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Abstract

Degradation and partial shading impact the long-term reliability and power

production of photovoltaic (PV) modules and power plants. Time-series power

(Pmp) and current-voltage (I-V ) curve datastreams from PV modules enable

a remote diagnostic approach to quantify active degradation mechanisms and

identify partial shading. We study three to nine years of these datastreams,

including 3.6 million I-V curves and 36 million Pmp values, from eight PV

modules, four each of double-glass and glass-backsheet module architectures,

located in three distinctly different Köppen-Geiger climate zones, to determine

the module’s performance loss rates (PLR), identify active degradation mecha-

nisms and power loss modes, along with partial shading by local objects. Con-

sidering both module architectures, PLR results indicate that the BSh climate
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zone is the most aggressive for module degradation, while the Alpine ET zone

is the mildest climate. PLR of double-glass modules located in BWh and BSh

climate zones are different due to the significantly greater uniform current loss

(∆PIsc) for double-glass modules in BSh, at a 5% significance level. Power loss

for four out of five modules located in the BWh and BSh climates are dominated

by uniform current degradation. Statistical analysis of multistep I-V curves de-

tects partial shading experienced by three studied modules with details of the

shading profile, the shading Poynting vector diagram for the obstacle’s rela-

tive position, shading scenarios, and duration. This work demonstrates how

remote monitoring and diagnosis of Pmp & I-V time-series of modules can pro-

vide quantitative operations and maintenance insights into system performance,

degradation mechanisms, and shading.

Keywords: Degradation, Partial shading, Pmp & I-V time-series, outdoor

Isc-Voc, Remote Monitoring

1. Introduction

Due to the rapid growth of solar energy (Cozzi et al. (2020); Perea et al.

(2019)) and the development of low-cost I-V tracing equipment (Jones et al.

(2018); Jones & Hansen (2019); Pordis (2018)) in the past few years, detailed

time-series electrical data has become increasingly accessible, providing oppor-5

tunities to remotely study the behavior of PV modules installed in the field.

The two most common types of time-series electrical data, maximum power

(Pmp) and current-voltage (I-V ) curves, can be used to evaluate degradation

behavior (Jordan et al. (2010); Smith et al. (2012); French et al. (2015); Peshek

et al. (2016)) and detect the operational status of PV modules (Nehme et al.10

(2017)). Time-series Pmp data can be utilized to calculate the performance

loss rate (PLR) (Curran et al. (2019, 2020)). There are multiple methods de-

veloped for calculating PLR, and these procedures contain four steps (Lindig

et al. (2021); French et al. (2021); Lindig et al. (2018); Davis et al. (2013); Mar-

ion et al. (2005)), beginning with data cleaning and filtering, then choosing a15
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performance metric such as performance ratio (Phinikarides et al. (2014)), pre-

dicted power (Curran et al. (2019)), PVUSA (Whitaker et al. (1997)), or Sandia

PV Array Performance Model (Kratochvil et al. (2004)). Then time-series re-

gression methods are applied, such as the seasonal and trend decomposition

(Jordan & Kurtz (2010)), and linear or year-on-year (Jordan et al. (2018))20

regression to determine the PLR of PV systems.

In contrast with Pmp which indicates the overall performance of a PV module

or system, I-V curves are able to provide more insight into PV module degrada-

tion modes and mechanisms (Liu et al. (2019)) with suitable analysis methods.

The outdoor Isc-Voc curve can be used to obtain more degradation information25

especially when comparing with features extracted from the I-V curve under

the same conditions (Siyu Guo et al. (2016); Killam et al. (2021)). The out-

door Isc-Voc and power loss factor method developed by M. Wang (Wang et al.

(2021); Gok et al. (2021)) can convert the change in I-V features into power

loss factors, enabling direct comparisons and rank ordering of activated degra-30

dation modes. Studies of long-term PV module degradation guide development

of modules and systems with longer lifetimes to reduce the levelized cost of PV

energy.

