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High-fidelity simulations are crucial, but often too costly for
rigorous use in engineering and scientific applications

*High-fidelity simulation:
* Extreme-scale nonlinear computational models,
* Indispensable for engineering and scientific applications.
* Example: captive carry aerodynamics simulation
* Extreme-scale: 100 million cells, 200,000 time steps.
* High cost: 6 weeks on 5000 cores.

*High-fidelity for time-critical and/or many-query

* Parameter estimation
o Material property estimation
o Matching field experiments
o Parameters for digital twins

* Uncertainty Quantification
o Qualification of uncertainty in normal and abnormal environments
o Quantification of Margins

* Design optimization
o Rapid iteration of conceptual designs

o Shape and material optimization

Turbulent reacting flows
courtesy J. Chen

Antarctic ice sheet modeling
courtesy R. Tuminaro

Magnetohydrodynamics
courtesy J. Shadid

Captive carry aerodynamics
courtesy M. Barone



3 | Projection-based reduced-order models (ROMs)

*Why ROMs?

* Directly tied to a " full-order model”

* Allows us to leverage Sandia’s suite of application codes

* ROMs are “physics-based” surrogates
* Results are explainable

* Compatible with a priori and a posteriori error bounds

* Quantifying the uncertainty of the ROM is critical for Sandia’s

missions

* Enables full-field predictions

¢ Useful for engineering design and analysis




Mathematical setting

* We focus on dynamical systems emerging from spatially discretized PDEs
z(t;p) = f(z(t; p),t, p)

x:[0,7] x D — RN
pneD

Turbulent reacting flows Antarctic ice sheet modeling
courtesy J. Chen courtesy R. Tuminaro

JC : state vector JA - system parameters

* Why semi-discrete?

* Formulation is versatile: encompasses finite volume, finite
difference, and finite element models

* Encompasses the majority of Sandia’s application codes

* Steady systems are encompassed
¥ oF p

Captive carry aerodynamics Magnetohydrodynamics
courtesy M. Barone courtesy J. Shadid

* Solving these systems are computationally expensive
* Motivates the need for ROMs



‘ ROMs leverage an offline—online paradigm

Offline

* Execute solves of the FOM for “training” parameter instances

Number of time steps
-

Number of State
Variables

*Identify low-dimensional structure in data (POD)

XIJ I VT

* Approximate state in low-dimensional vector space

x(l; p) ~
I II

Online

* Generate approximate solutions
* We favor minimum residual formulations
* [L.SPG:

* Minimize the time-discrete residual at each time step

" = arg min ||Ar(®U; p)||5

* Space—time LSPG:
* Minimize time-discrete residual over the entire time domain
* Windowed least-squares:

* Minimize the time-continuous residual over windows

* Why minimum residual?
* Robust for nonsymmetric systems

¢ Straightforward to equip with constraints (e.g,, conservation)




Outstanding challenges and ongoing ROM work at Sandia

We are actively addressing the following ROM challenges at Sandia
* Stability and accuracy for nonlinear, nonsymmetric, and noncoercive problems
* Kolmogorov z-width limitations
* Domain decomposition
* Quantifying the “ROM model-form” uncertainty
* Portability
* Demonstrations on engineering applications
Portability of reduced-order models

* RODMs are traditionally viewed as an intrusive surrogate model
* Requires modifications to the source code

* Sandia maintains a heterogeneous set of high-performance application codes
* Different data structures and data types

* Diufferent types of parallelization (OpenMP, MPI, GPUs)
* Adding ROM capabilities to each code 1s not achievable

Motivates Pressio



What is Pressio?

Open-source computational framework enabling projection-based model reduction for large-scale
nonlinear dynamical systems.

