This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Pressio: A Computational Framework Enabling

Projection-Based Model Reduction for Large-

Scale Nonlinear Dynamical Systems

PRESENTED BY

Patrick Blonigan

Collaborators: Francesco Rizzi, Eric Parish, and Kevin
Carlberg

SAND2020-XXXXX C

SAND2020- 6806C

©@ENERGY ANOISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

High-fidelity simulations are crucial, but often too costly for
rigorous use in engineering and scientific applications

*High-fidelity simulation:
* Extreme-scale nonlinear computational models,
* Indispensable for engineering and scientific applications.
* Example: captive carry aerodynamics simulation
* Extreme-scale: 100 million cells, 200,000 time steps.
* High cost: 6 weeks on 5000 cores.

*High-fidelity for time-critical and/or many-query

* Parameter estimation
o Material property estimation
o Matching field experiments
o Parameters for digital twins

* Uncertainty Quantification
o Qualification of uncertainty in normal and abnormal environments
o Quantification of Margins

* Design optimization
o Rapid iteration of conceptual designs

o Shape and material optimization

Turbulent reacting flows
courtesy J. Chen

Antarctic ice sheet modeling
courtesy R. Tuminaro

Magnetohydrodynamics
courtesy J. Shadid

Captive carry aerodynamics
courtesy M. Barone

3 | Projection-based reduced-order models (ROMs)

*Why ROMs?

* Directly tied to a " full-order model”

* Allows us to leverage Sandia’s suite of application codes

* ROMs are “physics-based” surrogates
* Results are explainable

* Compatible with a priori and a posteriori error bounds

* Quantifying the uncertainty of the ROM is critical for Sandia’s

missions

* Enables full-field predictions

¢ Useful for engineering design and analysis

Mathematical setting

* We focus on dynamical systems emerging from spatially discretized PDEs
z(t;p) = f(z(t; p),t, p)

x:[0,7] x D — RN
pneD

Turbulent reacting flows Antarctic ice sheet modeling
courtesy J. Chen courtesy R. Tuminaro

JC : state vector JA - system parameters

* Why semi-discrete?

* Formulation is versatile: encompasses finite volume, finite
difference, and finite element models

* Encompasses the majority of Sandia’s application codes

* Steady systems are encompassed
¥ oF p

Captive carry aerodynamics Magnetohydrodynamics
courtesy M. Barone courtesy J. Shadid

* Solving these systems are computationally expensive
* Motivates the need for ROMs

‘ ROMs leverage an offline—online paradigm

Offline

* Execute solves of the FOM for “training” parameter instances

Number of time steps
-

Number of State
Variables

*Identify low-dimensional structure in data (POD)

XIJ I VT

* Approximate state in low-dimensional vector space

x(l; p) ~
I II

Online

* Generate approximate solutions
* We favor minimum residual formulations
* [L.SPG:

* Minimize the time-discrete residual at each time step

" = arg min ||Ar(®U; p)||5

* Space—time LSPG:
* Minimize time-discrete residual over the entire time domain
* Windowed least-squares:

* Minimize the time-continuous residual over windows

* Why minimum residual?
* Robust for nonsymmetric systems

¢ Straightforward to equip with constraints (e.g,, conservation)

Outstanding challenges and ongoing ROM work at Sandia

We are actively addressing the following ROM challenges at Sandia
* Stability and accuracy for nonlinear, nonsymmetric, and noncoercive problems
* Kolmogorov z-width limitations
* Domain decomposition
* Quantifying the “ROM model-form” uncertainty
* Portability
* Demonstrations on engineering applications
Portability of reduced-order models

* RODMs are traditionally viewed as an intrusive surrogate model
* Requires modifications to the source code

* Sandia maintains a heterogeneous set of high-performance application codes
* Different data structures and data types

* Diufferent types of parallelization (OpenMP, MPI, GPUs)
* Adding ROM capabilities to each code 1s not achievable

Motivates Pressio

What is Pressio?

Open-source computational framework enabling projection-based model reduction for large-scale
nonlinear dynamical systems.

