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Abstract

Degradation and partial shading impact the long-term reliability and power
production of photovoltaic (PV) modules and power plants. Time-series power
(Pmp) and current-voltage (I-V) curve datastreams from PV modules enable
a remote diagnostic approach to quantify active degradation mechanisms and
identify partial shading. We study three to nine years of these datastreams,
including 3.6 million I-V curves and 36 million P, values, from eight PV
modules, four each of double-glass and glass-backsheet module architectures,
located in three distinctly different Koppen-Geiger climate zones, to determine
the module’s performance loss rates (PLR), identify active degradation mecha-
nisms and power loss modes, along with partial shading by local objects. Con-

sidering both module architectures, PLR results indicate that the BSh climate
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zone is the most aggressive for module degradation, while the Alpine ET zone
is the mildest climate. PLR of double-glass modules located in BWh and BSh
climate zones are different due to the significantly greater uniform current loss
(APrs.) for double-glass modules in BSh, at a 5% significance level. Power loss
for four out of five modules located in the BWh and BSh climates are dominated
by uniform current degradation. Statistical analysis of multistep I-V curves de-
tects partial shading experienced by three studied modules with details of the
shading profile, the shading Poynting vector diagram for the obstacle’s rela-
tive position, shading scenarios, and duration. This work demonstrates how
remote monitoring and diagnosis of P, & I-V time-series of modules can pro-
vide quantitative operations and maintenance insights into system performance,
degradation mechanisms, and shading.

Keywords: Degradation, Partial shading, P, & I-V time-series, outdoor
Is-Vye, Remote Monitoring

1. Introduction

Due to the rapid growth of solar energy (Cozzi et al. (2020); Perea et al|

(2019)) and the development of low-cost I-V tracing equipment (Jones et all
(2018); |Jones & Hansen| (2019); [Pordis (2018))) in the past few years, detailed

time-series electrical data has become increasingly accessible, providing oppor-
tunities to remotely study the behavior of PV modules installed in the field.
The two most common types of time-series electrical data, maximum power
(Pmp) and current-voltage (I-V) curves, can be used to evaluate degradation
behavior (Jordan et al|(2010); Smith et al.| (2012); |French et al.| (2015); Peshek|
(2016)) and detect the operational status of PV modules (Nehme et al]
(2017)). Time-series P,,, data can be utilized to calculate the performance
loss rate (PLR) (Curran et al| (2019, 2020)). There are multiple methods de-

veloped for calculating PLR, and these procedures contain four steps (Lindig
let al.| (2021)); [French et al| (2021); [Lindig et al. (2018)); Davis et al.| (2013)); Mar-|

(2005)), beginning with data cleaning and filtering, then choosing a
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performance metric such as performance ratio (Phinikarides et al.| (2014)), pre-
dicted power (Curran et al.|(2019)), PVUSA (Whitaker et al.| (1997))), or Sandia
PV Array Performance Model (Kratochvil et al.| (2004)). Then time-series re-

gression methods are applied, such as the seasonal and trend decomposition

(Jordan & Kurtz (2010)), and linear or year-on-year (Jordan et al.| (2018]))

regression to determine the PLR of PV systems.

In contrast with P, which indicates the overall performance of a PV module
or system, I-V curves are able to provide more insight into PV module degrada-
tion modes and mechanisms (2019)) with suitable analysis methods.
The outdoor Is.-V,. curve can be used to obtain more degradation information

especially when comparing with features extracted from the I-V curve under

the same conditions (Siyu Guo et al.| (2016); Killam et al. (2021)). The out-

door I,.-V,. and power loss factor method developed by M. Wang (Wang et al.,
(2021); |Gok et al, (2021)) can convert the change in I-V features into power

loss factors, enabling direct comparisons and rank ordering of activated degra-
dation modes. Studies of long-term PV module degradation guide development
of modules and systems with longer lifetimes to reduce the levelized cost of PV
energy.