Applicable to a general ODE systems: Pressio provides ROM capabilities that are applicable to any system
expressible as a parameterized system of ordinary differential equations (ODEs) as:

z(t;p) = fletp),t,p),  x0;p)=z"(p)

Provides model reduction techniques for both spatial and temporal degrees of freedom.

https://github.com/Pressio




; ‘ Github project
https://github.com/Pressio

Pressio

Projection-based model reduction for large-scale nonlinear dynamical systems

B4 fnrizzi@sandia.gov

Repositories 6 71 Packages L People 5 (i) Teams (1" Projects 1 Settings

Pinned repositories Customize pinned repositories
pressio = pressio-builder Template = pressio-tutorials =
Projection-based model reduction for nonlinear Projection-based model reduction for nonlinear Projection-based model reduction for nonlinear
dynamical systems: core C++ library dynamical systems: auxiliary building scripts dynamical systems: tutorials
@®c++ %3 @ Shell @ C++

pressio4py

Python bindings to pressio

@C++




9 | Interfacing with simulation codes

*Previous ROM methods were implemented directly in multiple
application codes

X Highly intrusive: major changes to application code
X Not extensible: individual ROM implementation for each application

X Access requirements: developers need direct access to application

*Pressio: computational framework addressing all these 1ssues:

v’ Minimally intrusive API

v Leverages modern software engineering practices (e.g. C++ template-
metaprogramming)
» Portable implementation that works on different architectures, including GPUs
> Restricted to practices used by mission application partners

v/ Facilitates contributions from external partners
» Undergoing open source copyright assertion

v’ Clear separation between methods and application

» Enables methods work without access to restricted applications

.......

Application Side

‘ rom ’

Adapter
(if needed)

int main() x,t, ¢ f, g—£¢

Application Core Code
& = f(x,t;p)
x(0; ) = xo(p)

Schematic of Pressio software workflow




0 | High-level features @)

° Benefits portability

Modular structure

° Packages are designed to be self-contained with minimal inter dependencies

Header-only library, no need to be compiled and packaged |

° Benefits the development cycle and extensibility

Relies on modern C++11 and metaprogramming for type detection and compile-time dispatching

Support for state-of-the-art HPC programming models (e.g. Kokkos)
° Seamless support for GPU computing via Kokkos

Unit and regression tests with continuous integration (growing feature)

Supports a basic Python API to expose the C++ ROM functionalities
> Enables Python users to use Pressio



11 ‘ Minimal API that is natural for ODE systems

We leverage the ODE expression
o(t;m) = fx(t;p),t,p), @(0;p) =a(p)

as a pivotal design choice to enable a minimal API

class Adapter:
def __init__(self, *args):

# initialize (if needed)
# create velocity vector, f, and Jacobian matrix, Jac

# compute velocity, f(x,t;...), for a given state, x
def velocity(self, x, t):
# compute f (here f is a member of the class)
return self.f

# given current state x(t):
# 1. compute the spatial Jacobian, df/dx
# 2. compute A=df/dx*B, B is typically a skinny dense matrix
def applyJacobian(self, x, B, t):
# compute Jac = df/dx (here Jac is a member of the class)
# Jac is typically sparse, so we use Jac.dot(B)
# When Jac is dense, use np.matmul (Jac,B)
return self.Jac.dot(B)

class SampleAdapterClass{
Ll
public:
/* C++11 type aliasing declarations that Pressio detects x*/
/* this is equivalent to doing: typedef scalar_type *x/
using scalar_type /*application’s scalar type x/ 3

using state_type = /* state type x/;
using velocity_type = /x* velocity type x/;
using dense_matrix_type = /* dense matrix type */;
R
// compute velocity, f(x,t;...), for a given state, x(t)
void velocity(const state_type & x,

const scalar_type & t,

velocity_type & f) const;

// given current state x(t):
// 1. compute the spatial Jacobian, df/dx
// 2. compute A=df/dx*B, B is typically a skinny dense matrix

void applyJacobian(const state_type & x,
const dense_matrix_type & B,
const scalar_type & t,
dense_matrix_type & A) const;

// overload called once to construct an initial object
velocity_type velocity(const state_type & x,
const scalar_type & t) const;