Power degradation and faults, if not detected, can not only cause power loss,

but also threaten the security, safety, and reliability of the whole PV power35

plant (Nehme et al. (2017)). During partial shading events, nearby objects cast

shadows onto part of a PV module or array, causing spatially non-uniform ir-

radiance (Meyers & Mikofski (2017)). This partial shading causes power loss,

as seen with uniform shading, but also induces changes in the module degrada-

tion due to frequent bypass diode activation, reverse biasing of cells, and the40

subsequent generation of local hot spots. These effects can cause overheating

and severe, non-uniform degradation of the module packaging materials (Basri

et al. (2015)), particularly in cases where an object repeatedly shades the mod-

ule or array (e.g., at the same time every day). Shading detection methods,

using time-series Pmp, are quite mature (Tsafarakis et al. (2019)), but they45

can’t distinguish between partial and uniform shading cases and most of these
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methods require an unshaded reference system such as a nearby pyranometer

that is guaranteed not to experience shading (Tsafarakis et al. (2019); Firth

et al. (2009)). Partial shading in most cases will cause distortion, or a “step”,

in the I-V curve, which is not observed in the uniform shading case (Basri50

et al. (2015)). This distinction provides an opportunity to detect partial shad-

ing without a reference system. Current studies using I-V curves for shading

detection focus on the relationship between different shading geometries and

the corresponding shapes of the I-V curves (Basri et al. (2015); Hemza et al.

(2019); Teodorescu et al. (2015)), but they lack methods to analyze time-series55

I-V curves so as to detect partial shading conditions for modules in the field.

In this paper, we obtained the performance loss rate (PLR) and the rates

of four power loss modes of eight PV modules located in three climate zones.

We determined the dependence of degradation behavior on the PV modules’

architectures, manufacturers, and the climate zones where they were exposed,60

and identified dominant degradation modes for each. In addition, a statistical

analysis using time-series I-V curves for partial shading detection was devel-

oped to provide a module’s shading scenario and duration, its temporal partial

shading profile, and the shading Poynting vector of shading obstacles’ relative

position.65

2. Dataset Description

The Pmp, I-V time-series datasets were acquired by Fraunhofer-ISE from

their outdoor test facilities. The dataset contains time-series Pmp recorded every

minute and I-V curves recorded every five minutes by the I-V tracing equipment

(ET Instrumente GmbH), module temperature measured every minute for each70

module, and global irradiance in the plane of array (POA) for every minute.

Each I-V curve contains 40 to 70 points, and the I-V tracer also records the

I-V features it extracts, including maximum power (Pmp), voltage at maximum

power (Vmp), current at maximum power (Imp), short-circuit current (Isc), open-

circuit voltage (Voc), series resistance (Rs), shunt resistance (Rsh), and fill factor75
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(FF ).

The eight PV modules studied (Table 1) are located in three distinct Köppen-

Geiger climatic zones (Rubel et al. (2017)) and belong to two brands. The cli-

mate zones are identified by their longitude and latitude using the kgc R package

(Bryant et al. (2017); R Core Team (2020)). The Köppen-Geiger climate clas-80

sification divides climates into five main climate “groups” indicated by the first

letter, where for example B is arid and E is polar. These main climate groups

range from A for the tropical climates near the equator to E at the north or

south pole. The second letter indicates the seasonal precipitation “type”, where

W is for desert, S is for steppe, and T is for tundra. If the annual precipitation85

is less than 50% of a threshold, which is determined by the seasonal percentage

of precipitation and the average annual temperature, the climate is classified

as BW, otherwise, the classification is BS. So BSh has more precipitation than

BWh, but both have less precipitation than any of the A tropical climates.

The third letter is the temperature “subtype” and indicates the level of heat in90

the climate zone, where h is for hot indicating the average annual temperature

above 18 ◦C. ET is much colder than both BWh and BSh, and it only has an

average temperature below 10◦C for every month. The brand F module is a

glass-backsheet (GB) module with a polymeric backsheet, while the brand G

module has a double-glass (DG) module architecture.95

Table 1: Information on the PV modules studied: their exposure start and end

dates, installation locations, brand:module architectures, and numbers of cells

and bypass diodes.

ID Start End System Age Climate Latitude Longitude Brand # of # of Bypass

(Year) Zone (◦) (◦) Cells Diodes

1 2010-10-19 2018-10-31 8.03 BWh 27.82 -15.42 G:DG 80 4

2 2010-02-05 2018-10-31 8.74 BWh 27.82 -15.42 G:DG 72 3

3 2010-09-28 2016-11-24 6.16 BWh 27.82 -15.42 F:GB 60 3

4 2012-06-11 2018-10-31 6.39 BSh 30.86 34.78 G:DG 80 4

5 2012-06-11 2015-05-17 2.93 BSh 30.86 34.78 F:GB 60 3

6 2012-06-11 2018-10-31 6.39 BSh 30.86 34.78 F:GB 60 3

7 2010-06-16 2013-01-31 2.63 ET 47.42 10.89 G:DG 80 4

8 2010-06-16 2015-02-18 4.69 ET 47.42 10.89 F:GB 60 3
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3. Analytical Methods

In this section, we introduce several analytical methods used to evaluate our

dataset, including theXbX with universal temperature correction (XbX+UTC)

method (Curran et al. (2019)) and the year-on-year method (Hasselbrink et al.

