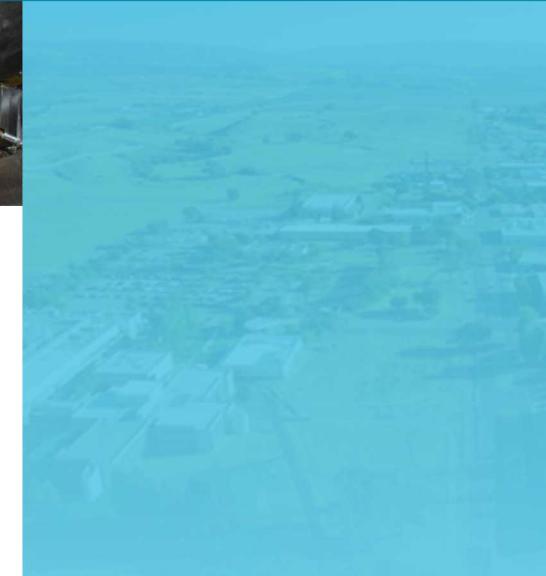


Pressio: A Computational Framework Enabling Projection-Based Model Reduction for Large-Scale Nonlinear Dynamical Systems



PRESENTED BY

Patrick Blonigan

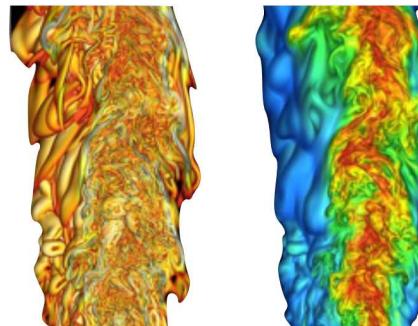
Collaborators: Francesco Rizzi, Eric Parish, and Kevin Carlberg

SAND2020-XXXXX C

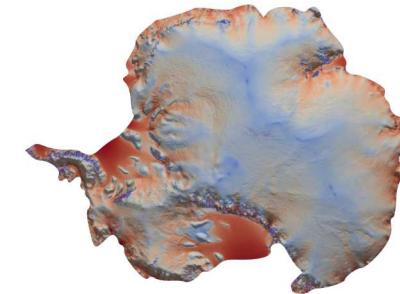
High-fidelity simulations are crucial, but often too costly for rigorous use in engineering and scientific applications

- **High-fidelity simulation:**

- Extreme-scale nonlinear computational models,
- Indispensable for engineering and scientific applications.
- Example: captive carry aerodynamics simulation
 - Extreme-scale: **100 million cells, 200,000 time steps.**
 - High cost: **6 weeks on 5000 cores.**



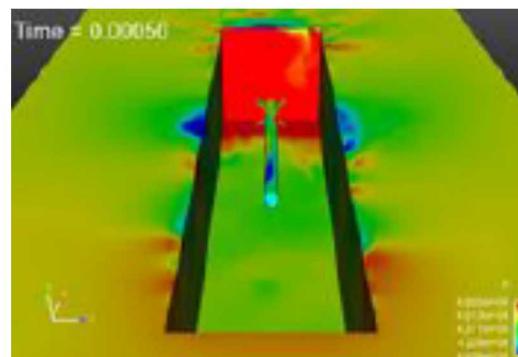
Turbulent reacting flows
courtesy J. Chen



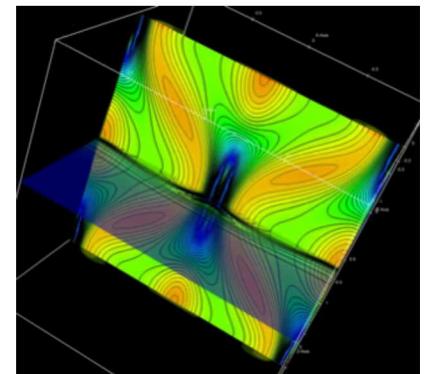
Antarctic ice sheet modeling
courtesy R. Tuminaro

- **High-fidelity for time-critical and/or many-query**

- Parameter estimation
 - Material property estimation
 - Matching field experiments
 - **Parameters for digital twins**
- Uncertainty Quantification
 - Qualification of uncertainty in normal and abnormal environments
 - Quantification of Margins
- Design optimization
 - **Rapid iteration of conceptual designs**
 - Shape and material optimization