Power degradation and faults, if not detected, can not only cause power loss,

but also threaten the security, safety, and reliability of the whole PV power

plant (Nehme et al, (2017)). During partial shading events, nearby objects cast

shadows onto part of a PV module or array, causing spatially non-uniform ir-

radiance (Meyers & Mikofski| (2017)). This partial shading causes power loss,

as seen with uniform shading, but also induces changes in the module degrada-
tion due to frequent bypass diode activation, reverse biasing of cells, and the
subsequent generation of local hot spots. These effects can cause overheating
and severe, non-uniform degradation of the module packaging materials
), particularly in cases where an object repeatedly shades the mod-

ule or array (e.g., at the same time every day). Shading detection methods,

using time-series P, are quite mature (Tsafarakis et al. (2019))), but they

can’t distinguish between partial and uniform shading cases and most of these
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methods require an unshaded reference system such as a nearby pyranometer
that is guaranteed not to experience shading (Tsafarakis et al.| (2019)); [Firth
et al| (2009)). Partial shading in most cases will cause distortion, or a “step”,
in the I-V curve, which is not observed in the uniform shading case (Basri
et al.| (2015)). This distinction provides an opportunity to detect partial shad-
ing without a reference system. Current studies using I-V curves for shading
detection focus on the relationship between different shading geometries and
the corresponding shapes of the I-V curves (Basri et al| (2015); Hemza et al.
(2019); Teodorescu et al.| (2015)), but they lack methods to analyze time-series
I-V curves so as to detect partial shading conditions for modules in the field.
In this paper, we obtained the performance loss rate (PLR) and the rates
of four power loss modes of eight PV modules located in three climate zones.
We determined the dependence of degradation behavior on the PV modules’
architectures, manufacturers, and the climate zones where they were exposed,
and identified dominant degradation modes for each. In addition, a statistical
analysis using time-series I-V curves for partial shading detection was devel-
oped to provide a module’s shading scenario and duration, its temporal partial
shading profile, and the shading Poynting vector of shading obstacles’ relative

position.

2. Dataset Description

The Py, I-V time-series datasets were acquired by Fraunhofer-ISE from
their outdoor test facilities. The dataset contains time-series Py, recorded every
minute and I-V curves recorded every five minutes by the I-V tracing equipment
(ET Instrumente GmbH), module temperature measured every minute for each
module, and global irradiance in the plane of array (POA) for every minute.
Each I-V curve contains 40 to 70 points, and the I-V tracer also records the
I-V features it extracts, including maximum power (P,,,), voltage at maximum
power (Vi,,), current at maximum power (I, ), short-circuit current (Is.), open-

circuit voltage (V,.), series resistance (R;), shunt resistance (R ), and fill factor
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The eight PV modules studied (Table are located in three distinct Képpen-
Geiger climatic zones (Rubel et al|(2017))) and belong to two brands. The cli-
mate zones are identified by their longitude and latitude using the kgc R package
(Bryant et al.| (2017)); R Core Teaml| (2020)). The Képpen-Geiger climate clas-
sification divides climates into five main climate “groups” indicated by the first
letter, where for example B is arid and E is polar. These main climate groups
range from A for the tropical climates near the equator to E at the north or
south pole. The second letter indicates the seasonal precipitation “type”, where
W is for desert, S is for steppe, and T is for tundra. If the annual precipitation
is less than 50% of a threshold, which is determined by the seasonal percentage
of precipitation and the average annual temperature, the climate is classified
as BW, otherwise, the classification is BS. So BSh has more precipitation than
BWh, but both have less precipitation than any of the A tropical climates.
The third letter is the temperature “subtype” and indicates the level of heat in
the climate zone, where h is for hot indicating the average annual temperature
above 18 °C. ET is much colder than both BWh and BSh, and it only has an
average temperature below 10°C for every month. The brand F module is a
glass-backsheet (GB) module with a polymeric backsheet, while the brand G

module has a double-glass (DG) module architecture.