(2013); Jordan et al. (2018)) to obtain the performance loss rate (PLR) (French100

et al. (2021)), outdoor Isc-Voc and power loss factor method (Wang et al.

(2020)) with month-by-month regression to determine the rate of change of

each power loss mode, I-V curves quality detection and the partial shading

detection method. The XbX+UTC and outdoor Isc-Voc methods are already

published as open-source R code packages (R Core Team (2020)) available on105

CRAN as Suns-Voc and PV plr respectively (Wang et al. (2021); Curran et al.

(2020)). The partial shading detection method uses our data-driven I-V fea-

ture extraction R package (ddiv) to detect steps in the I-V curves (Huang et al.

(2021)). In addition, our outdoor Isc-Voc results use the tracer-reported I-V

features, including Isc, Voc, Imp, Vmp and Rs. When I-V features are not re-110

ported by the tracer, ddiv is the suggested method to extract the I-V features

for outdoor Isc-Voc analysis.

3.1. Performance Loss Rate (PLR) Calculation

Time-series Pmp, POA, and module temperature are used as inputs to deter-

mine PLR. The XbX+UTC analysis has four steps and provides the predicted115

Pmp at a given reference condition for each X time period, which can be a day,

week, month or any other time period (Curran et al. (2019)). In this study we

choose X as one day and the reference condition chosen is POA of 900 W/m2

and module temperature of 40 ◦C. First, a low irradiance cutoff of 200 W/m2

is applied to filter the Pmp data. Second, a temperature coefficient is obtained,120

using a linear model of Pmp versus module temperature, for irradiances of 900 ±

10 W/m2. Third, a temperature correction is applied to correct each Pmp value

to the reference temperature. Finally, a linear model of temperature corrected

Pmp versus POA is fit using observations of each day, and the daily predicted
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Pmp result at the reference POA is obtained. This daily predicted Pmp is then125

analyzed using year-on-year regression (Hasselbrink et al. (2013); Jordan et al.

(2018)) to obtain a PLR distribution of each module.

3.2. Outdoor Isc-Voc and Power Loss Factor Calculation

The outdoor Isc-Voc and power loss factor method proposed by M. Wang

(Wang et al. (2020)) requires time-series I-V features including Isc, Voc, Imp,130

Vmp,Rs, and POA, and module temperature, and the resulting output is the

four kinds of power loss modes in each time period (typically one week for our

study) at 1 Sun POA irradiance and the reference module temperature, which

is 40 ◦C in this study. The four power loss modes correspond to uniform cur-

rent loss (∆PIsc), recombination (∆PV oc), series resistance (∆PRs) and current135

mismatch (∆PImis). In our study, these weekly time-series power losses are

normalized by the initial predicted Pmp at the same reference condition, which

is obtained by a linear model fit using the weekly predicted Pmp from the out-

door Isc-Voc method at the defined reference condition. Then these normalized

power losses are grouped into months to get an estimated rate of change for each140

power loss mode using the month-by-month regression method, which provides

twelve slopes obtained from the linear model using monthly data across years.

3.3. Quality Detection of Current-voltage curves

It’s very important to remove the anomalous or non-physical I-V curves

from the input dataset prior to further analysis, such as for step detection. We145

therefore have developed an I-V quality detection algorithm that evaluates I-V

curves based on physical constraints using two user-determined hyperparame-

ters, P1 and P2. To be physically reasonable, considering a single diode model,

the first derivative ∂I
∂V must be negative, which indicates that datapoints with

increasing voltage should have decreasing current (Gow & Manning (1999)).150

However, I-V tracing instruments have finite measurement accuracy, which we

use to determine the value of P1. We first sort the datapoints of the I-V curve

in increasing voltage order, then calculate the current difference by Ii - Ii−1. If
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this difference is larger than P1, we define point i as an unqualified data point.

If the number of unqualified data points is larger than the value of P2 we have155

set, the curve is labeled as unqualified and not used in further analysis. In our

study, P1 is set to 0.02 A based on the instrument specification, and P2 is set

to zero. The non-physical or unqualified curves are removed only for the partial

shading analysis. The P2 hyperparameter can be increased to tolerate more

noise in I-V curves and reduce the number of curves that are filtered.160

3.4. Partial Shading Detection

The ddiv algorithm also has two user-determined hyperparameters for de-

tecting steps in I-V curves: the maximum number of change points (k) and

the critical value of the slope difference before and after the step (ma
∆) (Huang

et al. (2021)). The ddiv algorithm returns the total number of steps, the voltage165

position of each detected step, and the I-V features of each step. Fig. 1 shows

examples of single step and multistep I-V curves with the middle steps’ location

(steps except the last one located at Voc) obtained from ddiv using the package

default hyperparameter settings.