Captive carry aerodynamics
courtesy M. Barone

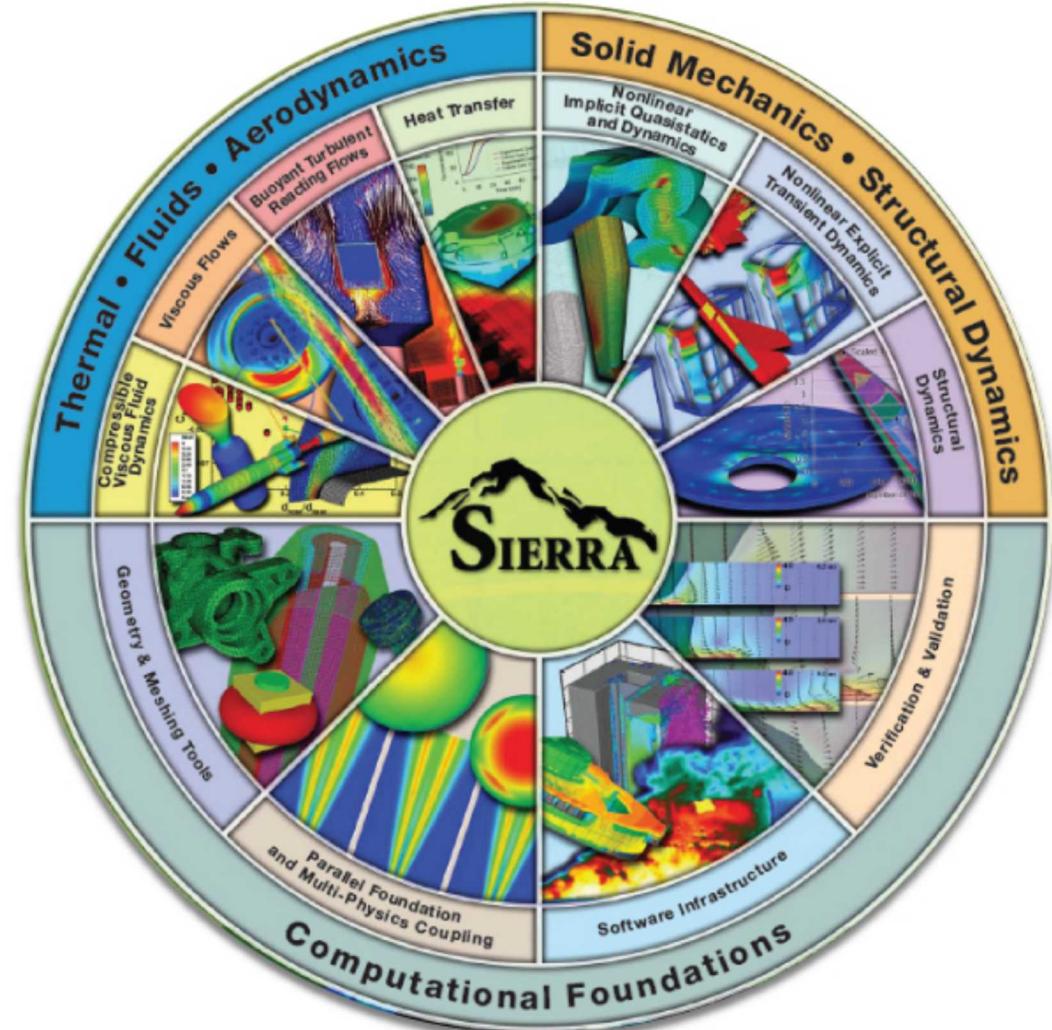


Magnetohydrodynamics
courtesy J. Shadid

Projection-based reduced-order models (ROMs)

- Why ROMs?

- Directly tied to a ``full-order model''
 - Allows us to leverage Sandia's suite of application codes
- ROMs are “physics-based” surrogates
 - Results are explainable
- Compatible with *a priori* and *a posteriori* error bounds
 - Quantifying the uncertainty of the ROM is critical for Sandia's missions
- Enables full-field predictions
 - Useful for engineering design and analysis



Mathematical setting

- We focus on dynamical systems emerging from **spatially** discretized PDEs

$$\dot{\mathbf{x}}(t; \boldsymbol{\mu}) = \mathbf{f}(\mathbf{x}(t; \boldsymbol{\mu}), t, \boldsymbol{\mu})$$

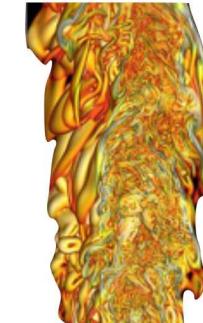
$$\mathbf{x} : [0, T] \times \mathcal{D} \rightarrow \mathbb{R}^N$$

$$\boldsymbol{\mu} \in \mathcal{D}$$

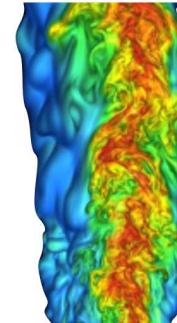
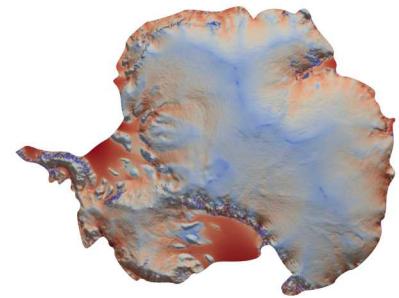
\mathbf{x} : state vector

$\boldsymbol{\mu}$: system parameters

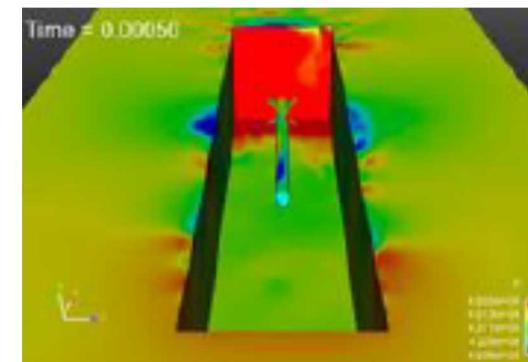
- Why semi-discrete?
 - **Formulation is versatile**: encompasses finite volume, finite difference, and finite element models
 - Encompasses the majority of Sandia's application codes
 - Steady systems are encompassed
- Solving these systems are **computationally expensive**
 - Motivates the need for ROMs



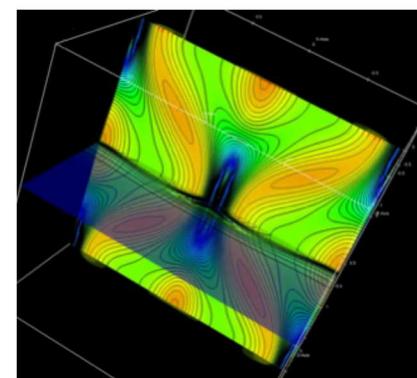
Turbulent reacting flows
courtesy J. Chen



Antarctic ice sheet modeling
courtesy R. Tuminaro



Captive carry aerodynamics
courtesy M. Barone

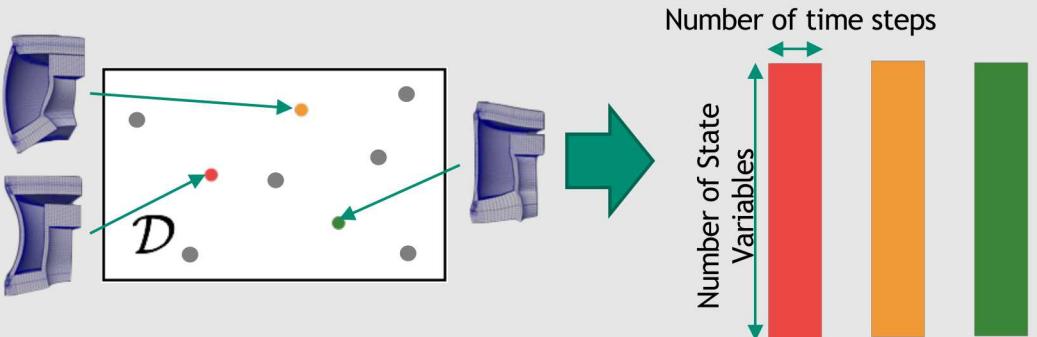


Magnetohydrodynamics
courtesy J. Shadid

ROMs leverage an offline—online paradigm

Offline

- Execute solves of the FOM for “training” parameter instances

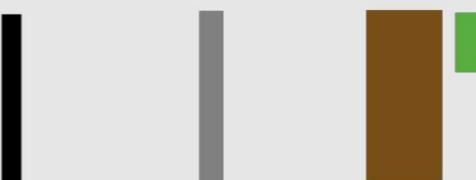


- Identify low-dimensional structure in data (POD)

