumption. The GHG emissions include CO₂, CH₄, and N₂O combined with their
168 global warming potentials of 1, 30, and 265, respectively, using a functional unit of 1 MJ of
169 synthesis methanol.


170 The energy use and GHG emissions of water electrolysis for H₂ production were obtained from
171 GREET® 2020, assuming the H₂ transportation distance is 16 km to methanol production sites.³⁷
172 For the integrated co-production system boundary (methanol-ethanol or methanol-ammonia), the
173 CO₂ feedstock for methanol production is supplied from the ethanol/ammonia process. A dry
174 milling corn ethanol process with corn oil extraction and an industrial scale ammonia production
175 process (with an amine CO₂ separation) were assumed for this study.^{38,39}

176 The process level information for ethanol, ammonia and methanol production is provided in Table
177 S4 of the Supporting Information. The ethanol and ammonia production utilized mass and energy

178 balance information in GREET®, while the methanol production information was obtained from
179 Aspen Plus simulation as mentioned above.

180 For the dry milling corn ethanol process, 0.81 kg of dried distillers' grains (DGS) and 0.03 kg of
181 oil are co-produced with 1.00 kg of ethanol. The high-purity CO₂ released from the fermentation
182 process is from industrial data that has a 0.68 of mass ratio (CO₂: ethanol), calculated from the
183 carbon balance by assuming that corn has a moisture content of 15%⁴⁰ and a dry base carbon
184 content of 45%,⁴¹ while the DGS (dry based) and corn oil have a carbon content of 49%⁴² and
185 76%⁴³, respectively. The detailed mass ratio calculation processes are shown in the Supporting
186 Information.

187 The theoretical conversion processes for ammonia production are listed in reaction (R4) and (R5),
188 with detailed processes descriptions shown in the Supporting Information. Ammonia plants have
189 onsite steam methane reforming (SMR) to produce H₂ and CO₂, which can be separated by either
190 PSA or amine absorption. Currently, approximately 80% of the ammonia plants use amine
191 absorption to produce high purity CO₂ with a concentration of 97.1 vol%.^{9,44} Thus the resultant
192 CO₂ is high purity (~97.1 vol%), which only needs to be compressed for feeding RWGS in the
193 methanol production process. When the high purity CO₂ is produced from amine CO₂ separator,
194 the mass ratio of ammonia to CO₂ is 1:1.09 according to a typical industrial ammonia production
195 process.^{45,46} More ammonia plant information is supplied in the Supporting Information.

198 For the integrated co-production system boundary, the energy and emissions burdens are allocated
199 to all system products. For methanol-ethanol co-production system, a hybrid allocation method

200 was used in which DGS and oil were treated with a marginal method (i.e., given displacement
201 credit),⁴⁷ while methanol and ethanol shared process burden through energy (lower heating value
202 [LHV]). Similarly, the total GHG emissions from the methanol-ammonia co-production system
203 were allocated to methanol and ammonia based on their energy content; while for the stand-alone
204 methanol production process, all the emissions were assigned to methanol. For the CTG and
205 cradle-to-grave base case analysis, H₂ is produced from low-temperature electrolysis (LTE)
206 solar/wind electrolysis (with an energy efficiency of 72%), electricity needed for the methanol
207 production from H₂ and CO₂ is supplied by U.S. mix grid (assuming H₂ and methanol are produced
208 from different locations), and the total emissions of the co-production systems are allocated to
209 methanol based on energy content. By assuming the lower heating values (LHV) of methanol,
210 ethanol, and ammonia are 26.95 MJ/kg, 18.90 MJ/kg, and 20.09 MJ/kg,⁴⁰ the energy allocation
211 ratio of the methanol in the methanol-ethanol co-production system and methanol-ammonia
212 system are 25.3% and 41.1%, respectively.

213 Besides the base case, H₂ produced from LTE nuclear electrolysis (with an energy efficiency of
214 72%), H₂ produced from high-temperature electrolysis (HTE) nuclear electrolysis (with an energy
215 efficiency of 80%), and methanol produced using solar/wind renewable electricity were also
216 studied as alternative cases. Table S4 provides the mass and energy conversion information for
217 ethanol, ammonia, and methanol production based on GREET® and Aspen Plus models.

218 **Cost Analysis Methodology**

219 The H2A Production Model Framework was used for the TEA, with 2016 reference year U.S.
220 dollar.²⁴ A discounted cash flow analysis was used to determine the MFSP (minimum fuel selling
221 price) of methanol to obtain a zero net present value (NPV) in 40 operation years considering total

222 capital investment (TCI) and operating cost (OC), among other costs.⁴⁸ The key economic and
223 financial assumptions are provided in Table S5 of the Supporting Information.²³

224 In the TEA model, TCI is calculated according to Equation (6) using the total direct capital cost
225 (TDCC) value. TDCC is the sum of the installed equipment costs, scaled from reference equipment
226 cost as shown in Equation (7).²⁴

$$227 \quad TCI = TDCC + 42\% \times TDCC + \$13.6/m^2 \times 40,469m^2 \quad (6)$$

$$228 \quad TDCC = \sum I_i \times C_{0,i} \times (S_i/S_{0,i})^{f_i} \quad (7)$$

229 where $TDCC$ is the total direct capital costs, I_i is the installation factor for equipment i (Table S6),
230 $C_{0,i}$ and $S_{0,i}$ are the equipment cost and equipment size for the reference equipment scale, S_i is the
231 designed equipment scale from Aspen Plus model, and f_i is the scaling exponent for each
232 equipment (Table S6). The total depreciable non-equipment capital cost is $42\% \times TDCC$, which
233 includes $2\% \times TDCC$ for site preparation, $10\% \times TDCC$ for engineering and design, $15\% \times$
234 $TDCC$ for project contingency, and $15\% \times TDCC$ for upfront permitting costs. The estimated land
235 footprint cost is $\$13.6/m^2 \times 40,469m^2$.

236 The operating cost includes fixed operating costs (FOC) and variable operating costs (VOC) using
237 the calculation processes shown in Equation (8) and (9).

$$238 \quad FOC = LC + 20\% \times LC + 2\% \times TCI + 0.3\% \times TCI \quad (8)$$

$$239 \quad VOC = \sum \dot{m}_i \times C_i \quad (9)$$

240 In equation (8), LC is the burdened labor cost, including overhead for a labor number of 68,
241 $20\% \times LC$ is the general and administrative expense, $2\% \times TCI$ is for the property tax and

242 insurance, and $0.3\% \times TCI$ is the annual maintenance and repair cost. In equation (9), \dot{m}_i are the
243 annual mass consumption of H₂ and CO₂ feedstock, industrial electricity consumption, cooling
244 water use, process water use, and catalyst that are supplied by the Aspen Plus model, while C_i is
245 the price of the individual inputs and materials.