// overload called once to construct an initial object

dense_matrix_type applyJacobian(const state_type & x,
const dense_matrix_type & B,
const scalar_type & t) const;

Python adapter API

C++ adapter API



2 I Currently Supported ROM Features

*'ROM formulations
» Galerkin Projection
»LSPG (steady and unsteady)
»WLS

*Time Stepping Schemes
» Forward/Backward Euler
»BDF2
»RK4

*Nonlinear solvers
» Gauss-Newton
» Levenberg-Marquardt

*Miniapps
» 1D Burget’s equation
» 2D Advection-Diffusion
» 2D Advection-Diffusion-Reaction




13 I Applications Currently Interfaced with Pressio

*SPARC: Sandia Parallel Aerodynamics and Reentry Code
» Finite Volume compressible flow RANS solver

» Finite element thermal/ablation solver

*ARIA: Sandia proprietary multiphysics package
» Incompressible flow solver

»Thermal/chemical solver

*OpenFOAM: joint work with Samuel Majors and Karen Willcox (UT Austin)

»Thermal conduction (In progress)

» Compressible flow solver (In progress)




14 | Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

*Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes

* Being developed to run on today’s leadership-class supercomputers _
and exascale machines. Time = 49.910000

* Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.

Fluid Temp [K]
2.367e+03

1.846e+03

CPU/GPU) 1.326e+03

R [ . 8.051e+02

*Physics Capabilities include: ) stes02
* Navier—Stokes, cell-centered finite volume method

Solid Temp [K]

* Reynolds-Averaged Navier—Stokes (RANS) , cell-centered 18766403

finite volume method , 1.469e+03

1.061e+03

* Transient Heat Equation, Galerkin finite element method. 300000

* Decomposing and non-decomposing ablation equations, Galerkin | 2463402
tinite element method. =l
Temperature of a slender body in

* One and two-way coupling between ablation, heat equation, RANS.
hypersonic flow simulated with SPARC




15 I Implementing ROMs with Pressio and SPARC

L.

(o]

o

(e]

Expose the functionalities required by the Pressio API
SPARC’s modular design made this straightforward.
Routines needed for “velocity” were readily available.

“applyJacobian” leveraged existing spatial Jacobian.,

velocity: w = f(x(t; ), t, u)

applyJacobian: W = 8_f vV

0T | 4 (4,0)

2,

(e]

Implement main needed to drive the ROM computations.
e.g. reading snapshots, computing POD modes.

kA

Hyper-reduction

Implemented sample mesh for an unstructured mesh format. Less
intrusive than structured mesh format!

Algebraic hyper-reduction implemented for validation purposes.

Special ROM Features:

LSPG with conservation constraints was implemented with a custom
nonlinear solver.

Clipper to eliminate non-physical flow phenomena in ROM state-
reconstruction was implemented in SPARC.

minimize ||Ar(®; p)|[3
s.t. Cr(®u; u) =0

Enforce conservation over subdomains:

A AL o




16 | Test Case: HIFiIRE-1 flight vehicle

*Flow field:
* Free stream Mach No. = 7.1

* Reynolds No. = 10.0
million/meter

* Angle of Attack = 2 degrees

* Boundary layer transitions to
turbulence (use Spalart-Allmaras
with specified transition location)

*Spatial discretization: Close up of nose:
e 20d_prder finite volume

* 2,031,616 cells

* y"<1 near wall

2e+6
le+b6
500000 =

heat-flux

*Solver:

* Pseudo time stepping with
backward Euler, CFL schedule.

wall

200000 i
100000 :

— 3.6e+04 1.7e-03




7 I LSPG ROM applied to steady hypersonics using Pressio & SPARC

* HiFIRE-1 experiment. Baseline case: Re=107, Ma=7.1, AoA=2°.

* Training data set: 24 simulation results sampled over a range of freestream conditions:
» Density: 0.056 to 0.070 kg/m3
» Free stream Mach number: 5.7 to 7.1

* Initial guess computed by inverse distance interpolation.