$$\mathbf{X} = \begin{matrix} \text{Red Bar} \\ \text{Orange Bar} \\ \text{Green Bar} \end{matrix} = \begin{matrix} \Phi \\ \Sigma \\ \mathbf{U} \end{matrix} \begin{matrix} \mathbf{v}^T \end{matrix}$$

- Approximate state in low-dimensional vector space

$$\mathbf{x}(t; \mu) \approx \tilde{\mathbf{x}}(t; \mu) = \Phi \hat{\mathbf{x}}(t; \mu)$$



Online

- Generate approximate solutions
- We favor minimum residual formulations**

- LSPG:

- Minimize the time-discrete residual at each time step

$$\hat{\mathbf{x}}^{n+1} = \arg \min_{\hat{\mathbf{v}}} \|\mathbf{Ar}(\Phi \hat{\mathbf{v}}; \mu)\|_2^2$$

- Space—time LSPG:

- Minimize time-discrete residual over the entire time domain

- Windowed least-squares:

- Minimize the time-continuous residual over windows

- Why minimum residual?**

- Robust for nonsymmetric systems

- Straightforward to equip with constraints (e.g., conservation)

Outstanding challenges and ongoing ROM work at Sandia

- We are actively addressing the following ROM challenges at Sandia
 - Stability and accuracy for nonlinear, nonsymmetric, and noncoercive problems
 - Kolmogorov n -width limitations
 - Domain decomposition
 - Quantifying the “ROM model-form” uncertainty
 - **Portability**
 - Demonstrations on engineering applications
- **Portability of reduced-order models**
 - ROMs are traditionally viewed as an **intrusive** surrogate model
 - Requires modifications to the source code
 - Sandia maintains a heterogeneous set of high-performance application codes
 - Different data structures and data types
 - Different types of parallelization (OpenMP, MPI, GPUs)
 - Adding ROM capabilities to each code is not achievable
- Motivates **Pressio**

What is Pressio?

- Open-source computational framework enabling projection-based model reduction for large-scale nonlinear dynamical systems.
- Applicable to a general ODE systems: Pressio provides ROM capabilities that are applicable to any system expressible as a parameterized system of ordinary differential equations (ODEs) as:

$$\dot{\mathbf{x}}(t; \mu) = \mathbf{f}(\mathbf{x}(t; \mu), t, \mu), \quad \mathbf{x}(0; \mu) = \mathbf{x}^0(\mu)$$

- Provides model reduction techniques for both spatial and temporal degrees of freedom.

<https://github.com/Pressio>

Github project

<https://github.com/Pressio>

 Pressio

Projection-based model reduction for large-scale nonlinear dynamical systems

✉ fnrizzi@sandia.gov

Repositories 6 **Packages** **People 5** **Teams** **Projects** **Settings**

Pinned repositories

 pressio ≡
Projection-based model reduction for nonlinear dynamical systems: core C++ library
C++ ⭐ 3

 pressio-builder Template ≡
Projection-based model reduction for nonlinear dynamical systems: auxiliary building scripts
Shell

 pressio-tutorials ≡
Projection-based model reduction for nonlinear dynamical systems: tutorials
C++

 pressio4py ≡
Python bindings to pressio
C++

Customize pinned repositories

9 | Interfacing with simulation codes

- Previous ROM methods were implemented directly in multiple application codes

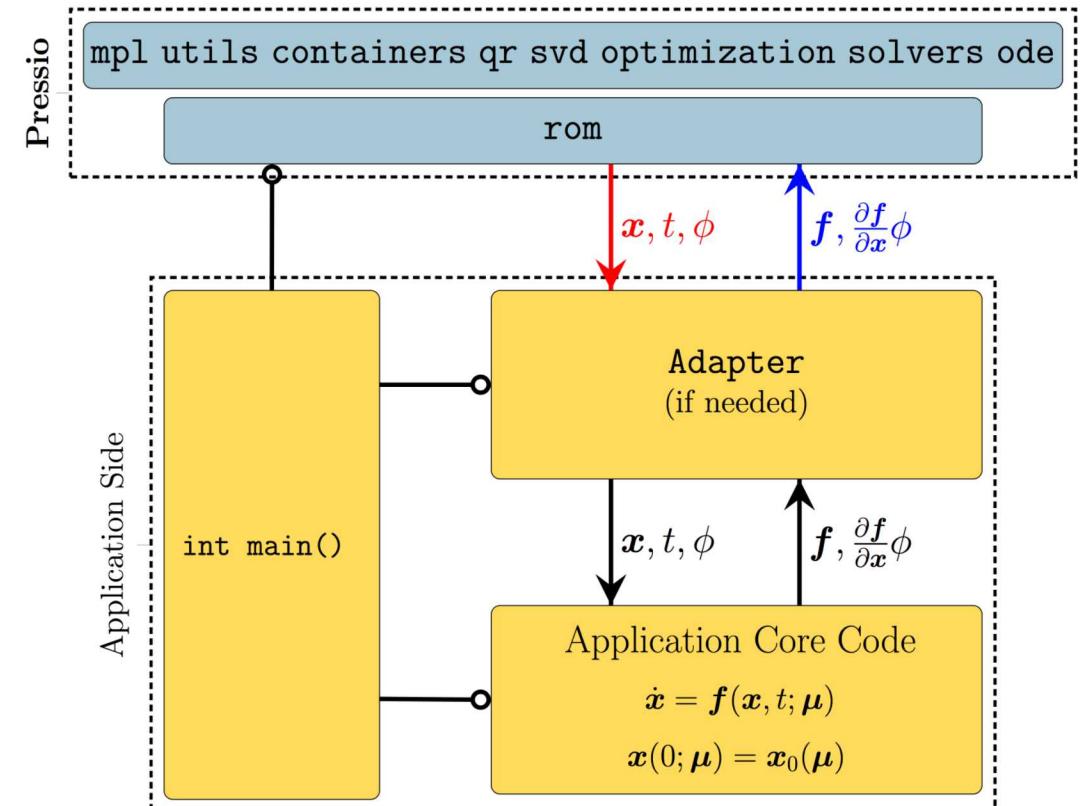
✗ **Highly intrusive**: major changes to application code