Figure 1: Single step and multistep I-V curves with detected middle steps’ location in volts.

A randomly chosen and manually labeled dataset is required for determining170

the hyperparameters k and ma
∆. We randomly selected ten thousands I-V
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curves from the entire dataset (including all modules) and manually labeled

them as single step or multistep I-V curves. Then one thousand single step

and one thousand multistep I-V curves were randomly selected from these ten

thousand labeled curves. We divided each group of I-V curves into training175

and testing datasets with 80%/20% partitioning. A grid search was performed

to determine the optimal hyperparameters k and ma
∆ for the training dataset.

The testing dataset was used to verify that the optimal hyperparameters did

not overfit the training dataset. k is the number of change points allowed in

an I-V curve, which should be at least large enough to support all physically180

possible cases, determined by the number of bypass diodes installed in the PV

module (there are typically 2 change points associated with each step in the

I-V curve). These two hyperparameters were determined considering both the

overall step detection accuracy, and the balance between identifying single step

and multistep I-V curves. The overall accuracy obtained from the training185

dataset is also used to determine whether a module has experienced partial

shading: PV modules with a percentage of multistep I-V curves (MS) higher

than the model accuracy are confirmed to experience partial shading, and these

data are further processed to obtain details of shading conditions.

First, we study the time dependence of the multistep I-V curves to obtain a190

shading profile indicating what times of the day or year partial shading occurs.

For each year, the MS of each daily time point is calculated, then a local peak

finding function “findpeak” from the pracma R package (Borchers (2019)) is

applied to find the local peak of the MS in time. Next, we study the shading

Poynting vector diagram of the occurrence of multistep I-V curves, with axes195

of the solar azimuth and elevation angles, to determine the relative orientation

of shading obstacles to the module. Using the “getSunlightPosition” function

in the suncalc R package (Thieurmel & Elmarhraoui (2019)), we obtain the

elevation and azimuth angles from the date, time, and module location. We

calculate the MS in one-degree intervals of the azimuth angle, then find the200

localized peak locations, which represent the relative orientation of shading

obstacles to the module under study. Then we study the shading scenarios
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using the I-V step voltages in the multistep I-V curves. Previous research

shows that the step voltages in the I-V curve correspond to different shading

scenarios, and we can use this to classify the multistep I-V curves into three205

cases for a PV module with three bypass diodes (Basri et al. (2015)). The

three cases (all for modules containing 3 strings of PV cells) are: one bypass

diode activated as indicated by one step located close to Voc, two bypass diodes

activated with similar current mismatch indicated by one step located closer to

0 V, and two bypass diodes activated with different current mismatch indicated210

by two steps between 0 V and Voc (Basri et al. (2015)). Finally, the percentage of

each partial shading case, and the duration of partial shading from the number

of consecutive multistep I-V curves are also obtained.

Fig. 2 is a flowchart for applying partial shading detection to a module’s

time-series I-V data. The blue box is for the data input, while green boxes215

are for the outputs. As mentioned before, if the I-V tracer does not report

all features needed for outdoor Isc-Voc analysis (or these reported features are

inaccurate), then outdoor Isc-Voc analysis and partial shading detection could

share processing steps including the quality detection of I-V curves and ddiv

for feature extraction.220

4. Results

4.1. Long Term Performance and Degradation of PV Modules

Fig. 3 shows the median and 83.4% confidence interval (CI) of the PLR

for each module, colored by climate zones and with different point shapes for

the module architectures (brands). We use 83.4% CIs to infer a p-value close225

to 0.05 (a 5% significance level) when the CI boundaries of two samples touch

(Cumming & Finch (2005)). Fig. 4 shows the four normalized power loss

factors for module 2 (BWh climate zone: DG module architecture) obtained

from outdoor Isc-Voc analysis, with fitted linear models. For each module, we

remove the outliers of each power loss mode with Tukey outlier parameter γ as230
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Figure 2: A flowchart of the partial shading detection analysis method applied to one PV

module.

1.5 using Eq. 1, in which Q1 and Q3 are the lower and upper quartiles (Tukey

(1977)).

Figure 3: Median PLR and 83.4% confidence interval for all eight modules.

[Q1 − γ(Q3 −Q1), Q3 + γ(Q3 −Q1)] (1)
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Figure 4: Normalized power loss factors obtained from outdoor Isc-Voc analysis for module 2

(BWh: DG).