246 For the TEA, various H₂ prices were discussed from H2A default cases, and \$2.0/kg for H₂, the
247 Department of Energy (DOE) Hydrogen and Fuel Cell Technologies Office (HFTO) target price
248 produced from water central electrolysis, is selected as a reference for the base case study.⁴⁹ For
249 the three different systems of methanol-ethanol co-production, methanol-ammonia co-production,
250 and methanol stand-alone production, the CO₂ costs are assumed to be \$17.3/MT, \$20.6/MT,⁹ and
251 \$38.6/MT,⁵⁰ respectively. The CO₂ prices of \$17.3/MT and \$20.6/MT accounts for the cost of
252 separation, purification, and compression,⁹ while the \$38.6/MT represents the traded CO₂ market
253 price contracted by a Dakota Gasification Company.⁵⁰ The prices of process water, cooling water,
254 and industrial electricity are assumed to be \$0.63/MT, \$0.03/MT, and \$0.07/kWh, respectively.²⁴
255 The total catalyst cost for RWGS and methanol synthesis is \$2,254K (K is thousand), replaced
256 once every three years.⁵¹

257 **RESULTS**

258 **Processes Modeling Results**

259 The modeled process produces 1,190 MT/day methanol by consuming 243 MT/day H₂ and
260 1,978 MT/day CO₂ (with a molar ratio of 2.7:1.0) (Table S2 and Figure S1 in Supporting
261 Information). When this CO₂ is supplied by the ethanol plant or ammonia plant, the integrated
262 system produces 2,912 MT/day of ethanol, 2,369 MT/day of DGS, and 83 MT/day of corn oil; or
263 1,817 MT/day of ammonia (Table 1).

264 Table 1 shows that the methanol production efficiency is 75.6%, considering the total process
265 energy input, i.e., including both H₂ and electricity . Whereas for the stand-alone methanol
266 production system, the CTG methanol production efficiency is 51.8%, considering the CTG total
267 energy input, i.e., including the upstream energy use for H₂ production . When the methanol
268 production process is integrated with the ethanol or ammonia production process, the methanol
269 CTG energy efficiency is 62.5% and 48.3%, respectively. The detailed material consumptions and
270 CTG energy consumption for methanol, ethanol, and ammonia stand-alone production processes
271 are shown in Table S3 and Table S4.

272 In the methanol production process, 82.5% of carbon in CO₂ feedstock is converted into methanol
273 with the detailed carbon balance shown in Figure 2. In Figure 2, for the stand-alone methanol
274 system, 82.5% of carbon from CO₂ feedstock (1,872 kmol/hr) is converted into methanol
275 (1,545 kmol/hr), with 17.0% carbon emitted from combustion of tail gas in boiler, and the other
276 0.5% carbon emitted from CO₂ capture unit. For the methanol-ethanol co-production system, the
277 carbon in corn is the carbon source for the total system; in the ethanol production process, 46.3%,
278 35.3%, and 1.9% of carbon in corn have been converted into ethanol, DGS, and oil, while the
279 16.5% remaining carbon is released as high-purity CO₂, which is used for methanol production.
280 The total carbon conversion ratio of the methanol-ethanol co-production system is 97.1%; that is
281 13.6% higher than that of the corn ethanol (stand-alone) plant. For the methanol-ammonia co-
282 production system, natural gas (NG) is the carbon source. In the ammonia production process,
283 53.0% of the NG carbon is produced as high-purity CO₂, which is used for methanol production,
284 resulting in a total carbon conversion ratio of 43.8% for the methanol-ammonia co-production
285 system.

286

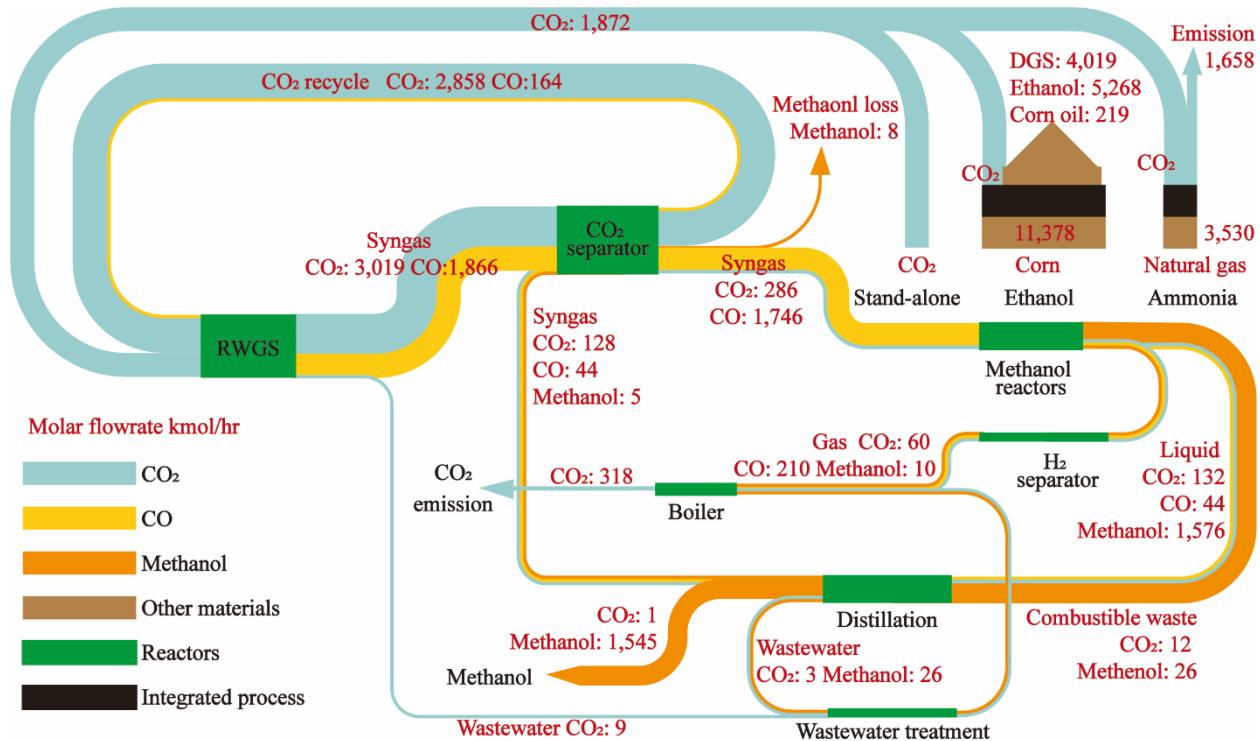
287 **Table 1.** Performance analysis results of the three systems.