✗ **Not extensible**: individual ROM implementation for each application

✗ **Access requirements**: developers need direct access to application

- Pressio: computational framework addressing all these issues:

- ✓ Minimally intrusive API
- ✓ Leverages modern software engineering practices (e.g. C++ template-metaprogramming)
 - Portable implementation that works on different architectures, including GPUs
 - Restricted to practices used by mission application partners
- ✓ Facilitates contributions from external partners
 - Undergoing open source copyright assertion
- ✓ Clear separation between methods and application
 - Enables methods work without access to restricted applications



Schematic of Pressio software workflow

High-level features

Header-only library, no need to be compiled and packaged

- Benefits portability

Modular structure

- Packages are designed to be self-contained with minimal inter dependencies
- Benefits the development cycle and extensibility

Relies on modern C++11 and metaprogramming for type detection and compile-time dispatching

Support for state-of-the-art HPC programming models (e.g. Kokkos)

- Seamless support for GPU computing via Kokkos

Unit and regression tests with continuous integration (growing feature)

Supports a basic Python API to expose the C++ ROM functionalities

- Enables Python users to use Pressio

Minimal API that is natural for ODE systems

We leverage the ODE expression

$$\dot{x}(t; \mu) = f(x(t; \mu), t, \mu), \quad x(0; \mu) = x^0(\mu)$$

as a pivotal design choice to enable a minimal API

```
class Adapter:
    def __init__(self, *args):
        # initialize (if needed)
        # create velocity vector, f, and Jacobian matrix, Jac

    # compute velocity, f(x,t;...), for a given state, x
    def velocity(self, x, t):
        # compute f (here f is a member of the class)
        return self.f

    # given current state x(t):
    # 1. compute the spatial Jacobian, df/dx
    # 2. compute A=df/dx*B, B is typically a skinny dense matrix
    def applyJacobian(self, x, B, t):
        # compute Jac = df/dx (here Jac is a member of the class)
        # Jac is typically sparse, so we use Jac.dot(B)
        # When Jac is dense, use np.matmul(Jac,B)
        return self.Jac.dot(B)
```

Python adapter API

```
class SampleAdapterClass{
    //...
public:
    /* C++11 type aliasing declarations that Pressio detects */
    /* this is equivalent to doing: typedef ... scalar_type */
    using scalar_type      = /*application's scalar type */;
    using state_type       = /*          state type */;
    using velocity_type    = /*          velocity type */;
    using dense_matrix_type = /*          dense matrix type */;
    //...

    // compute velocity, f(x,t;...), for a given state, x(t)
    void velocity(const state_type & x,
                  const scalar_type & t,
                  velocity_type & f) const;

    // given current state x(t):
    // 1. compute the spatial Jacobian, df/dx
    // 2. compute A=df/dx*B, B is typically a skinny dense matrix
    void applyJacobian(const state_type & x,
                       const dense_matrix_type & B,
                       const scalar_type & t,
                       dense_matrix_type & A) const;

    // overload called once to construct an initial object
    velocity_type velocity(const state_type & x,
                           const scalar_type & t) const;

    // overload called once to construct an initial object
    dense_matrix_type applyJacobian(const state_type & x,
                                    const dense_matrix_type & B,
                                    const scalar_type & t) const;
```

C++ adapter API

Currently Supported ROM Features

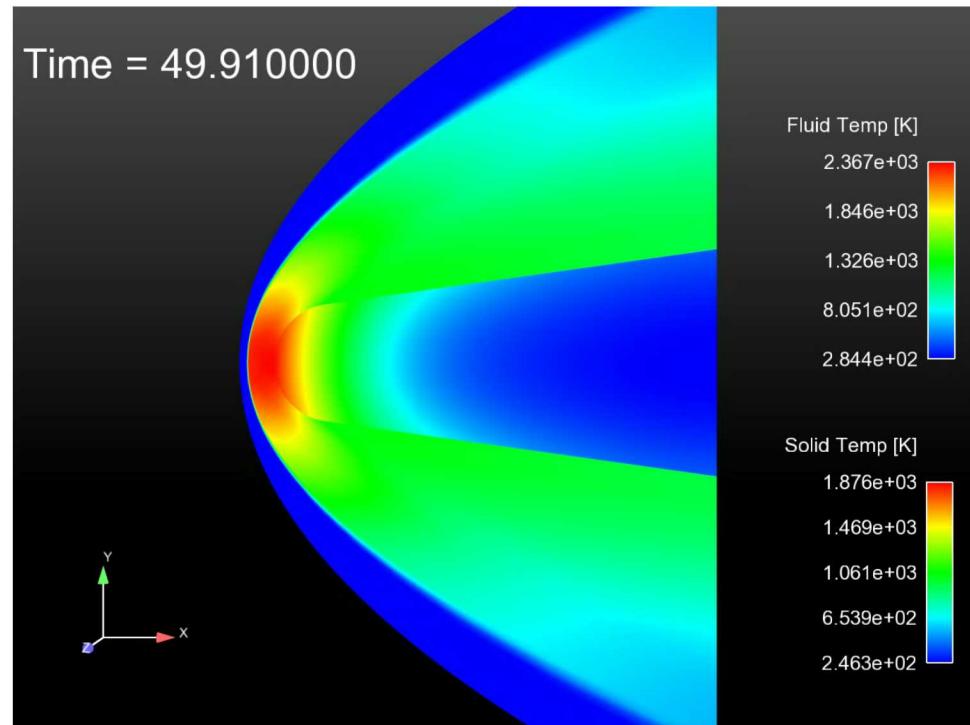
- ROM formulations
 - Galerkin Projection
 - LSPG (steady and unsteady)
 - WLS
- Nonlinear solvers
 - Gauss-Newton
 - Levenberg-Marquardt
- Time Stepping Schemes
 - Forward/Backward Euler
 - BDF2
 - RK4
- Miniapps
 - 1D Burger's equation
 - 2D Advection-Diffusion
 - 2D Advection-Diffusion-Reaction