Figure 5: Month-by-month linear regression on the uniform current loss (∆PIsc ) for module

2 (BWh: DG).

Next, the month-by-month regression is applied to the normalized power

loss factors to get the rate of change of each loss factor for each module. Fig.

5 shows the result of uniform current loss (∆PIsc) of module 2 (BWh: DG) for235

each month through the 8.5+ year test period. We removed the linear slopes

from months missing more than two years of observations or both the beginning

and end years. For ∆PIsc of module 2 (BWh: DG), the removed months are
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July and August, and we use the remaining ten slopes to get the average and

standard error to represent the rate of change.240

Table 2: Average and standard error of the rate of change in each power loss

mode for each module.
ID Average (%/a) Standard Error (%/a)

∆PIsc ∆PV oc ∆PRs ∆PImis ∆PIsc ∆PV oc ∆PRs ∆PImis

1 -0.2234 0.0045 -0.0360 -0.1840 0.0369 0.0362 0.0475 0.0902

2 0.1117 0.0908 -0.2228 -0.1438 0.1210 0.0318 0.0595 0.0566

3 -0.8579 -0.0474 0.0455 -0.0019 0.0911 0.0541 0.0604 0.1436

4 -0.5908 0.0310 -0.0350 0.0649 0.0729 0.0103 0.0426 0.0647

5 -1.2670 0.0892 -0.2205 0.7413 0.3678 0.0340 0.1516 0.2597

6 -0.8503 -0.0849 -0.0055 -0.0293 0.1075 0.0190 0.0532 0.1036

7 0.0239 0.1731 -0.2115 0.6246 0.7581 0.4819 0.3033 0.5406

8 -0.0366 0.0543 -0.0766 0.5776 0.3767 0.0366 0.0794 0.1447

Figure 6: Average and 83.4% CI of the rate of change for each power loss mode from outdoor

Isc-Voc analysis after removing modules 5 and 7.

Table 2 lists the average value and standard error of the rate of change of

each power loss mode for all eight modules. Module 5 (BSh: GB) and module

7 (ET: DG) have relatively large standard errors due to the short system age

(approximately three years), so we remove these two since our interest here is

in long-term module degradation. Fig. 6 shows the 83.4% CI for the rate of245

change in each power loss mode.
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4.2. Partial Shading Detection

The percentage of multistep I-V curves (MS (%)) for each module are listed

in Table 3. The optimal hyperparameters for finding steps, k and ma
∆, were

found to be 8 and 0.018, respectively, as trained on the whole dataset (all250

modules). Module 3 (BWh: GB), module 5 (BSh: GB), and module 6 (BSh:

GB) have MS higher than the criterion (20% decided by the training dataset)

and are therefore identified to experience partial shading. Module 3 (BWh: GB)

is used here to illustrate the details in each part of partial shading results.

Table 3: The percentage of multistep I-V curves (MS) for all eight modules.

ID System Age (Year) Climate Zone Brand MS (%)

1 8.03 BWh G:DG 2.97

2 8.74 BWh G:DG 4.44

3 6.16 BWh F:GB 36.38

4 6.39 BSh G:DG 5.42

5 2.93 BSh F:GB 50.31

6 6.39 BSh F:GB 50.65

7 2.63 ET G:DG 4.55

8 4.80 ET F:GB 14.55

Figure 7: A partial shading diagram which visualizes the occurrence of multistep I-V curves

for module 3 (BWh: GB).
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Table 4: The shading profile of module 3 (BWh: GB): percentage of multistep I-V

curves (MS) for peak partial shading times for each year.

Time in a Day MS (%) Year

08:10:00 35.1 2011

15:30:00 65.1 2011

07:10:00 46.9 2012

14:46:00 57.1 2012

08:10:00 55.7 2013

15:20:00 61.9 2013

08:40:00 58.9 2014

15:45:00 78.0 2014

07:55:00 32.1 2015

16:10:00 52.1 2015

07:50:00 40.0 2016

15:15:00 64.0 2016

A partial shading diagram (Fig. 7) visualizes the occurrence of multistep I-V255

curves in each year using time of day on the x-axis and date on the y-axis. The

red points are for single step I-V curves and green points are for multistep I-V

curves. The plotted points have transparency, so the color intensity correlates

to the density of observations. The gaps along the y-axis indicate when the I-V

tracer was offline and the pear-shaped border is due to the irradiance cutoff (5260

W/m2) applied to remove the nighttime data. Table 4 shows the shading profile

of module 3 (BWh: GB) for each year, which quantifies when partial shading

occurred most frequently.