Table 1: INFORMATION ON THE PV MODULES STUDIED: THEIR EXPOSURE START AND END
DATES, INSTALLATION LOCATIONS, BRAND:MODULE ARCHITECTURES, AND NUMBERS OF CELLS

AND BYPASS DIODES.

ID Start End System Age Climate Latitude Longitude Brand # of # of Bypass
(Year) Zone (°) (°) Cells Diodes
1 2010-10-19 2018-10-31 8.03 BWh 27.82 -15.42 G:DG 80 4
2 2010-02-05 2018-10-31 8.74 BWh 27.82 -15.42 G:DG 72 3
3 2010-09-28 2016-11-24 6.16 BWh 27.82 -15.42 F:GB 60 3
4 2012-06-11  2018-10-31 6.39 BSh 30.86 34.78 G:DG 80 4
5 2012-06-11 2015-05-17 2.93 BSh 30.86 34.78 F:GB 60 3
6 2012-06-11 2018-10-31 6.39 BSh 30.86 34.78 F:GB 60 3
7 2010-06-16 2013-01-31 2.63 ET 47.42 10.89 G:DG 80 4
8  2010-06-16 2015-02-18 4.69 ET 47.42 10.89 F:GB 60 3
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3. Analytical Methods

In this section, we introduce several analytical methods used to evaluate our

dataset, including the XbX with universal temperature correction (X0X+UTC)

method (Curran et al|(2019)) and the year-on-year method (Hasselbrink et al|
(2013); Jordan et al.| (2018))) to obtain the performance loss rate (PLR) (French

(2021))), outdoor Is-V,. and power loss factor method (Wang et all

(2020))) with month-by-month regression to determine the rate of change of

each power loss mode, I-V curves quality detection and the partial shading

detection method. The X0 X+UTC and outdoor I4.-V,. methods are already

published as open-source R code packages (R Core Teaml| (2020))) available on
CRAN as Suns-V,. and PVplr respectively (Wang et al.| (2021); |Curran et al|
(2020)). The partial shading detection method uses our data-driven I-V fea-

ture extraction R package (ddiv) to detect steps in the I-V curves (Huang et al.
(2021))). In addition, our outdoor I,.-V,. results use the tracer-reported I-V

features, including Isc, Voe, Imp, Vimp and Rs. When I-V features are not re-
ported by the tracer, ddiv is the suggested method to extract the I-V features

for outdoor I.-V,. analysis.

3.1. Performance Loss Rate (PLR) Calculation

Time-series Py, POA, and module temperature are used as inputs to deter-
mine PLR. The XbX +UTC analysis has four steps and provides the predicted

P, at a given reference condition for each X time period, which can be a day,

week, month or any other time period (Curran et al|(2019)). In this study we

choose X as one day and the reference condition chosen is POA of 900 W/m?
and module temperature of 40 °C. First, a low irradiance cutoff of 200 W /m?
is applied to filter the P,,, data. Second, a temperature coefficient is obtained,
using a linear model of P,,, versus module temperature, for irradiances of 900 +
10 W/m?. Third, a temperature correction is applied to correct each Py, value
to the reference temperature. Finally, a linear model of temperature corrected

P, versus POA is fit using observations of each day, and the daily predicted
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P, result at the reference POA is obtained. This daily predicted P, is then
analyzed using year-on-year regression (Hasselbrink et al.[ (2013)); |Jordan et al.

(2018)) to obtain a PLR distribution of each module.

3.2. Outdoor I,.-V,. and Power Loss Factor Calculation

The outdoor I.-V,. and power loss factor method proposed by M. Wang
(Wang et al.| (2020)) requires time-series I-V features including Isc, Voc, Lmp,
Vinp,Rs, and POA, and module temperature, and the resulting output is the
four kinds of power loss modes in each time period (typically one week for our
study) at 1 Sun POA irradiance and the reference module temperature, which
is 40 °C in this study. The four power loss modes correspond to uniform cur-
rent loss (AP, ), recombination (APy,.), series resistance (APgs) and current
mismatch (APrp,:s). In our study, these weekly time-series power losses are
normalized by the initial predicted P,,, at the same reference condition, which
is obtained by a linear model fit using the weekly predicted P, from the out-
door I,.-V,. method at the defined reference condition. Then these normalized
power losses are grouped into months to get an estimated rate of change for each
power loss mode using the month-by-month regression method, which provides

twelve slopes obtained from the linear model using monthly data across years.