Applicable to a general ODE systems: Pressio provides ROM capabilities that are applicable to any system
expressible as a parameterized system of ordinary differential equations (ODEs) as:

z(t;p) = fletp),t,p), x0;p)=z"(p)

Provides model reduction techniques for both spatial and temporal degrees of freedom.

https://github.com/Pressio

; ‘ Github project
https://github.com/Pressio

Pressio

Projection-based model reduction for large-scale nonlinear dynamical systems

B4 fnrizzi@sandia.gov

Repositories 6 71 Packages L People 5 (i) Teams (1" Projects 1 Settings

Pinned repositories Customize pinned repositories
pressio = pressio-builder Template = pressio-tutorials =
Projection-based model reduction for nonlinear Projection-based model reduction for nonlinear Projection-based model reduction for nonlinear
dynamical systems: core C++ library dynamical systems: auxiliary building scripts dynamical systems: tutorials
@®c++ %3 @ Shell @ C++

pressio4py

Python bindings to pressio

@C++

9 | Interfacing with simulation codes

*Previous ROM methods were implemented directly in multiple
application codes

X Highly intrusive: major changes to application code
X Not extensible: individual ROM implementation for each application

X Access requirements: developers need direct access to application

*Pressio: computational framework addressing all these 1ssues:

v’ Minimally intrusive API

v Leverages modern software engineering practices (e.g. C++ template-
metaprogramming)
» Portable implementation that works on different architectures, including GPUs
> Restricted to practices used by mission application partners

v/ Facilitates contributions from external partners
» Undergoing open source copyright assertion

v’ Clear separation between methods and application

» Enables methods work without access to restricted applications

.......

Application Side

‘ rom ’

Adapter
(if needed)

int main() x,t, ¢ f, g—£¢

Application Core Code
& = f(x,t;p)
x(0;) = xo(p)

Schematic of Pressio software workflow

0 | High-level features @)

° Benefits portability

Modular structure

° Packages are designed to be self-contained with minimal inter dependencies

Header-only library, no need to be compiled and packaged |

° Benefits the development cycle and extensibility

Relies on modern C++11 and metaprogramming for type detection and compile-time dispatching

Support for state-of-the-art HPC programming models (e.g. Kokkos)
° Seamless support for GPU computing via Kokkos

Unit and regression tests with continuous integration (growing feature)

Supports a basic Python API to expose the C++ ROM functionalities
> Enables Python users to use Pressio

11 ‘ Minimal API that is natural for ODE systems

We leverage the ODE expression
o(t;m) = fx(t;p),t,p), @(0;p) =a(p)

as a pivotal design choice to enable a minimal API

class Adapter:
def __init__(self, *args):

initialize (if needed)
create velocity vector, f, and Jacobian matrix, Jac

compute velocity, f(x,t;...), for a given state, x
def velocity(self, x, t):
compute f (here f is a member of the class)
return self.f

given current state x(t):
1. compute the spatial Jacobian, df/dx
2. compute A=df/dx*B, B is typically a skinny dense matrix
def applyJacobian(self, x, B, t):
compute Jac = df/dx (here Jac is a member of the class)
Jac is typically sparse, so we use Jac.dot(B)
When Jac is dense, use np.matmul (Jac,B)
return self.Jac.dot(B)

class SampleAdapterClass{
Ll
public:
/* C++11 type aliasing declarations that Pressio detects x*/
/* this is equivalent to doing: typedef scalar_type *x/
using scalar_type /*application’s scalar type x/ 3

using state_type = /* state type x/;
using velocity_type = /x* velocity type x/;
using dense_matrix_type = /* dense matrix type */;
R
// compute velocity, f(x,t;...), for a given state, x(t)
void velocity(const state_type & x,

const scalar_type & t,

velocity_type & f) const;

// given current state x(t):
// 1. compute the spatial Jacobian, df/dx
// 2. compute A=df/dx*B, B is typically a skinny dense matrix

void applyJacobian(const state_type & x,
const dense_matrix_type & B,
const scalar_type & t,
dense_matrix_type & A) const;

// overload called once to construct an initial object
velocity_type velocity(const state_type & x,
const scalar_type & t) const;

// overload called once to construct an initial object

dense_matrix_type applyJacobian(const state_type & x,
const dense_matrix_type & B,
const scalar_type & t) const;

Python adapter API

C++ adapter API

2 I Currently Supported ROM Features

*'ROM formulations
» Galerkin Projection
»LSPG (steady and unsteady)
»WLS

*Time Stepping Schemes
» Forward/Backward Euler
»BDF2
»RK4

*Nonlinear solvers
» Gauss-Newton
» Levenberg-Marquardt

*Miniapps
» 1D Burget’s equation
» 2D Advection-Diffusion
» 2D Advection-Diffusion-Reaction

13 I Applications Currently Interfaced with Pressio

*SPARC: Sandia Parallel Aerodynamics and Reentry Code
» Finite Volume compressible flow RANS solver

» Finite element thermal/ablation solver

*ARIA: Sandia proprietary multiphysics package
» Incompressible flow solver

»Thermal/chemical solver

*OpenFOAM: joint work with Samuel Majors and Karen Willcox (UT Austin)

»Thermal conduction (In progress)

» Compressible flow solver (In progress)

14 | Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

*Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes

* Being developed to run on today’s leadership-class supercomputers _
and exascale machines. Time = 49.910000

* Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.