	Methanol production system	Methanol-ethanol co-production system	Methanol-ammonia co-production system
H ₂ consumption (MT/day) ^a	243	243	243
High purity CO ₂ consumption (MT/day) ^a	1,978	0	0
Ethanol production (MT/day) ^b	0	2,912	0
Ammonia production (MT/day) ^c	0	0	1,817
DGS production (MT/day) ^b	0	2,369	0
Corn oil production (MT/day) ^b	0	83	0
Methanol production (MT/day) ^a	1,190	1,190	1,190
Total carbon conversion efficiency (%) ^a	82.5%	82.5%	82.5%
H ₂ input for methanol synthesis (MW) ^a	337.8	337.8	337.8
Electric power input for methanol synthesis (MW) _a	28.0	28.0	28.0
CTG renewable input (MW) ^d	485.1	2327.6	489.8
CTG fossil input (MW) ^d	49.4	514.9	905.4
Ethanol (MW) ^b	0.0	908.4	0.0
Ammonia (MW) ^c	0.0	0.0	397.4
DGS (MW) ^b	0.0	555.1	0.0
Corn oil (MW) ^b	0.0	35.8	0.0
Methanol (MW) ^d	276.7	276.7	276.7
Methanol synthesis energy efficiency (%) ^a	75.6%	75.6%	75.6%
CTG methanol production efficiency (%) ^d	51.8%	9.7%	19.8%
CTG total energy efficiency (%) ^d	51.8%	62.5%	48.3%

288 ^a Data is from the Aspen model of methanol produced from H₂ and CO₂.289 ^b Data is from the methanol-ethanol co-production system.290 ^c Data is from the methanol-ammonia co-production system.291 ^d Data is from the CTG energy analysis including upstream fuel and nutrient supply chain.

292 The result of methanol synthesis modeling is also compared with previous studies. For example,

293 the work of Anicic et.al showed the two-step methanol synthesis process has a cold gas efficiency

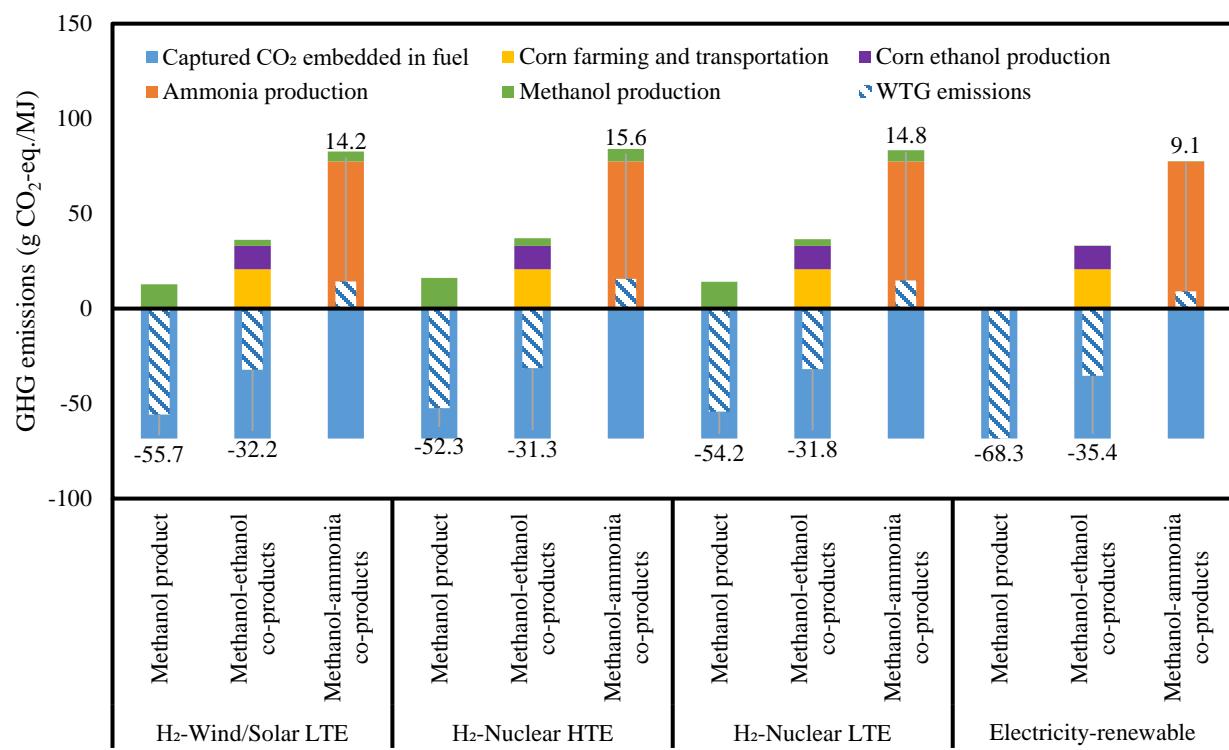

294 of 80.1% and a carbon conversion ratio of 79.0%.¹⁴ It is worth noting that the cold gas efficiency295 is defined as the ratio of the energy in methanol product divided by energy in H₂ feedstock without

296 accounting for the electricity consumption (shown in equation (2)). To allow comparison on a

297 consistent basis, the present study also calculated the cold gas energy efficiency, without

298 accounting for electricity consumption leading to a higher efficiency of 81.9% and a higher carbon

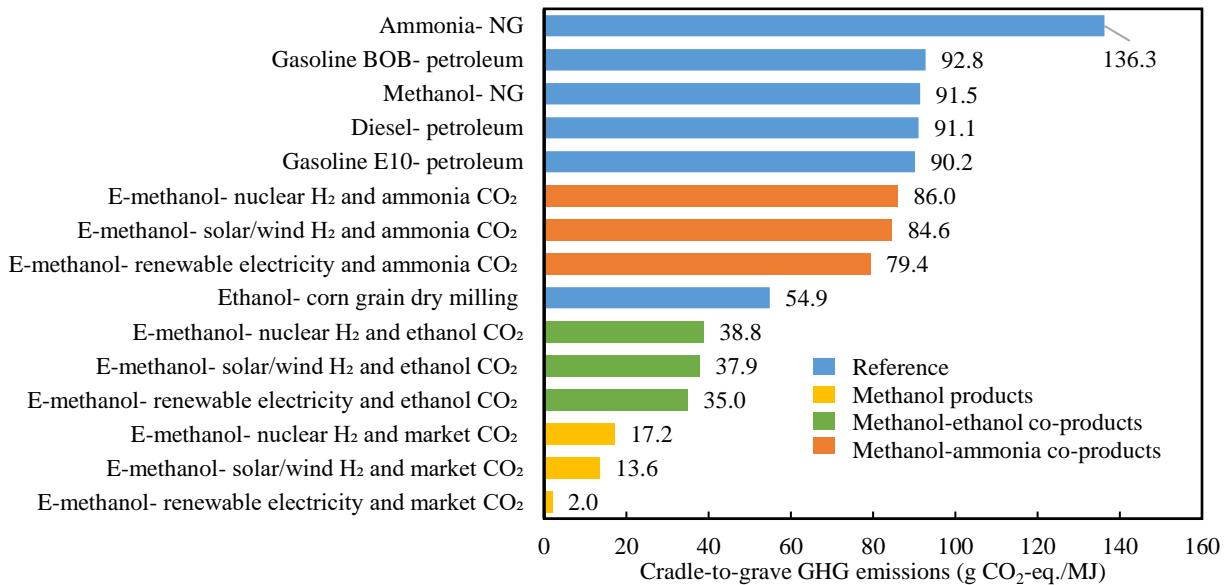
299 conversion ratio of 82.5%. The small differences in cold gas efficiency and carbon conversion
 300 ratio between this study and Anicic et.al are attributed to the different design parameters for the
 301 RWGS and methanol synthesis processes, such as reaction temperature, pressure, conversion ratio,
 302 and hydrogen recycle ratio.