Applications Currently Interfaced with Pressio

- SPARC: Sandia Parallel Aerodynamics and Reentry Code
 - Finite Volume compressible flow **RANS** solver
 - Finite element thermal/ablation solver
- ARIA: Sandia proprietary multiphysics package
 - Incompressible flow solver
 - Thermal/chemical solver
- OpenFOAM: joint work with Samuel Majors and Karen Willcox (UT Austin)
 - Thermal conduction (In progress)
 - Compressible flow solver (In progress)

Sandia Parallel Aerodynamics and Reentry Code (SPARC)

- Compressible CFD code focused on aerodynamics and aerothermodynamics in the Transonic and Hypersonic regimes
 - Being developed to run on today's leadership-class supercomputers and exascale machines.
 - Performance portability: SPARC leverages Kokkos to run on multiple machines with different architectures (e.g. CPU vs. CPU/GPU)
- Physics Capabilities include:
 - Navier—Stokes, cell-centered finite volume method
 - **Reynolds-Averaged Navier—Stokes (RANS) , cell-centered finite volume method**
 - Transient Heat Equation, Galerkin finite element method.
 - Decomposing and non-decomposing ablation equations, Galerkin finite element method.
 - One and two-way coupling between ablation, heat equation, RANS.



Temperature of a slender body in hypersonic flow simulated with SPARC

Implementing ROMs with Pressio and SPARC

1. Expose the functionalities required by the Pressio API
 - SPARC's modular design made this straightforward.
 - Routines needed for “velocity” were readily available.
 - “applyJacobian” leveraged existing spatial Jacobian.

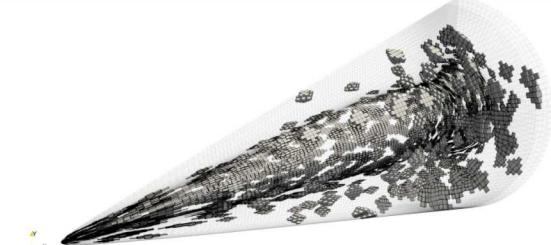
$$\text{velocity: } \mathbf{w} = \mathbf{f}(\mathbf{x}(t; \boldsymbol{\mu}), t, \boldsymbol{\mu})$$

$$\text{applyJacobian: } \mathbf{W} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\mathbf{x}(t; \boldsymbol{\mu})} \mathbf{V}$$

2. Implement main needed to drive the ROM computations.
 - e.g. reading snapshots, computing POD modes.

$$\mathbf{x} = \begin{bmatrix} \text{red} \\ \text{orange} \\ \text{green} \end{bmatrix} = \begin{bmatrix} \Phi \\ \mathbf{U} \end{bmatrix} \Sigma \mathbf{v}^\tau$$

3. Hyper-reduction
 - Implemented sample mesh for an unstructured mesh format. Less intrusive than structured mesh format!
 - Algebraic hyper-reduction implemented for validation purposes.

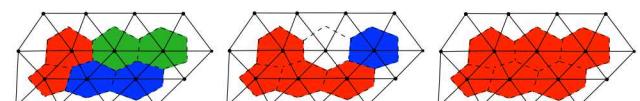


4. Special ROM Features:
 - LSPG with conservation constraints was implemented with a custom nonlinear solver.
 - Clipper to eliminate non-physical flow phenomena in ROM state-reconstruction was implemented in SPARC.

$$\underset{\hat{\mathbf{v}}}{\text{minimize}} \|\mathbf{A}\mathbf{r}(\Phi \hat{\mathbf{v}}; \boldsymbol{\mu})\|_2^2$$

$$\text{s.t. } \mathbf{C}\mathbf{r}(\Phi \hat{\mathbf{v}}; \boldsymbol{\mu}) = \mathbf{0}$$

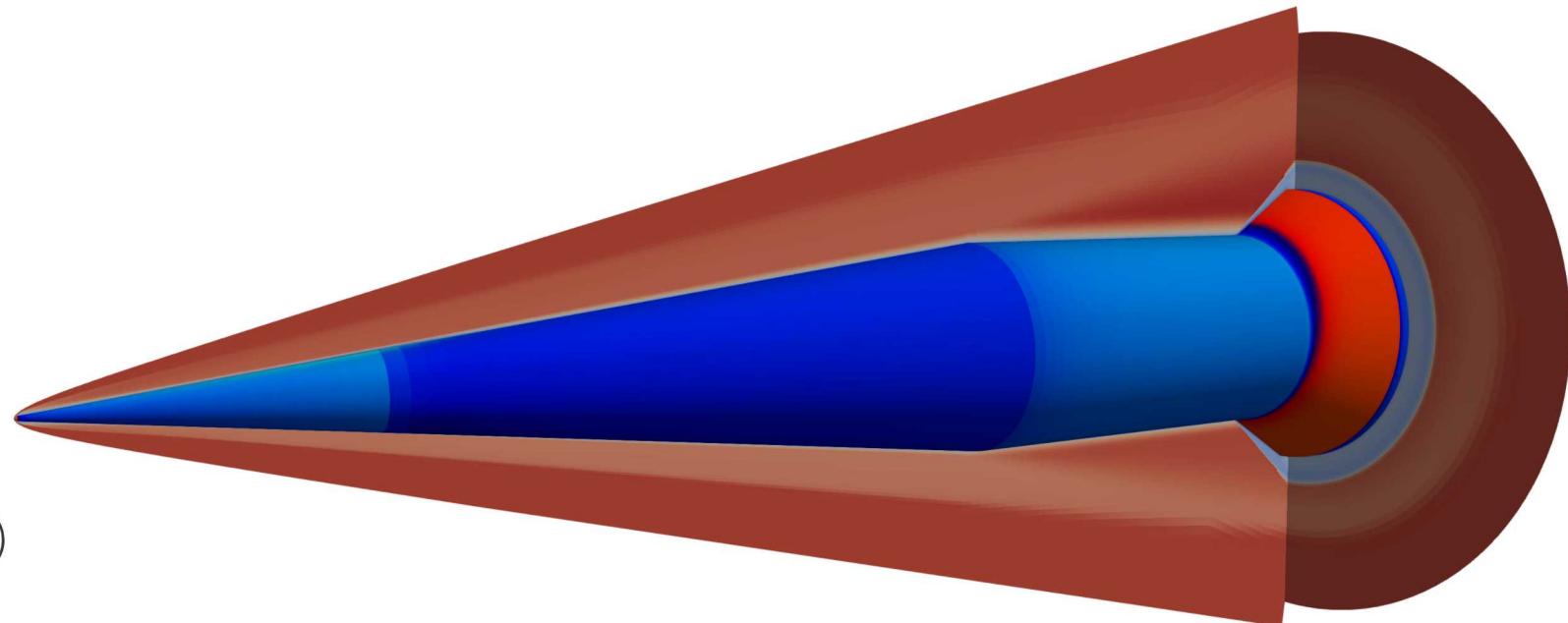
Enforce conservation over subdomains:



Test Case: HIFiRE-1 flight vehicle

- Flow field:

- Free stream Mach No. = 7.1
- Reynolds No. = 10.0 million/meter
- Angle of Attack = 2 degrees
- Boundary layer transitions to turbulence (use Spalart-Allmaras with specified transition location)



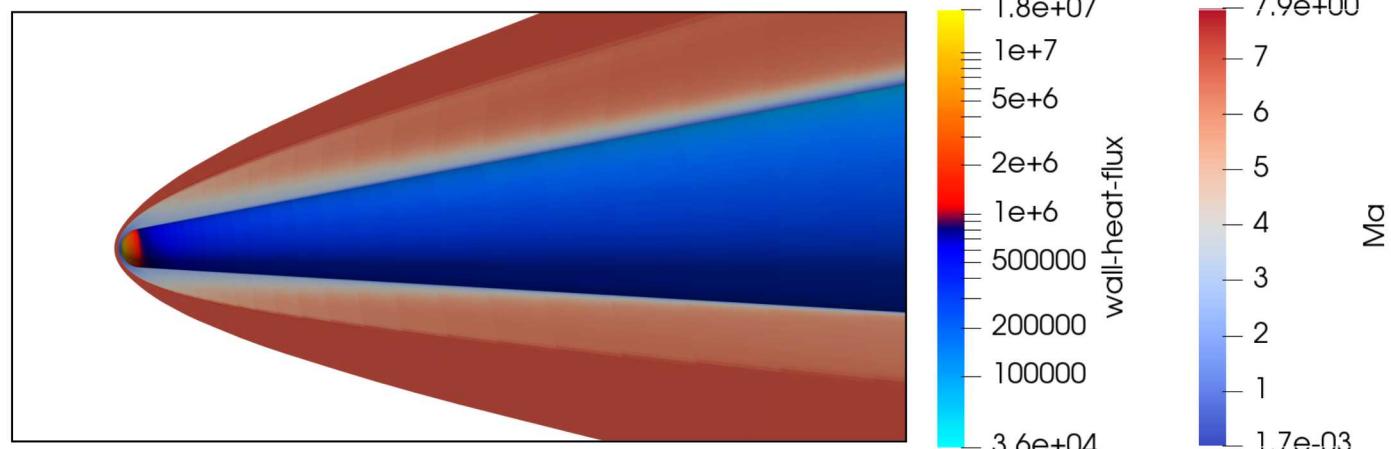
- Spatial discretization:

- 2nd-order finite volume
- 2,031,616 cells
- $y^+ < 1$ near wall

- Solver:

- Pseudo time stepping with backward Euler, CFL schedule.

Close up of nose:

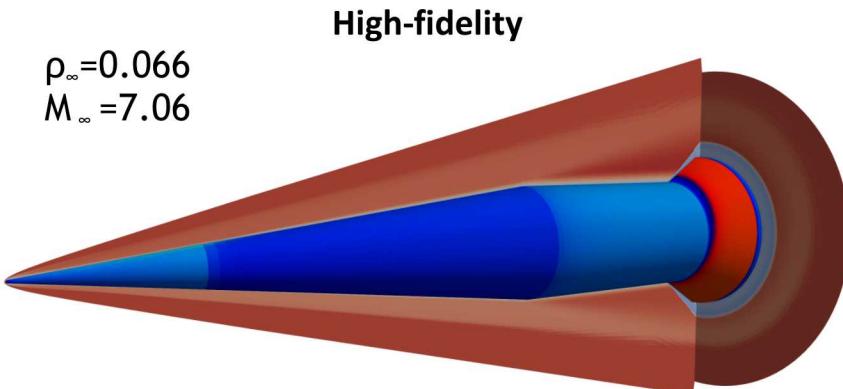


LSPG ROM applied to steady hypersonics using Pressio & SPARC

- HiFIRE-1 experiment. Baseline case: $Re=10^7$, $Ma=7.1$, $AoA=2^\circ$.
- Training data set: 24 simulation results sampled over a range of freestream conditions:
 - Density: 0.056 to 0.070 kg/m^3
 - Free stream Mach number: 5.7 to 7.1
- Initial guess computed by inverse distance interpolation.