Fluid Temp [K]
2.367e+03

1.846e+03

CPU/GPU) 1.326e+03

R [. 8.051e+02

*Physics Capabilities include:) stes02
* Navier—Stokes, cell-centered finite volume method

Solid Temp [K]

* Reynolds-Averaged Navier—Stokes (RANS) , cell-centered 18766403

finite volume method , 1.469e+03

1.061e+03

* Transient Heat Equation, Galerkin finite element method. 300000

* Decomposing and non-decomposing ablation equations, Galerkin | 2463402
tinite element method. =l
Temperature of a slender body in

* One and two-way coupling between ablation, heat equation, RANS.
hypersonic flow simulated with SPARC

15 I Implementing ROMs with Pressio and SPARC

L.

(o]

o

(e]

Expose the functionalities required by the Pressio API
SPARC’s modular design made this straightforward.
Routines needed for “velocity” were readily available.

“applyJacobian” leveraged existing spatial Jacobian.,

velocity: w = f(x(t;), t, u)

applyJacobian: W = 8_f vV

0T | 4 (4,0)

2,

(e]

Implement main needed to drive the ROM computations.
e.g. reading snapshots, computing POD modes.

kA

Hyper-reduction

Implemented sample mesh for an unstructured mesh format. Less
intrusive than structured mesh format!

Algebraic hyper-reduction implemented for validation purposes.

Special ROM Features:

LSPG with conservation constraints was implemented with a custom
nonlinear solver.

Clipper to eliminate non-physical flow phenomena in ROM state-
reconstruction was implemented in SPARC.

minimize ||Ar(®; p)|[3
s.t. Cr(®u; u) =0

Enforce conservation over subdomains:

A AL o

16 | Test Case: HIFiIRE-1 flight vehicle

*Flow field:
* Free stream Mach No. = 7.1

* Reynolds No. = 10.0
million/meter

* Angle of Attack = 2 degrees

* Boundary layer transitions to
turbulence (use Spalart-Allmaras
with specified transition location)

*Spatial discretization: Close up of nose:
e 20d_prder finite volume

* 2,031,616 cells

* y"<1 near wall

2e+6
le+b6
500000 =

heat-flux

*Solver:

* Pseudo time stepping with
backward Euler, CFL schedule.

wall

200000 i
100000 :

— 3.6e+04 1.7e-03

7 I LSPG ROM applied to steady hypersonics using Pressio & SPARC

* HiFIRE-1 experiment. Baseline case: Re=107, Ma=7.1, AoA=2°.

* Training data set: 24 simulation results sampled over a range of freestream conditions:
» Density: 0.056 to 0.070 kg/m3
» Free stream Mach number: 5.7 to 7.1

* Initial guess computed by inverse distance interpolation.

High-fidelity: LSPG ROM:
e Mesh: 2,031,616 cells Sample mesh: 20,316 cells e
e Dofs=12,189,696 e Dofs=121,896
e 128 MPI ranks, ~2,500-5,000 seconds * 16 MPI ranks, ¥30-55 seconds
High-fidelity LSPG ROM
p..=0.066 p.=0.066 - }.Se7+07 o 7.96+00
M. =7.06 M_=7.06 Eee 7
6
2e+6 é _5
le+6 © | o
50000022 _;1 =
200000 > 5
100000 []
— 3.6e+04 1.7e-08

~300-1,000x savings in core—hours

< 1% error in density, momentum, and energy fields
~ 1-2% error in integrated wall heat flux

For more results, see AIAA 2020-0104 [Blonigan, Carlberg, Rizzi, Howard, Fike, 2020]

18 I Conclusions @)

*High-fidelity simulations are computationally too expensive for time-critical or many-query |
analyses.

*Projection-based ROMs provide a rigorous surrogate for high-fidelity models ‘
*ROMs are traditionally highly intrusive to implement

*Pressio leverages generic programming to enable the implementation of ROMs with a
minimally intrusive APIs |

*Pressio has been already interfaced with production-level application codes, including SPARC
> In this case, computational speed-ups of 300-1,000x were obtained, with Qol errors of only 1-2%

19 1 Outlook

Ongoing:

*Increasing ROM robustness
» stronger nonlinear solvers

» preconditioning strategies

» formulations better suited for shocks.