303
 304 **Figure 2.** Sankey diagram of the carbon balance of three systems. All the values are in the unit of kmol/hr.
 305 The width of flow expresses the quantity of carbon molar flowrate in different components, the green, and
 306 black boxes represent conversion processes and integrated process, and the blue, yellow, orange, brown
 307 flows represent CO₂, CO, methanol, and other material flows, respectively.

308 Life Cycle Analysis Results

309 The CTG GHG emissions of the three considered methanol production systems were estimated
 310 with various H₂ production and electricity generation technologies, and coproduct allocation
 311 methods, as shown in Figure 3. The base case study uses H₂ production from low-temperature
 312 electrolysis (LTE) of water using wind/solar power, and energy allocation (with marginal method
 313 approach for DGS and oil from ethanol-methanol co-production system). The CTG GHG


314 emissions (without methanol combustion CO₂ emissions) of the stand-alone methanol production
 315 in the base case is -55.7 g CO₂-eq./MJ methanol with -68.4 g CO₂-eq./MJ from captured CO₂
 316 embedded in methanol (blue bars in Figure 3) and 12.7 g CO₂-eq./MJ emitted, mostly from the
 317 upstream grid electricity used for methanol synthesis process.²² When the methanol production
 318 process is integrated with the ethanol plant or ammonia plant, the total system burdens are shared
 319 or allocated by energy to both methanol and ethanol/ammonia, thus mitigating the burden on
 320 ethanol/ammonia while increasing the methanol CTG GHG emissions to -32.2 g CO₂-eq./MJ and
 321 14.2 g CO₂-eq./MJ for the methanol-ethanol and methanol-ammonia co-production systems,
 322 respectively.

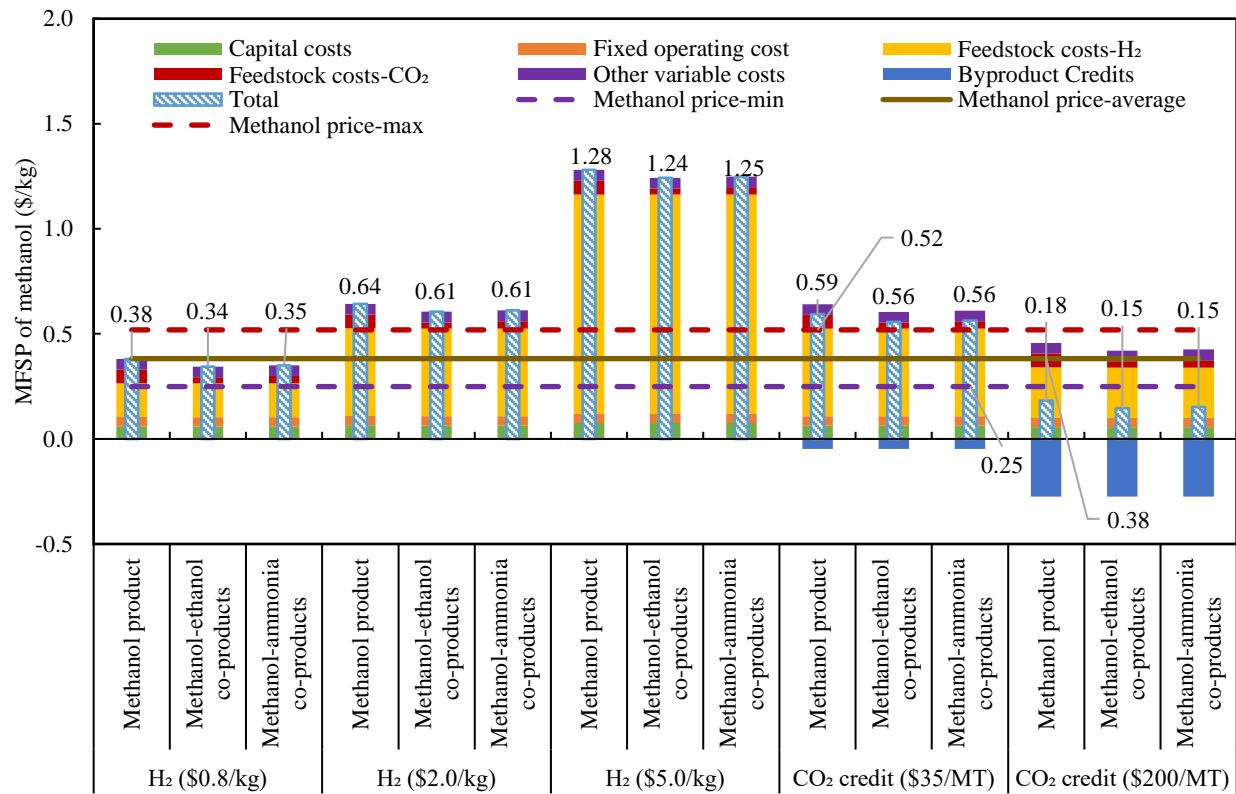
323
 324 **Figure 3.** Methanol CTG GHG emissions with various H₂ sources, electricity types, and allocation
 325 methods. Methanol is the single product from the methanol production system, while emissions from the
 326 (integrated) co-production systems are allocated to ethanol and methanol or ammonia and methanol. The
 327 base cases use wind/solar H₂, U.S. average grid mix electricity, and energy allocation (LHV).

328 In addition to the H₂ produced from wind/solar LTE, two nuclear energy base H₂ production
329 pathways of high-temperature electrolysis (HTE) and LTE were also studied. In general, the GHG
330 emissions from nuclear HTE-H₂ pathways are 0.5–1.9 g CO₂-eq./MJ lower compared to LTE-H₂
331 pathways, but are 0.4–1.5 g CO₂-eq./MJ higher compared to wind/solar-H₂ pathway. When the
332 U.S. average grid mix electricity is replaced by renewable electricity, the CTG GHG emissions of
333 the stand-alone methanol production system are reduced to -68.3 g CO₂-eq./MJ, and that of the
334 methanol-ethanol and methanol-ammonia co-production systems decrease by 3.2 g CO₂-eq./MJ
335 and 5.1 g CO₂-eq./MJ, respectively.