High-fidelity: LSPG ROM:
e Mesh: 2,031,616 cells  Sample mesh: 20,316 cells e
e Dofs=12,189,696 e Dofs=121,896
e 128 MPI ranks, ~2,500-5,000 seconds * 16 MPI ranks, ¥30-55 seconds
High-fidelity LSPG ROM
p..=0.066 p.=0.066 - }.Se7+07 o 7.96+00
M. =7.06 M_=7.06 Eee 7
6
2e+6 é _5
le+6 © | o
50000022 _;1 =
200000 > 5
100000 []
— 3.6e+04 1.7e-08

~300-1,000x savings in core—hours

< 1% error in density, momentum, and energy fields
~ 1-2% error in integrated wall heat flux

For more results, see AIAA 2020-0104 [Blonigan, Carlberg, Rizzi, Howard, Fike, 2020]




18 I Conclusions @)

*High-fidelity simulations are computationally too expensive for time-critical or many-query |
analyses.

*Projection-based ROMs provide a rigorous surrogate for high-fidelity models ‘
*ROMs are traditionally highly intrusive to implement

*Pressio leverages generic programming to enable the implementation of ROMs with a
minimally intrusive APIs |

*Pressio has been already interfaced with production-level application codes, including SPARC
> In this case, computational speed-ups of 300-1,000x were obtained, with Qol errors of only 1-2%



19 1 Outlook

Ongoing:

*Increasing ROM robustness
» stronger nonlinear solvers

» preconditioning strategies

» formulations better suited for shocks.

*OpenFOAM interface (with Samuel
Majors, Karen Willcox)

» Almost ready!

Future:

*ROMs for larger cases
»larger meshes

»multiple time scales

» Coupled multi-physics

*Integration of machine learning
» Error estimation
» State dimension reduction
»ROM deployment/management

*New programming models

»Task-based programming

*Collaborations enabled by Pressio
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2 | Increasing ROM robustness with nonlinear mapping of POD basis

*Failed cases shown earlier are due to small regions of negative temperature.

*States with non-physical features are encountered by ROM solver more often as basts is
made smaller and/or parameter space is increased in size.

*Solution: nonlinear mapping of POD modes to remove non-physical features from
approx. state vector:

minimize ||Ar(®U; p)||5 =) minimize |[Ar(g(P0); p)l|5

Where g transforms the conserved quantities in each cell as follows:

Uo2 = U9
U3z = U3
Uy = Uy




23 ‘ We do hyper-reduction with collocation to keep offline costs down
*Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016]:
LSPG: minimize ||Ar(®U; p)||5 A :I]j]]:l RolleGatinn (1 000 .. 0
v ) 0 0 1 0 .. 0)
choose rows of A ]

from identity matrix © .. 0 0 0)
» Inexpensive compared to DEIM and GNAT.

*Sample mesh: subset of cells required to compute residual

*We consider random sampling of cells in this study.

Full Mesh: y , Sample Mesh:




24 ‘ Training Data and Model details

*Samples:

* Varied freestream density and velocity
* Training set: 24 sample Latin hypercube
* Test set: 12 sample Latin hypercube

*POD basis:

* Mean flow subtracted from each snapshot.

* FHach conserved quantity scaled by its maximum over all
FOM solutions.

* 2.4, and 8 mode basis were considered.

*ROM: LSPG solved with Gauss-Newton iteration

* Initial guess obtained via inverse-distance interpolation of

POD modes.

* Full mesh, two sample meshes considered

Density (kg/m?3)

0.070 1 ¢ ¢ training set
8 ¢ I
© ® testset
0.068 - . 3
»
0.066 - ¢ 1 o
. .
] Y
0.064 3 ry
¢ .7
0.062 - . ¢
9
.11 * o &
0.060 - ¢ = 5
&
0.058 - .
¢ 4
.
0.056 - ®
5.8 6.0 6.2 6.4 6.6 6.8 7.0

Mach Number