By converting the date and time of multistep I-V curves into the solar el-

evation and azimuth angles, using the longitude and latitude of the module’s265

location, we can plot a shading Poynting vector diagram that shows the occur-

rence of multistep I-V curves (Fig. 8). The shading Poynting vector is so called

because the colinearity of the relative solar position vector with the energy flux

originating from the sun. Since both the PV module and the shading obsta-

cle are stationary, the two angles corresponding to clusters of multistep (green)270

points indicate the relative position of the obstacles that cast shadows on the

PV module. We find the localized MS peak location in the solar azimuth angle
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to locate shading obstacles, as listed in Table 5.

Figure 8: A shading Poynting vector diagram showing the occurrence of multistep I-V curves

for module 3 (BWh: GB) with solar position angles as coordinates. The shading Poynting

vector is collinear with the flux originating from the sun.

Table 5: Solar azimuth angle with peak MS for all three PV modules identified

to have partial shading problems.

Module ID Solar azimuth angle (◦) MS (%)

3

-99 34.9

35 53.5

87 52.7

5
-84 60.1

-11 72.7

6

-88 67.4

-34 71.6

81 42.3

Fig. 9 shows the distribution of I-V curve middle step locations in voltage

for multistep I-V curves. We can now extract the start and end voltages of each275

local peak. For module 3 (BWh: GB), the first peak is close to 0 and exhibits

quite low density; this is not a real steps’ location existing in the I-V curves,
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but arises due to the spline model used in ddiv and the fluctuation of datapoints

close to the Isc region of the curve. Additionally, there are too few datapoints

in such a narrow voltage range to determine the existence of a step at this low280

voltage. We use the start and end voltages of the remaining multistep peaks in

Fig. 9 to classify each multistep I-V curve into one of the three shading scenarios

described in the methods section, with the results summarized in Table 6.

Figure 9: The density of voltage locations for the middle I-V steps for modules 3 (the I-V

steps except Voc, approximately 34 Volts).

Table 6: Classification of shading scenarios based on voltage clusters of I-V steps’

location. Case 1: One bypass diode activated; Case 2: Two bypass diodes activated

with same current mismatch; Case 3: Two bypass diodes activated with different

current mismatch.

Module ID Case 1 (%) Case 2 (%) Case 3 (%)

3 22.86 61.19 15.95

5 26.54 59.93 13.52

6 25.19 36.67 38.13

The classification of persistent and transient multistep I-V curves is based on

the existence of a multistep I-V curve “neighbor” in the time-series data, such285

that the multistep curve persists through time, as opposed to being transient and
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only seen once in between single step I-V curves. The percentage of persistent

multistep I-V curves are 89.9%, 92.0%, and 95.2% for module 3 (BWh: GB),

module 5 (BSh: GB) and module 6 (BSh: GB), respectively. Fig. 10 shows

the distribution of the duration of persistent multistep I-V curves for module290

3 (BWh: GB), the peak is 12 minutes. The peak of module 5 (BSh: GB) and

module 6 (BSh: GB) are located at 11 and 12 minutes, respectively.

Figure 10: Distribution of the duration of persistent multistep I-V curves for module 3 (BWh:

GB).

5. Discussion

From simple time-series datastreams of Pmp and I-V curves acquired from

single PV modules, we have demonstrated the determination of module per-295

formance loss, active degradation modes, and patterns and characteristics of

module partial shading. The techniques we employ can also be adapted and

applied to strings of modules. Therefore these relatively simple datastreams

can provide a PV power plant owner, or operations and maintenance provider,

the information needed to diagnose and remediate their systems on an ongoing300

basis.
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5.1. Long-term Performance Loss and Module Degradation Mechanisms

From the PLR result shown in Fig. 3, BSh causes faster degradation than

BWh considering all the PV modules studied, and this is especially true for

the double-glass PV modules. At a 5% statistical significance level (95% con-305

fidence), the average PLR of module 1 (BWh: DG) is more positive (exhibits

less degradation) than that of module 4 (BSh: DG). The climate ET is the

mildest climate zone studied here for inducing PV module degradation, and

both modules there exhibit PLR values that are not significantly different from

zero. This finding is further supported by null hypothesis significance testing310

(Kulinskaya et al. (2011); van Dongen et al. (2019)), whereby the 95% CI for

module 7 (ET: DG) and module 8 (ET: GB) are 0.6542%/a ± -0.0699%/a and

0.6434%/a ± -0.0010%/a, respectively. Both of these CI ranges include 0, con-

firming the null hypothesis, and demonstrating that these modules effectively

did not degrade over their studied system ages. Double-glass modules, brand G,315

show better performance than glass-backsheet modules (brand F) in the BWh

climate zone. Performance of the two brands is more comparable in BSh and

ET climate zones.