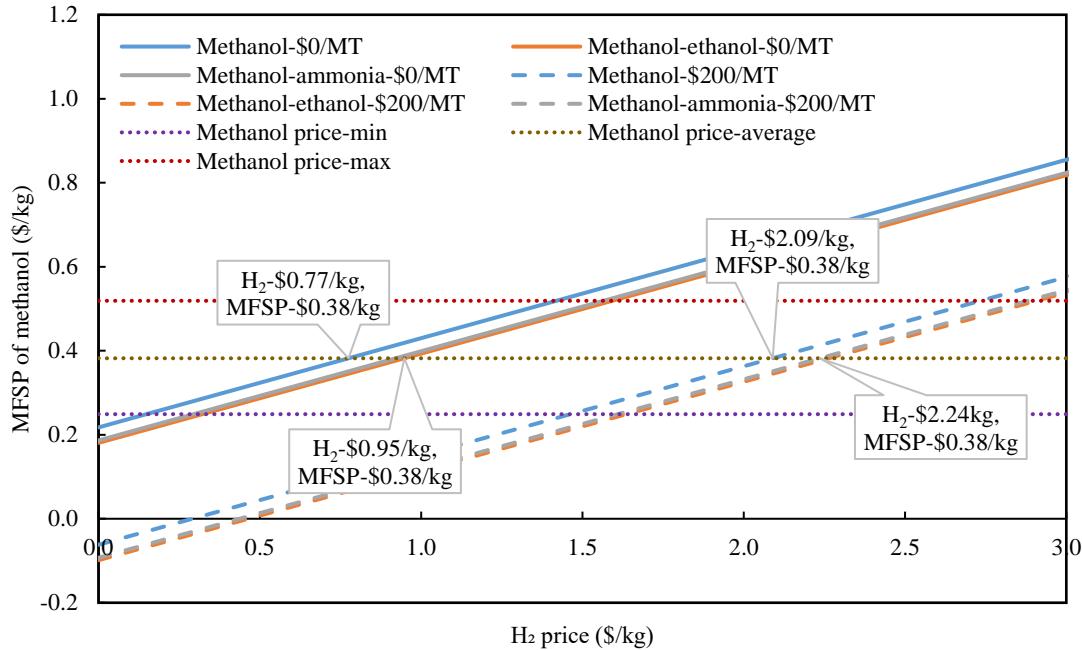
336 The cradle-to-grave GHG emissions of synthetic methanol from the three aforementioned
337 production systems are compared with the emissions from other fuels, as shown in Figure 4.
338 Methanol from the stand-alone system with renewable electricity supply has the lowest cradle-to-
339 grave GHG emissions of 2.0 g CO₂-eq./MJ as compared to 91.5 g CO₂-eq./MJ for the conventional
340 methanol production from NG (i.e., 89.5 g CO₂-eq./MJ cradle-to-grave GHG emissions reduction).
341 Using U.S. average grid electricity for methanol synthesis process, the stand-alone system has the
342 potential to reduce cradle-to-grave GHG emissions by 74.3–77.9 g CO₂-eq./MJ with various
343 renewable and nuclear hydrogen sources, compared to the NG-methanol pathway. When the
344 methanol production process is integrated with the corn ethanol plant (methanol-ethanol co-
345 production system), the cradle-to-grave GHG emissions of methanol are 52.7–56.5 g CO₂-eq./MJ
346 lower compared to the NG-methanol pathway. The cradle-to-grave GHG emissions of methanol,
347 considering the integrated methanol-ammonia co-production system with various electricity
348 sources and hydrogen sources, are 5.5–12.1 g CO₂-eq./MJ lower compared to the NG-methanol
349 pathway.

350

351 **Figure 4.** Cradle-to-grave GHG emissions of synthetic methanol compared with other chemicals and fuels.
 352 The blue bars are GHG emissions of conventional chemicals and petroleum fuel pathways from GREET®,
 353 the yellow bars are the GHG emissions of synthetic methanol from stand-alone production system, while
 354 the green and orange bars are the GHG emissions of methanol from the methanol-ethanol and methanol-
 355 ammonia co-production systems, respectively. BOB is short for blendstock for oxygenate blending. The
 356 cases use wind/solar LTE for H₂ production and U.S. average electricity grid mix for methanol synthesis
 357 process, and energy allocation if the details are not otherwise mentioned.


358 **Economic Analysis Results**

359 In this study, the CO₂ prices are assumed to be \$17.3/MT, \$20.6/MT, and \$38.6/MT for the
 360 methanol-ethanol co-production system, methanol-ammonia co-production system, and the stand-
 361 alone methanol production system, respectively. The total capital investment of the stand-alone
 362 methanol production is \$305 million (MM), with a total direct capital cost of \$213 MM (details
 363 are provided in Tables S7 and S6 of Supporting Information). For the methanol production process,
 364 the RWGS reaction area, methanol-synthesis area, and utility area have the largest installed
 365 equipment cost of \$76 MM, \$50 MM, and \$40 MM, that are 35.8%, 23.3%, and 19.0% of the total
 366 depreciable capital cost, respectively. The total variable operating cost is \$190 MM/year when the
 367 H₂ price is \$2.0/kg and CO₂ price is \$17.3/MT (Table S8). While the total fixed operating cost is


368 \$17 MM/year with a labor number of 68 and a burdened labor cost including overhead of
369 \$58/man-hr (Table S7).

370 Figure 5 shows the MFSP of synthetic methanol as compared to the average methanol market price
371 over the past five years of \$0.38/kg. When the DOE target hydrogen production price of \$2.0/kg
372 is assumed, the MFSP of the methanol from the stand-alone system is \$0.64/kg, and from the co-
373 production systems (methanol-ethanol and methanol-ammonia) is \$0.61/kg. The evaluated MFSPs
374 are 17–23% higher than the maximum methanol price in the past five years, and 61–68%, 144–
375 156% higher than the average and minimum methanol prices in the past five years. As shown in
376 Figure 5 for the methanol-ethanol co-production system, feedstock costs for H₂ (\$2.0/kg) and CO₂
377 (\$17.3/MT), and the capital costs dominate the methanol MFSP, contributing 68.9%, 4.8%, and
378 10.5%, respectively. When H₂ is produced from renewable electricity using the current renewable
379 polymer electrolyte membrane electrolysis (PEME) technology, the H₂ price increases to
380 \$5.0/kg,⁴⁹ resulting in a higher MFSP of methanol (\$1.24–1.28/kg). However, given that the low
381 cradle-to-grave GHG emission of the stand-alone methanol production system is 2.0–17.2 g CO₂-
382 eq./MJ, the synthetic methanol production using renewable hydrogen can be qualified as a low-
383 carbon fuel compared to conventional methanol production from NG (with a cradle-to-grave GHG
384 emissions of 91.5 g CO₂-eq./MJ). If avoided CO₂ can be traded in a carbon trading market, the
385 potential carbon credit can further reduce the MFSP of synthetic methanol, as shown in Figure 5.
386 According to the Section 45Q carbon capture tax credit, the CO₂ utilization for synthetic methanol
387 production has a CO₂ credit of \$35/MT.⁵² With a CO₂ credit of \$35/MT, the synthetic methanol
388 MFSP is \$0.56–0.59/kg, which is \$0.05/MT lower than the cases with zero CO₂ credit. If the CO₂
389 credit increases to \$200/MT,⁵³ the synthetic methanol MFSP from the stand-alone production
390 system is \$0.18/kg, and from the methanol-ethanol and methanol-ammonia co-production systems

391 is \$0.15/kg, which are 52.6% and 60.5% lower than the average methanol market price in the past
 392 five years. Given that the variation of the TEA assumptions results in uncertainty of the MFSP,
 393 MFSP cost distributions, sensitivity analysis, and uncertainty analysis results are supplied in the
 394 Supporting Information Figure S4-S6.