3.8. Quality Detection of Current-voltage curves

It’s very important to remove the anomalous or non-physical I-V curves
from the input dataset prior to further analysis, such as for step detection. We
therefore have developed an I-V quality detection algorithm that evaluates I-V
curves based on physical constraints using two user-determined hyperparame-
ters, P, and P». To be physically reasonable, considering a single diode model,
the first derivative g—{/ must be negative, which indicates that datapoints with
increasing voltage should have decreasing current (Gow & Manning (1999)).
However, I-V tracing instruments have finite measurement accuracy, which we

use to determine the value of P;. We first sort the datapoints of the I-V curve

in increasing voltage order, then calculate the current difference by I; - I;_1. If
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this difference is larger than P;, we define point ¢ as an unqualified data point.
If the number of unqualified data points is larger than the value of P, we have
set, the curve is labeled as unqualified and not used in further analysis. In our
study, P; is set to 0.02 A based on the instrument specification, and P; is set
to zero. The non-physical or unqualified curves are removed only for the partial
shading analysis. The P» hyperparameter can be increased to tolerate more

noise in I-V curves and reduce the number of curves that are filtered.

8.4. Partial Shading Detection

The ddiv algorithm also has two user-determined hyperparameters for de-
tecting steps in I-V curves: the maximum number of change points (k) and
the critical value of the slope difference before and after the step (m%) (Huang
). The ddiv algorithm returns the total number of steps, the voltage
position of each detected step, and the I-V features of each step. Fig. [I| shows
examples of single step and multistep I-V curves with the middle steps’ location
(steps except the last one located at V) obtained from ddiv using the package
default hyperparameter settings.

ID Multistep |-V -®- Single step |-V
I

0000000000000 00000000000090o

A

Current (A)

00 fm | — — — o — —— — -

0.0 10.0 211
Voltage (V)

n

.3 40.0

Figure 1: Single step and multistep -V curves with detected middle steps’ location in volts.

A randomly chosen and manually labeled dataset is required for determining

the hyperparameters k and m%. We randomly selected ten thousands I-V
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curves from the entire dataset (including all modules) and manually labeled
them as single step or multistep I-V curves. Then one thousand single step
and one thousand multistep I-V curves were randomly selected from these ten
thousand labeled curves. We divided each group of I-V curves into training
and testing datasets with 80%/20% partitioning. A grid search was performed
to determine the optimal hyperparameters k and m$% for the training dataset.
The testing dataset was used to verify that the optimal hyperparameters did
not overfit the training dataset. & is the number of change points allowed in
an I-V curve, which should be at least large enough to support all physically
possible cases, determined by the number of bypass diodes installed in the PV
module (there are typically 2 change points associated with each step in the
I-V curve). These two hyperparameters were determined considering both the
overall step detection accuracy, and the balance between identifying single step
and multistep I-V curves. The overall accuracy obtained from the training
dataset is also used to determine whether a module has experienced partial
shading: PV modules with a percentage of multistep I-V curves (M S) higher
than the model accuracy are confirmed to experience partial shading, and these
data are further processed to obtain details of shading conditions.