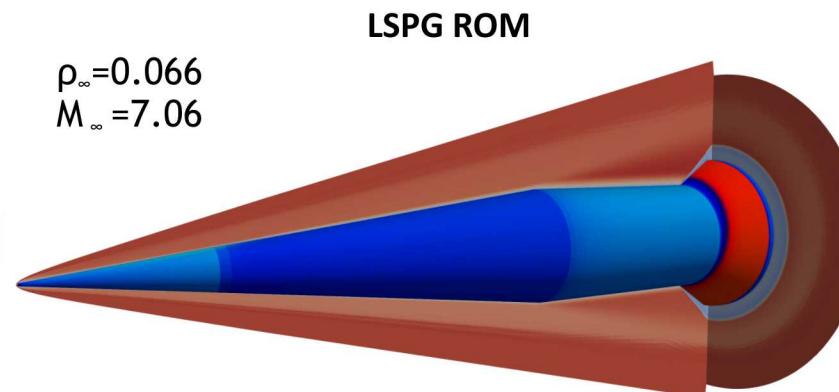
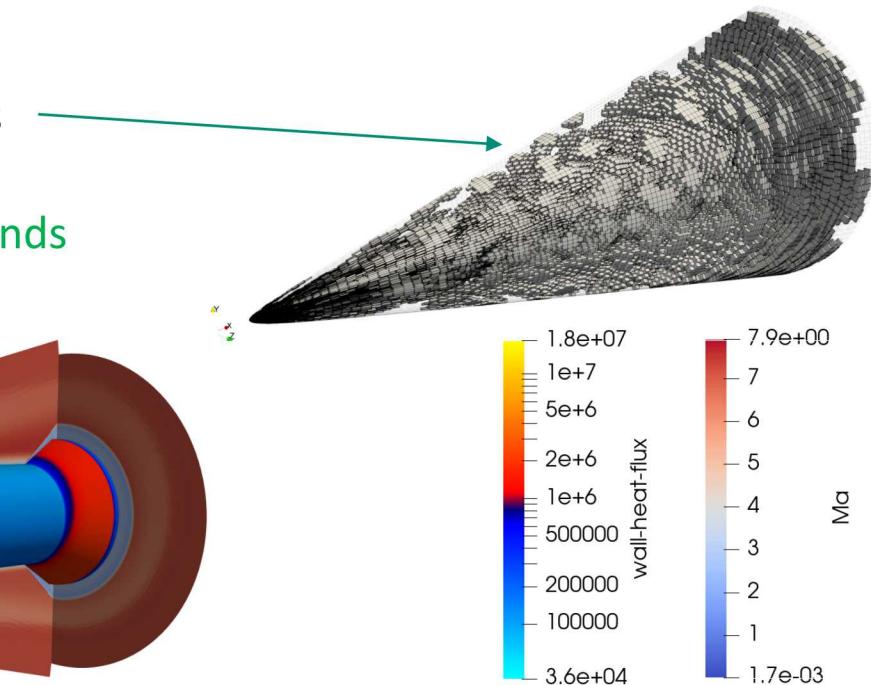
High-fidelity:

- Mesh: 2,031,616 cells
- Dofs = 12,189,696
- **128 MPI ranks, ~2,500-5,000 seconds**



LSPG ROM:

- Sample mesh: 20,316 cells
- Dofs = 121,896
- **16 MPI ranks, ~30-55 seconds**



~300-1,000x savings in core-hours
 < 1% error in density, momentum, and energy fields
 ~ 1-2% error in integrated wall heat flux

- High-fidelity simulations are computationally too expensive for time-critical or many-query analyses.
- Projection-based ROMs provide a rigorous surrogate for high-fidelity models
- ROMs are traditionally highly intrusive to implement
- **Pressio** leverages generic programming to enable the implementation of ROMs with a minimally intrusive APIs
- **Pressio** has been already interfaced with production-level application codes, including SPARC
 - In this case, computational speed-ups of 300-1,000x were obtained, with QoI errors of only 1-2%

Ongoing:

- Increasing ROM robustness
 - stronger nonlinear solvers
 - preconditioning strategies
 - formulations better suited for shocks.
- OpenFOAM interface (with Samuel Majors, Karen Willcox)
 - Almost ready!

Future:

- ROMs for larger cases
 - larger meshes
 - multiple time scales
 - Coupled multi-physics
- Integration of machine learning
 - Error estimation
 - State dimension reduction
 - ROM deployment/management
- New programming models
 - Task-based programming
- **Collaborations enabled by Pressio**

Key references

- F. Rizzi, P. Blonigan, and K. Carlberg. PRESSIO: Enabling Projection-based model reduction for large-scale nonlinear dynamical systems. Submitted to SIAM Journal on Scientific Computing, Feb. 2020.
- P. Blonigan, K. Carlberg, F. Rizzi, M. Howard, and J. Fike. Model reduction for hypersonic aerodynamics via conservative LSPG projection and hyper-reduction. AIAA Scitech 2020, AIAA 2020-0104.
- E. Parish and K. Carlberg. Windowed least-squares model reduction for dynamical systems. arXiv e-print, (1910.11388), 2019.
- K. Lee and K. Carlberg. Deep Conservation: A latent dynamics model for exact satisfaction of physical conservation laws. arXiv e-print, (1909.09754), 2019.
- E. Parish and K. Carlberg. Time-series machine-learning error models for approximate solutions to parameterized dynamical systems. Submitted to Computer Methods for Applied Mechanics in Engineering, 7/2019. arXiv e-print: 1907.11822
- P. Etter and K. Carlberg. Online adaptive basis refinement and compression for reduced order models. Submitted to Computer Methods for Applied Mechanics in Engineering, 2019. arXiv e-print: 1902.10659
- S. Pagani, A. Manzoni, and K. Carlberg. Statistical closure modeling for reduced-order models of stationary systems by the ROMES method. Submitted to SIAM Journal on Uncertainty Quantification, 2019. arXiv e-print: 1901.02792
- K. Lee and K. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. Journal of Computational Physics, 404:108973 (2020).
- M. Zahr, K. Carlberg, and D. Kouri. An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids. SIAM/ASA Journal on Uncertainty Quantification, Vol. 7, No. 3, p.877–912 (2019).