395
 396 **Figure 5.** Variation of MFSP with H₂ price and potential CO₂ credit.
 397 Figure 6 shows the breakeven H₂ prices for the MFSP of methanol to equal the average methanol
 398 market price (\$0.38/kg) for different methanol production system boundaries and various CO₂
 399 credit values. For the cases without CO₂ credit, the breakeven H₂ prices for the three evaluated
 400 systems are within \$0.77–0.95/kg. However, for the cases with \$200/MT CO₂ credit, the breakeven
 401 H₂ prices are \$2.09–2.24/kg. The TEA results indicate that the economics of synthetic methanol
 402 production can be improved by developing low-cost water electrolysis technology for renewable
 403 H₂ production and leveraging credits in carbon trading markets.

404
405 **Figure 6.** Breakeven H₂ prices for different methanol production systems and various CO₂ credit values. In
406 the legend, \$0/MT refers to CO₂ credit of \$0/MT, and \$200/MT refers to CO₂ credit of \$200/MT. The call-
407 out shows the breakeven H₂ price such that the MFSP of methanol equals the average methanol market
408 price of \$0.38/kg.

409 **IMPLICATIONS**

410 The present study evaluated TEA and LCA of synthetic methanol using high purity CO₂ from
411 ethanol and ammonia plants, with various price scenarios. Simulation results show that integrating
412 methanol synthesis with ethanol and ammonia production improves the production energy
413 efficiency, carbon conversion efficiency, and GHG emissions.

414 This study used high purity CO₂ emissions from typical ethanol and ammonia plants as feedstock
415 for the synthetic methanol production. The integrated system boundary treatment can be extended
416 to other industries such as cement, iron and steel, carbonates, and petrochemicals. Moreover, if the
417 current results are scaled to combine with the industrial distribution data of the ethanol and
418 ammonia plants in the U.S., the potential total H₂ market demand and the potential total synthetic
419 methanol production, as well as their environmental impacts can be further evaluated.

420 **SUPPORTING INFORMATION**

421 Additional details on simulation assumptions, flow results, mass and energy balance of methanol
422 production from H₂ and CO₂; system boundary of stand-alone and integrated systems; ethanol
423 production processes; ammonia production processes; techno-economic analysis assumptions
424 and cost results; methanol MFSP components, sensitivity analysis and risk analysis of MFSP of
425 methanol.

426 **ACKNOWLEDGMENTS**

427 This research was supported by the Hydrogen and Fuel Cell Technologies Office (HFTO) of the
428 U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy under Contract
429 No. DE-AC02-06CH11357. The authors are grateful to the support and guidance of Dr. Sunita
430 Satyapal and Neha Rustagi from HFTO.

431 **LIST OF ABBREVIATIONS**

BOB	Blendstock for oxygenate blending
CO ₂	Carbon dioxide
CCU	Carbon capture and utilization
DCFROR	Discounted cash flow rate of return
DOE	Department of Energy
E-fuels	Electro-fuels
FOC	Fixed operating costs
GHG	Greenhouse gas
GREET	Greenhouse gases, Regulated Emissions and Energy use in Transportation
H ₂	Hydrogen
HFTO	Hydrogen and Fuel Cell Technologies Office
LCA	Life cycle analysis
LHV	Lower heating value
LTE	Low-temperature electrolysis
MFSP	Minimum fuel selling price
NG	Natural gas

NPV	Net present value
OC	Operating cost
PEME	Polymer electrolyte membrane electrolysis
PSA	Pressure swing adsorption
RWGS	Reverse water gas shift
SMR	Steam methane reforming
SOEC	Solid oxide electrolyzer cell
TCI	Total capital investment
TDCC	Total direct capital cost
TEA	Techno-economic analysis
THE	High-temperature electrolysis
VOC	Variable operating costs
CTG	Cradle-to-gate

432 REFERENCES

- 433 (1) Hockstad, L.; Hanel, L. *Inventory of US Greenhouse Gas Emissions and Sinks*; Environmental
434 System Science Data Infrastructure for a Virtual Ecosystem, 2018.
- 435 (2) Yeh, S.; Lutsey, N. P.; Parker, N. C. Assessment of Technologies to Meet a Low Carbon Fuel
436 Standard. *Environ. Sci. Technol.* **2009**, *43* (18), 6907–6914. <https://doi.org/10.1021/es900262w>.
- 437 (3) Venkatesh, A.; Jaramillo, P.; Griffin, W. M.; Matthews, H. S. Uncertainty Analysis of Life Cycle
438 Greenhouse Gas Emissions from Petroleum-Based Fuels and Impacts on Low Carbon Fuel
439 Policies. *Environ. Sci. Technol.* **2011**, *45* (1), 125–131. <https://doi.org/10.1021/es102498a>.
- 440 (4) von der Assen, N.; Müller, L. J.; Steingrube, A.; Voll, P.; Bardow, A. Selecting CO₂ Sources for
441 CO₂ Utilization by Environmental-Merit-Order Curves. *Environ. Sci. Technol.* **2016**, *50* (3),
442 1093–1101. <https://doi.org/10.1021/acs.est.5b03474>.
- 443 (5) Anwar, M. N.; Fayyaz, A.; Sohail, N. F.; Khokhar, M. F.; Baqar, M.; Yasar, A.; Rasool, K.; Nazir,
444 A.; Raja, M. U. F.; Rehan, M.; Aghbashlo, M.; Tabatabaei, M.; Nizami, A. S. CO₂ Utilization:
445 Turning Greenhouse Gas into Fuels and Valuable Products. *J. Environ. Manage.* **2020**, *260*,
446 110059. <https://doi.org/https://doi.org/10.1016/j.jenvman.2019.110059>.
- 447 (6) Fernández-Dacosta, C.; Shen, L.; Schakel, W.; Ramirez, A.; Kramer, G. J. Potential and
448 Challenges of Low-Carbon Energy Options: Comparative Assessment of Alternative Fuels for the
449 Transport Sector. *Appl. Energy* **2019**, *236*, 590–606.
450 <https://doi.org/https://doi.org/10.1016/j.apenergy.2018.11.055>.
- 451 (7) Supekar, S. D.; Skerlos, S. J. Market-Driven Emissions from Recovery of Carbon Dioxide Gas.
452 *Environ. Sci. Technol.* **2014**, *48* (24), 14615–14623. <https://doi.org/10.1021/es503485z>.
- 453 (8) Bains, P.; Psarras, P.; Wilcox, J. CO₂ Capture from the Industry Sector. *Prog. Energy Combust.*
454 *Sci.* **2017**, *63*, 146–172. <https://doi.org/https://doi.org/10.1016/j.pecs.2017.07.001>.
- 455 (9) Herron, S.; Zoelle, A.; Summers, W. M. *Cost of Capturing CO₂ from Industrial Sources*; NETL,
456 2014.
- 457 (10) Greenhouse Gas Reporting Program (GHGRP). *Greenhouse Gas Reporting Program Industrial*

- Profile: Chemicals Sector; Washington, DC, 2019.