Table 2 shows the dominant power loss mode (in bold text) for the six

modules with system ages longer than three years; the dominant power loss320

modes have the most negative rate of change. The dominant power loss mode

for the five modules included in Fig. 6, located in BWh and BSh climates, is

the uniform current loss, except for module 2 (BWh: DG). Module 2 (BWh:

DG) is less comparable to the other DG modules; though fabricated by the same

company, it is a different model and vintage, and the number of cells and bypass325

diodes are different from other double-glass modules as recorded in Table 1.

Comparing the rate of change of the four power loss modes for module 1 (BWh:

DG) and module 4 (BSh: DG), the maximal difference (0.3678%) occurs for

the dominant power loss mode, ∆PIsc, with a 5% significance level, as shown

in Fig. 6. The BWh climate zone caused significantly less change in ∆PIsc330

compared to the BSh climate zone for double-glass modules. But for glass-

backsheet modules, comparing module 3 (BWh: GB) and module 6 (BSh: GB),
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the rate of the four power loss modes are very similar and the maximal difference

is less than 0.05%. This finding supports the PLR results, which find that the

double-glass modules are more different between BWh and BSh climate zones335

than glass-polymeric backsheet modules. The outdoor Isc-Voc and loss factor

method helps to further identify that this performance difference is primarily

due to the increased uniform current power loss for the BSh-fielded double-glass

modules. The dominant power loss mode for glass-backsheet modules located

in ET is ∆PRs, but the average is not significantly different from zero, as can340

be inferred from Fig. 6.

5.2. Partial Shading and the Local Environment

In this study, modules 3 (BWh: GB), 5 (BSh: GB), and 6 (BSh: GB) are

found to experience frequent partial shading. All three of the PV modules have

MS significantly higher than the detection accuracy criterion of 20%, and these345

values are also significantly higher than any of the other modules as summarized

in Table 3. These PV modules are all brand F modules with glass-polymeric

backsheet architecture, but we believe the module architecture is unrelated to

the partial shading observed; the bypass diodes installed in all commercial PV

modules are supposed to activate when the PV module experiences partial shad-350

ing. The difference in MS between these three modules and the others is most

likely due to differences in the local surroundings, of their specific installation

locations.

The partial shading diagram shown in Fig. 7 is a very useful data visu-

alization showing temporal patterns of partial shading. However for system355

diagnosis, quantitative results are preferred, so we developed the shading pro-

file as summarized in Table 4. Here we chose an annual reporting period for

the shading profile. One can shorten this time period to allow more frequent

monitoring, as long as the number of I-V curves is sufficient for finding the

localized peaks of MS. Consistent times of day when shading occurs is found,360

for example, in the shading profile of module 3 (BWh: GB): there is one peak

in the morning located around 8 am and another peak in the afternoon near
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3:30 pm.

The shading Poynting vector diagram, shown in Fig. 8, is more helpful to

locate shading obstacles on a map if on-site inspection is unavailable. The solar365

azimuth angle corresponding to the local peak of the MS is summarized from

Fig. 8 in Table 5, providing detailed insights for shading remediation. The

empty space at high solar elevation angle in Fig. 8 is caused by the five minute

time interval of the data, which has a relatively low resolution at noon due to the

faster change in solar azimuth angle with time during these months (summer in370

the northern hemisphere). The solar azimuth angle reported in Table 5 that is

close to 0 ◦ corresponds to the obstacle that is most important to remove since it

is right in front of the module under study, and obscures the module during the

highest insolation period of the day. While this analysis can be applied using

different time periods to allow more frequent monitoring similar to the shading375

profile, the results presented here use the complete system age.

As for the shading scenarios (1 vs 2 bypass diodes activated, similar vs

dissimilar current mismatch for 2 bypass diodes), module 3 (BWh: GB) and

module 5 (BSh: GB) have similar percentages in each case as recorded in Table

6. The dominant case for both of those modules corresponds to two bypass380

diodes being activated with similar current mismatches. Meanwhile for module

6 (BWh: GB), the percentage of each case is quite comparable. In addition,

the percentage of persistent multistep I-V curves is in the range of 89.9% to

95.3%, which indicates that the five minute time interval of the I-V datastreams

are long enough to capture most of the continuity in partial shading. The385

distribution of the duration of persistent multistep I-V curves, shown in Fig.