*OpenFOAM interface (with Samuel
Majors, Karen Willcox)

» Almost ready!

Future:

*ROMs for larger cases
»larger meshes

»multiple time scales

» Coupled multi-physics

*Integration of machine learning
» Error estimation
» State dimension reduction
»ROM deployment/management

*New programming models

»Task-based programming

*Collaborations enabled by Pressio

20

Key references @

» F. Rizzi, P. Blonigan, and K. Carlberg. PRESSIO: Enabling Projection-based model reduction for lare-scale nonlinear dynamical systems. Submitted to SIAM
Journal on Scientific Computing, Feb. 2020.

» P. Blonigan, K. Carlberg, F. Rizzi, M. Howard, and J. Fike. Model reduction for hypersonic aerodynamics via conservative LSPG projection and hyper-reduction.
AIAA Scitech 2020, AIAA 2020-0104.

» E. Parish and K. Carlberg. Windowed least-squares model reduction for dynamical systems. arXiv e-print, (1910.11388), 2019.
» K. Lee and K. Carlberg. Deep Conservation: A latent dynamics model for exact satisfaction of physical conservation laws. arXiv e-print, (1909.09754), 2019.

» E. Parish and K. Carlberg. Time-series machine-learning error models for approximate solutions to parameterized dynamical systems. Submitted to Computer
Methods for Applied Mechanics in Engineering, 7/2019. arXiv e-print: 1907.11822

» P. Etter and K. Carlberg. Online adaptive basis refinement and compression for reduced order models. Submitted to Computer Methods for Applied
Mechanics in Engineering, 2019. arXiv e-print: 1902.10659

» S. Pagani, A. Manzoni, and K. Carlberg. Statistical closure modeling for reduced-order models of stationary systems by the ROMES method. Submitted to SIAM
Journal on Uncertainty Quantification, 2019. arXiv e-print: 1901.02792

» K. Lee and K. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. Journal of Computational
Physics, 404:108973 (2020).

» M. Zahr, K. Carlberg, and D. Kouri. An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse
grids. SIAM/ASA Journal on Uncertainty Quantification, Vol. 7, No. 3, p.877-912 (2019).

https://github.com/Pressio

21

Backup Slides

2 | Increasing ROM robustness with nonlinear mapping of POD basis

*Failed cases shown earlier are due to small regions of negative temperature.

*States with non-physical features are encountered by ROM solver more often as basts is
made smaller and/or parameter space is increased in size.

*Solution: nonlinear mapping of POD modes to remove non-physical features from
approx. state vector:

minimize ||Ar(®U; p)||5 =) minimize |[Ar(g(P0); p)l|5

Where g transforms the conserved quantities in each cell as follows:

Uo2 = U9
U3z = U3
Uy = Uy

23 ‘ We do hyper-reduction with collocation to keep offline costs down
*Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016]:
LSPG: minimize ||Ar(®U; p)||5 A :I]j]]:l RolleGatinn (1 000 .. 0
v) 0 0 1 0 .. 0)
choose rows of A]

from identity matrix © .. 0 0 0)
» Inexpensive compared to DEIM and GNAT.

*Sample mesh: subset of cells required to compute residual

*We consider random sampling of cells in this study.

Full Mesh: y , Sample Mesh:

24 ‘ Training Data and Model details

*Samples:

* Varied freestream density and velocity
* Training set: 24 sample Latin hypercube
* Test set: 12 sample Latin hypercube

*POD basis:

* Mean flow subtracted from each snapshot.

* FHach conserved quantity scaled by its maximum over all
FOM solutions.

* 2.4, and 8 mode basis were considered.

*ROM: LSPG solved with Gauss-Newton iteration

* Initial guess obtained via inverse-distance interpolation of

POD modes.

* Full mesh, two sample meshes considered

Density (kg/m?3)

0.070 1 ¢ ¢ training set
8 ¢ I
© ® testset
0.068 - . 3
»
0.066 - ¢ 1 o
. .
] Y
0.064 3 ry
¢ .7
0.062 - . ¢
9
.11 * o &
0.060 - ¢ = 5
&
0.058 - .
¢ 4
.
0.056 - ®
5.8 6.0 6.2 6.4 6.6 6.8 7.0

Mach Number