<https://github.com/Pressio>

Backup Slides

Increasing ROM robustness with nonlinear mapping of POD basis

- Failed cases shown earlier are due to small regions of negative temperature.
- States with non-physical features are encountered by ROM solver more often as basis is made smaller and/or parameter space is increased in size.
- **Solution:** nonlinear mapping of POD modes to remove non-physical features from approx. state vector:

$$\underset{\hat{v}}{\text{minimize}} \|\mathbf{Ar}(\Phi \hat{v}; \mu)\|_2^2 \quad \longrightarrow \quad \underset{\hat{v}}{\text{minimize}} \|\mathbf{Ar}(\mathbf{g}(\Phi \hat{v}); \mu)\|_2^2$$

Where \mathbf{g} transforms the conserved quantities in each cell as follows:

$$\tilde{\tilde{u}}_1 = \max(\epsilon_1, \tilde{u}_1)$$

$$\tilde{\tilde{u}}_2 = \tilde{u}_2$$

$$\tilde{\tilde{u}}_3 = \tilde{u}_3$$

$$\tilde{\tilde{u}}_4 = \tilde{u}_4$$

$$\tilde{\tilde{u}}_5 = \max \left(\epsilon_5 + \frac{1}{2\tilde{\tilde{u}}_1} [\tilde{u}_2^2 + \tilde{u}_3^2 + \tilde{u}_4^2], \tilde{u}_5 \right)$$

We do hyper-reduction with collocation to keep offline costs down

- Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016]:

$$\text{LSPG: } \underset{\hat{\mathbf{v}}}{\text{minimize}} \|\mathbf{A}\mathbf{r}(\Phi\hat{\mathbf{v}}; \boldsymbol{\mu})\|_2^2$$

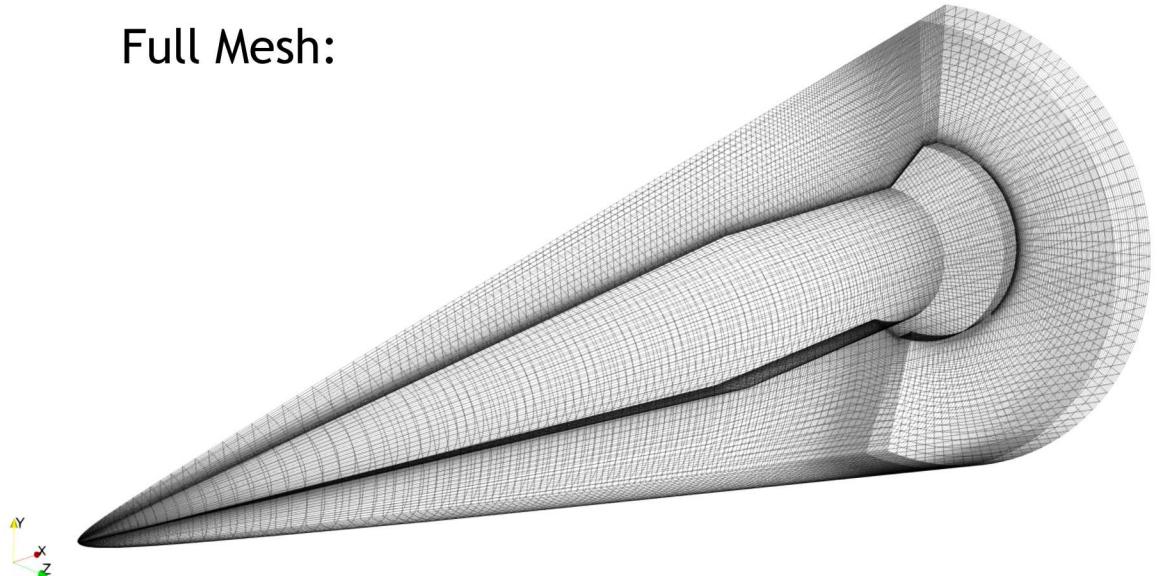
$$\mathbf{A} = \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array}$$

Collocation
choose rows of \mathbf{A}
from identity matrix

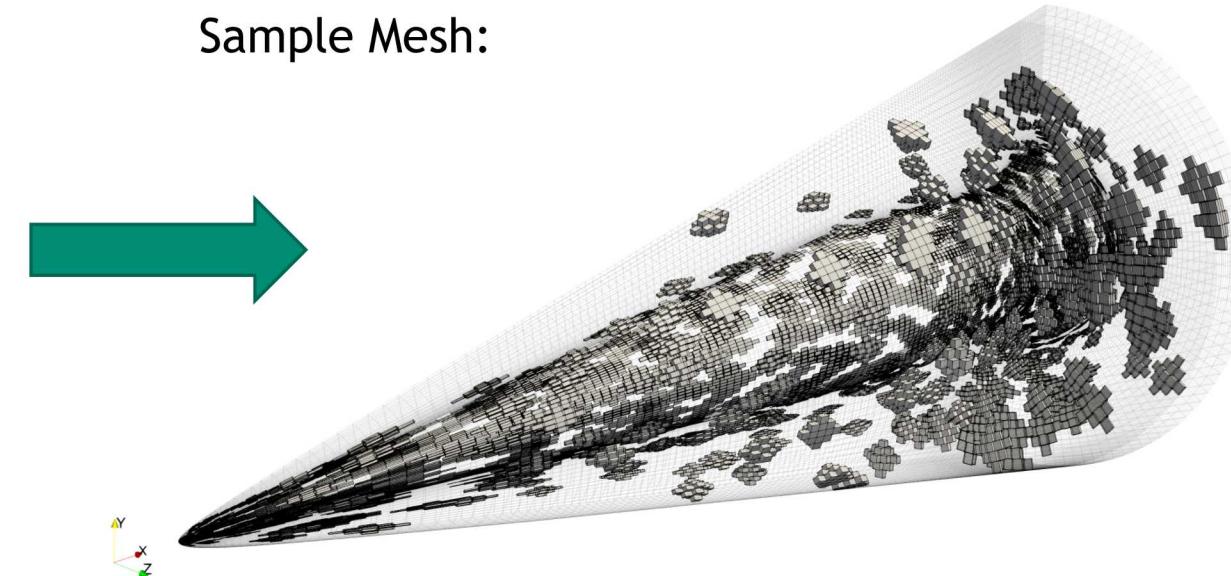
$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 1 & 0 & 0 \end{pmatrix}$$

- Inexpensive compared to DEIM and GNAT.
- Sample mesh: subset of cells required to compute residual
- We consider random sampling of cells in this study.

Full Mesh:



Sample Mesh:



Training Data and Model details

- Samples:
 - Varied freestream density and velocity
 - Training set: 24 sample Latin hypercube
 - Test set: 12 sample Latin hypercube
- POD basis:
 - Mean flow subtracted from each snapshot.
 - Each conserved quantity scaled by its maximum over all FOM solutions.
 - 2, 4, and 8 mode basis were considered.
- ROM: LSPG solved with Gauss-Newton iteration
 - Initial guess obtained via inverse-distance interpolation of POD modes.
 - Full mesh, two sample meshes considered