First, we study the time dependence of the multistep I-V curves to obtain a
shading profile indicating what times of the day or year partial shading occurs.
For each year, the M S of each daily time point is calculated, then a local peak
finding function “findpeak” from the pracma R package (Borchers| (2019)) is
applied to find the local peak of the MS in time. Next, we study the shading
Poynting vector diagram of the occurrence of multistep I-V curves, with axes
of the solar azimuth and elevation angles, to determine the relative orientation
of shading obstacles to the module. Using the “getSunlightPosition” function
in the suncalc R package (Thieurmel & Elmarhraoui (2019)), we obtain the
elevation and azimuth angles from the date, time, and module location. We
calculate the M S in one-degree intervals of the azimuth angle, then find the
localized peak locations, which represent the relative orientation of shading

obstacles to the module under study. Then we study the shading scenarios
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using the I-V step voltages in the multistep I-V curves. Previous research
shows that the step voltages in the I-V curve correspond to different shading
scenarios, and we can use this to classify the multistep I-V curves into three
cases for a PV module with three bypass diodes (Basri et al.| (2015)). The
three cases (all for modules containing 3 strings of PV cells) are: one bypass
diode activated as indicated by one step located close to V,., two bypass diodes
activated with similar current mismatch indicated by one step located closer to
0 V, and two bypass diodes activated with different current mismatch indicated
by two steps between 0 V and V,,. (Basri et al.|(2015))). Finally, the percentage of
each partial shading case, and the duration of partial shading from the number
of consecutive multistep I-V curves are also obtained.

Fig. [2] is a flowchart for applying partial shading detection to a module’s
time-series I-V data. The blue box is for the data input, while green boxes
are for the outputs. As mentioned before, if the I-V tracer does not report
all features needed for outdoor I,.-V,. analysis (or these reported features are
inaccurate), then outdoor I4.-V,. analysis and partial shading detection could
share processing steps including the quality detection of I-V curves and ddiv

for feature extraction.

4. Results

4.1. Long Term Performance and Degradation of PV Modules

Fig. [3| shows the median and 83.4% confidence interval (CI) of the PLR
for each module, colored by climate zones and with different point shapes for
the module architectures (brands). We use 83.4% CIs to infer a p-value close
to 0.05 (a 5% significance level) when the CI boundaries of two samples touch
(Cumming & Finch| (2005)). Fig. shows the four normalized power loss
factors for module 2 (BWh climate zone: DG module architecture) obtained
from outdoor I,.-V,. analysis, with fitted linear models. For each module, we

remove the outliers of each power loss mode with Tukey outlier parameter v as

10
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Figure 2: A flowchart of the partial shading detection analysis method applied to one PV

module.

1.5 using Eq. (1} in which @ and Q3 are the lower and upper quartiles (Tukey
(1977)).

Brand ® F:GB A G:DG Climate ® BSh ® BWh ® ET

0.4
A
= £
2 0.01= —E ———————————————————————
o
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- ]
1 2 3 4 5 6 7 8
Module ID

Figure 3: Median PLR and 83.4% confidence interval for all eight modules.

Q1 —7(Q3 — Q1), Q3 +7(Q3 — Q1)] (1)

11
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Figure 4: Normalized power loss factors obtained from outdoor Is.-V,e analysis for module 2
(BWh: DG).
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Figure 5: Month-by-month linear regression on the uniform current loss (APy, ) for module
2 (BWh: DG).

Next, the month-by-month regression is applied to the normalized power

loss factors to get the rate of change of each loss factor for each module. Fig.

25 [p|shows the result of uniform current loss (APs,.) of module 2 (BWh: DG) for
each month through the 8.5+ year test period. We removed the linear slopes
from months missing more than two years of observations or both the beginning

and end years. For APy of module 2 (BWh: DG), the removed months are

12
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July and August, and we use the remaining ten slopes to get the average and

standard error to represent the rate of change.

Table 2: AVERAGE AND

MODE FOR EACH MODULE.