(11) Irlam, L.; Policy, S. A.; Economics, A.-P. R. Global Costs of Carbon Capture and Storage. *Glob. CCS Institute, Melbourne, Aust.* **2017**.

(12) He, Z.; Cui, M.; Qian, Q.; Zhang, J.; Liu, H.; Han, B. Synthesis of Liquid Fuel via Direct Hydrogenation of CO₂; *Proc. Natl. Acad. Sci.* **2019**, *116* (26), 12654 LP – 12659. <https://doi.org/10.1073/pnas.1821231116>.

(13) Pérez-Fortes, M.; Schöneberger, J. C.; Boulamanti, A.; Tzimas, E. Methanol Synthesis Using Captured CO₂ as Raw Material: Techno-Economic and Environmental Assessment. *Appl. Energy* **2016**, *161*, 718–732. [https://doi.org/https://doi.org/10.1016/j.apenergy.2015.07.067](https://doi.org/10.1016/j.apenergy.2015.07.067).

(14) Anicic, B.; Trop, P.; Goricanec, D. Comparison between Two Methods of Methanol Production from Carbon Dioxide. *Energy* **2014**, *77*, 279–289. <https://doi.org/https://doi.org/10.1016/j.energy.2014.09.069>.

(15) Kim, J.; Henao, C. A.; Johnson, T. A.; Dedrick, D. E.; Miller, J. E.; Stechel, E. B.; Maravelias, C. T. Methanol Production from CO₂ Using Solar-Thermal Energy: Process Development and Techno-Economic Analysis. *Energy Environ. Sci.* **2011**, *4* (9), 3122–3132.

(16) Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. *Chem. Rev.* **2018**, *118* (2), 434–504. <https://doi.org/10.1021/acs.chemrev.7b00435>.

(17) Michailos, S.; Sanderson, P.; Villa Zaragoza, A.; McCord, S.; Armstrong, K.; Styring, P.; Mason, F.; Stokes, G.; Williams, E.; Zimmermann, A. Methanol Worked Examples for the TEA and LCA Guidelines for CO₂ Utilization. **2018**.

(18) Pérez-Fortes, M.; Tzimas, E. Techno-Economic and Environmental Evaluation of CO₂ Utilisation for Fuel Production. *JRC Sci. Hub ZG Petten, Netherlands* **2016**.

(19) Hank, C.; Gelpke, S.; Schnabl, A.; White, R. J.; Full, J.; Wiebe, N.; Smolinka, T.; Schaadt, A.; Henning, H.-M.; Hebling, C. Economics & Carbon Dioxide Avoidance Cost of Methanol Production Based on Renewable Hydrogen and Recycled Carbon Dioxide–Power-to-Methanol. *Sustain. Energy Fuels* **2018**, *2* (6), 1244–1261.

(20) Szima, S.; Cormos, C.-C. Improving Methanol Synthesis from Carbon-Free H₂ and Captured CO₂: A Techno-Economic and Environmental Evaluation. *J. CO₂ Util.* **2018**, *24*, 555–563. <https://doi.org/https://doi.org/10.1016/j.jcou.2018.02.007>.

(21) Biernacki, P.; Röther, T.; Paul, W.; Werner, P.; Steinigeweg, S. Environmental Impact of the Excess Electricity Conversion into Methanol. *J. Clean. Prod.* **2018**, *191*, 87–98. <https://doi.org/https://doi.org/10.1016/j.jclepro.2018.04.232>.

(22) Wang, M.; Elgowainy, Amgad; Pahola, Michael Wang, Amgad Elgowainy, U. L.; Pahola Thathiana Benavides, Andrew Burnham, Hao Cai, Qiang Dai, T. R. H.; Jarod Cory Kelly, Hoyoung Kwon, Xinyu Liu, Zifeng Lu, Longwen Ou, Pingping Sun, Olumide Winjobi, H. X. *Summary of Expansions and Updates in GREET® 2019*; United States, 2019. <https://doi.org/10.2172/1483843>.

(23) Zang, G.; Sun, P.; Elgowainy, A. A.; Bafana, A.; Wang, M. Performance and Cost Analysis of Liquid Fuel Production from H₂ and CO₂ Based on the Fischer-Tropsch Process. *J. CO₂ Util.* **2021**, *46*, 101459. <https://doi.org/https://doi.org/10.1016/j.jcou.2021.101459>.

(24) Peney Golden, CO (United States)] (ORCID: 0000000283021565), M. [National R. E. L. (NREL).

- 500 Techno-Economic Modelling with H2A and H2FAST; United States, 2020.

501 (25) Saeidi, S.; Najari, S.; Fazlollahi, F.; Nikoo, M. K.; Sefidkon, F.; Klemeš, J. J.; Baxter, L. L.
502 Mechanisms and Kinetics of CO₂ Hydrogenation to Value-Added Products: A Detailed Review
503 on Current Status and Future Trends. *Renew. Sustain. Energy Rev.* **2017**, *80*, 1292–1311.
504 <https://doi.org/https://doi.org/10.1016/j.rser.2017.05.204>.

505 (26) Al-Kalbani, H.; Xuan, J.; García, S.; Wang, H. Comparative Energetic Assessment of Methanol
506 Production from CO₂: Chemical versus Electrochemical Process. *Appl. Energy* **2016**, *165*, 1–13.
507 <https://doi.org/https://doi.org/10.1016/j.apenergy.2015.12.027>.

508 (27) Lee, D.-Y.; Elgowainy, A. By-Product Hydrogen from Steam Cracking of Natural Gas Liquids
509 (NGLs): Potential for Large-Scale Hydrogen Fuel Production, Life-Cycle Air Emissions
510 Reduction, and Economic Benefit. *Int. J. Hydrogen Energy* **2018**, *43* (43), 20143–20160.
511 <https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.09.039>.

512 (28) Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.;
513 Worley, M. *Process Design and Economics for Biochemical Conversion of Lignocellulosic*
514 *Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover*; National
515 Renewable Energy Lab.(NREL), Golden, CO (United States), 2011.

516 (29) Kim, D. H.; Park, J. L.; Park, E. J.; Kim, Y. D.; Uhm, S. Dopant Effect of Barium Zirconate-Based
517 Perovskite-Type Catalysts for the Intermediate-Temperature Reverse Water Gas Shift Reaction.
518 *ACS Catal.* **2014**, *4* (9), 3117–3122. <https://doi.org/10.1021/cs500476e>.

519 (30) Zang, G.; Zhang, J.; Jia, J.; Lora, E. S.; Ratner, A. Life Cycle Assessment of Power-Generation
520 Systems Based on Biomass Integrated Gasification Combined Cycles. *Renew. Energy* **2020**, *149*,
521 336–346. <https://doi.org/https://doi.org/10.1016/j.renene.2019.12.013>.