10 for module 3, are all right-skewed with a peak located around 11 to 12

minutes. This approximate 10 minute duration of partial shading is relatively

short (2 consecutive I-V measurements) considering that a stable object would

continuously cast shadows on the module. We believe this could be caused by390

unstable weather conditions, and/or occasional I-V curve misclassification by

the step detection algorithm such that a long duration of partial shading is

broken up into several shorter periods.
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The partial shading detection method, based on time-series multistep I-V

curves, has the advantage of not requiring a reference system for comparison.395

However, partial shading does not always activate bypass diodes and thereby

cause multiple steps in I-V curves. If the bypass diode is broken or if the partial

shading situation is the same for all cell strings in the module (e.g., for inter-

row shading of portrait-oriented modules), such cases won’t be captured by this

approach.400

Partial shading is a known risk factor for module degradation. The effects

of frequent partial shading are well known for fixed shading objects located

very close to an array and shade the same area of a module and block a large

percentage of the incident light, repeatedly and for long periods of time. The

resulting repetitive and persistent hot spotting and activation of the same bypass405

diode can lead to materials changes in the module, and eventual failure of the

bypass diode. Long-term, close-range partial shading can even lead to safety

issues such as electrical shorts or fires.

Close-range shading obstacles are easily identified in the field, particularly for

a research system such as the one studied here. Furthermore, close-range partial410

shading would influence ∆PImis (power loss related to current mismatch), due

to persistent unequal shading and degradation of different cell strings. ∆PImis

accounts for changes in mismatch due to both 1) evolving string-level perfor-

mance differences within a module, and 2) changes in the shading profile of the

module. ∆PImis does not significantly worsen for any of the modules that were415

detected to experience frequent partial shading, so this agrees with the mod-

ule operator’s assessment that none of the shading obstacles detected in our

Poynting vector or shading profile analyses are close to the modules.

The Isc-Voc loss factor results for the modules that experience a high per-

centage of multistep I-V curves may however suggest that frequent partial420

shading from distant objects can contribute to module degradation. Distant

objects cause a smaller degree of current mismatch, as the amount of diffuse

light reaching the shaded string is greater than for shading caused by nearby

objects. Shading patterns from distant objects are also likely to traverse the
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surface of the module, and therefore cause more comparable shading of each425

cell string throughout the course of a day. Modules 3, 5, and 6, which experi-

enced the greatest percentages of partial shading (above concluded to be due

to distant objects), also showed the greatest uniform current loss power degra-

dation (∆PIsc) of all modules studied. Modules 3 and 6 are included in our

long-term degradation study, and degraded similarly as shown in PLR (Fig. 3)430

and power loss factor results Fig. 6. While these modules happened to be of

a single brand, the fact that they both experienced relatively high frequency

partial shading could contribute this similarity in degradation.

6. Conclusions

In this research, we obtain the PLR and four power loss mode rates of change435

that relate to the active degradation mechanisms of eight modules installed

in the field for up to nine years. Methods to analyze time-series Pmp and

I-V curves included the XbX + UTC predictive method with year-on-year

regression, and outdoor Isc-Voc and loss factor calculation. The results show

that the BSh Köppen-Geiger climate zone causes faster degradation considering440

both brands/architectures of PV modules under study, while the ET climate

zone causes the slowest degradation. The dominant degradation mode for most

modules located in BWh and BSh is uniform current power loss. Double-glass

modules (the same model) have better performance in the BWh climate zone

compared to BSh climate zone, mainly due to a reduction in the rate of change445

in uniform current loss. Glass-polymer backsheet modules located in BWh and

BSh climate zones have similar rates of change for each power loss mode. The

study procedure and methods we used for the long-term degradation study can

be generalized to a larger population of PV modules and systems, including

strings of modules. We presented a statistical partial shading detection method450

based on time-series I-V curve datastreams, which is able to return the temporal

shading profile, the shading Poynting vector representing the relative locations

of shading obstacles, classification of shading scenarios, and the distribution of
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partial shading duration. The result shows three of the modules in the dataset

experience frequent partial shading. The five minute time interval of the I-V455

datastreams is sufficient to capture over 90% continuity of the partial shading

occurrences on average. The degradation mechanism study, using outdoor Isc-

Voc, and the partial shading study share common initial processing steps, which

can reduces the analysis effort required for quantifying partial shading. Frequent

and persistent partial shading is a potential local environmental stressor, which460

should be considered in degradation studies. This partial shading detection

method is unable to capture the particular partial shading case where the same

shadow is uniformly present on each cell string in a module or array. At the

same time, this method realizes partial shading detection using only data from

the studied module or system, without requiring a separate reference system for465

comparison. Partial shading detection using time-series I-V curves provides a

quantitative method to bridge the gap between I-V curve shape and specific

shading scenarios for PV modules in the field.
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