522 (31) Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A. *Gasoline from Wood via Integrated*
523 *Gasification, Synthesis, and Methanol-to-Gasoline Technologies*; United States, 2011.
524 <https://doi.org/10.2172/1004790>.

525 (32) Spath, P.; Aden, A.; Eggeman, T.; Ringer, M.; Wallace, B.; Jechura, J. *Biomass to Hydrogen*
526 *Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory*
527 *Indirectly-Heated Gasifier*; United States, 2005. <https://doi.org/10.2172/15016221>.

528 (33) Zang, G.; Tejasvi, S.; Ratner, A.; Lora, E. S. A Comparative Study of Biomass Integrated
529 Gasification Combined Cycle Power Systems: Performance Analysis. *Bioresour. Technol.* **2018**,
530 255, 246–256. <https://doi.org/https://doi.org/10.1016/j.biortech.2018.01.093>.

531 (34) Davis, R.; Tao, L.; Tan, E. C. D.; Biddy, M. J.; Beckham, G. T.; Scarlata, C.; Jacobson, J.;
532 Cafferty, K.; Ross, J.; Lukas, J.; Knorr, D.; Schoen, P. *Process Design and Economics for the*
533 *Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic*
534 *Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons*;
535 United States, 2013. <https://doi.org/10.2172/1107470>.

536 (35) Gong, M.; Yi, Q.; Huang, Y.; Wu, G.; Hao, Y.; Feng, J.; Li, W. Coke Oven Gas to Methanol
537 Process Integrated with CO₂ Recycle for High Energy Efficiency, Economic Benefits and Low
538 Emissions. *Energy Convers. Manag.* **2017**, *133*, 318–331.
539 <https://doi.org/https://doi.org/10.1016/j.enconman.2016.12.010>.

540 (36) Kuo, P.-C.; Wu, W. Thermodynamic Analysis of a Combined Heat and Power System with CO₂
541 Utilization Based on Co-Gasification of Biomass and Coal. *Chem. Eng. Sci.* **2016**, *142*, 201–214.
542 <https://doi.org/https://doi.org/10.1016/j.ces.2015.11.030>.

- 543 (37) Saadi, F. H.; Lewis, N. S.; McFarland, E. W. Relative Costs of Transporting Electrical and
 544 Chemical Energy. *Energy Environ. Sci.* **2018**, *11* (3), 469–475.
 545 <https://doi.org/10.1039/C7EE01987D>.
- 546 (38) Wang, Zhichao ; Dunn, Jennifer B. ; Wang, M. Q. *Updates to the Corn Ethanol Pathway and*
 547 *Development of an Integrated Corn and Corn Stover Ethanol Pathway in the GREET™ Model*;
 548 United States, 2014. <https://doi.org/10.2172/1172034>.
- 549 (39) Aspen Technology. *Aspen Plus Ammonia Model*; Bedford, MA, 2015.
- 550 (40) Wang, M.; Elgowainy, A.; Lee, U.; Bafana, A.; Benavides, P. T.; Bumham, A.; Cai, H.; Dai, Q. *Summary of Expansions and Updates in GREET® 2020*; Lemont, IL, US, 2020.
- 552 (41) Latshaw, W. L.; Miller, E. C. Elemental Composition of the Corn Plant. *J. Agric. Res.* **1924**, *27*
 553 (11), 845–861.
- 554 (42) Giuntoli, J.; de Jong, W.; Arvelakis, S.; Spliethoff, H.; Verkooijen, A. H. M. Quantitative and
 555 Kinetic TG-FTIR Study of Biomass Residue Pyrolysis: Dry Distiller’s Grains with Solubles
 556 (DDGS) and Chicken Manure. *J. Anal. Appl. Pyrolysis* **2009**, *85* (1), 301–312.
 557 <https://doi.org/https://doi.org/10.1016/j.jaap.2008.12.007>.
- 558 (43) Nagaraja, S.; Soorya Prakash, K.; Sudhakaran, R.; Sathish Kumar, M. Investigation on the
 559 Emission Quality, Performance and Combustion Characteristics of the Compression Ignition
 560 Engine Fueled with Environmental Friendly Corn Oil Methyl Ester – Diesel Blends. *Ecotoxicol.*
 561 *Environ. Saf.* **2016**, *134*, 455–461. <https://doi.org/https://doi.org/10.1016/j.ecoenv.2016.01.023>.
- 562 (44) Unite States Enviromental Protection Agency (EPA). *Emissions Facts: Ammonia Synthesis*.
- 563 (45) Association, E. F. M. Best Available Techniques for Pollution Prevention and Control in the
 564 European Fertilizer Industry. *Prod. Urea Urea Ammonium Nitrate* **2000**.
- 565 (46) Kheshgi, H. S.; Prince, R. C. Sequestration of Fermentation CO₂ from Ethanol Production. *Energy*
 566 **2005**, *30* (10), 1865–1871. <https://doi.org/https://doi.org/10.1016/j.energy.2004.11.004>.
- 567 (47) Rosenfeld, J.; Lewandrowski, J.; Hendrickson, T.; Jaglo, K.; Moffroid, K.; Pape, D. *A Life-Cycle*
 568 *Analysis of the Greenhouse Gas Emissions from Corn-Based Ethanol*; Washington, DC, 2018.
 569 <https://doi.org/Report prepared by ICF under USDA Contract No. AG-3142-D-17-0161>.
- 570 (48) Zang, G.; Shah, A.; Wan, C. Techno-Economic Analysis of an Integrated Biorefinery Strategy
 571 Based on One-Pot Biomass Fractionation and Furfural Production. *J. Clean. Prod.* **2020**, *260*,
 572 120837. <https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120837>.
- 573 (49) Peterson, David; Vickers, James; Desantis, D. *DOE Hydrogen and Fuel Cells Program Record: Hydrogen Production Cost from PEM Electrolysis*; 2019.
- 575 (50) Energy, D. *Commercial CO₂ Market Today. Efficiently Producing Fuels from Waste CO₂ and off-Peak Wind*; 2011.
- 577 (51) Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D. *Techno-Economic Analysis of Biofuels Production Based on Gasification*; United States, 2010. <https://doi.org/10.2172/994017>.
- 579 (52) Christensen, J. Primer: Section 45Q Tax Credit for Carbon Capture Projects
 580 <https://www.betterenergy.org/blog/primer-section-45q-tax-credit-for-carbon-capture-projects/>.
 581 <https://doi.org/https://www.betterenergy.org/blog/primer-section-45q-tax-credit-for-carbon-capture-projects/>.
- 583 (53) Hu, K.; Chen, Y. Equilibrium Fuel Supply and Carbon Credit Pricing under Market Competition

584 and Environmental Regulations: A California Case Study. *Appl. Energy* **2019**, *236*, 815–824.
585 <https://doi.org/https://doi.org/10.1016/j.apenergy.2018.12.041>.

586