STANDARD ERROR OF THE RATE OF CHANGE IN EACH POWER LOSS

D Average (%/a) Standard Error (%/a)
AP APyoe  APps APrys | APrse  APyoe  APrs APrys
1 |-0.2234 0.0045 -0.0360 -0.1840 | 0.0369 0.0362 0.0475  0.0902
2 0.1117 0.0908 -0.2228 -0.1438 | 0.1210 0.0318 0.0595  0.0566
3 | -0.8579 -0.0474  0.0455  -0.0019 | 0.0911 0.0541 0.0604 0.1436
4 |-0.5908 0.0310 -0.0350  0.0649 | 0.0729 0.0103 0.0426  0.0647
5 -1.2670  0.0892  -0.2205 0.7413 | 0.3678 0.0340 0.1516  0.2597
6 | -0.8503 -0.0849 -0.0055 -0.0293 | 0.1075 0.0190 0.0532  0.1036
7 0.0239 0.1731  -0.2115 0.6246 | 0.7581 0.4819 0.3033  0.5406
8 | -0.0366  0.0543 -0.0766 0.5776 | 0.3767 0.0366 0.0794  0.1447
Brand e F:GB 4 G:DG Climate Zone # BSh ® BWh & ET
o5 Uniform Current Loss Recombination Loss
0.10
001 == == } ——————————— +—1005 E *
. 0.00+ % ———————————————
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Figure 6: Average and 83.4% CI of the rate of change for each power loss mode from outdoor

Isc-Voe analysis after removing modules 5 and 7.

Table 2] lists the average value and standard error of the rate of change of

each power loss mode for all eight modules. Module 5 (BSh: GB) and module

7 (ET: DG) have relatively large standard errors due to the short system age

(approximately three years), so we remove these two since our interest here is

in long-term module degradation. Fig. IEl shows the 83.4% CI for the rate of

change in each power loss mode.

13
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4.2. Partial Shading Detection

The percentage of multistep I-V curves (M S (%)) for each module are listed

in Table The optimal hyperparameters for finding steps, & and m%, were

found to be 8 and 0.018, respectively, as trained on the whole dataset (all
modules). Module 3 (BWh: GB), module 5 (BSh: GB), and module 6 (BSh:
GB) have M S higher than the criterion (20% decided by the training dataset)

and are therefore identified to experience partial shading. Module 3 (BWh: GB)

is used here to illustrate the details in each part of partial shading results.

Table 3: THE PERCENTAGE OF MULTISTEP I-V CURVES (MS) FOR ALL EIGHT MODULES.

12
10

o N b O ®

Date (month)
N

o

o N b O ®

ID System Age (Year) Climate Zone Brand MS (%)
1 8.03 BWh G:DG 2.97
2 8.74 BWh G:DG 4.44
3 6.16 BWh F:GB 36.38
4 6.39 BSh G:DG 5.42
5 2.93 BSh F:GB 50.31
6 6.39 BSh F:GB 50.65
7 2.63 ET G:DG 4.55
8 4.80 ET F:GB 14.55
2010 2011 2012 2013

2014

2015

2016

10 15

20

A
10 15 2

0 10 15 20
Time (hour)

step>1

FALSE
TRUE

Figure 7: A partial shading diagram which visualizes the occurrence of multistep I-V curves

for module 3 (BWh: GB).
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Table 4: THE SHADING PROFILE OF MODULE 3 (BWH: GB): PERCENTAGE OF MULTISTEP [-V

CURVES (MS) FOR PEAK PARTIAL SHADING TIMES FOR EACH YEAR.
Time in a Day MS (%) Year

08:10:00 35.1 2011
15:30:00 65.1 2011
07:10:00 46.9 2012
14:46:00 57.1 2012
08:10:00 55.7 2013
15:20:00 61.9 2013
08:40:00 58.9 2014
15:45:00 78.0 2014
07:55:00 32.1 2015
16:10:00 52.1 2015
07:50:00 40.0 2016
15:15:00 64.0 2016

A partial shading diagram (Fig. [7]) visualizes the occurrence of multistep I-V
curves in each year using time of day on the x-axis and date on the y-axis. The
red points are for single step I-V curves and green points are for multistep I-V
curves. The plotted points have transparency, so the color intensity correlates
to the density of observations. The gaps along the y-axis indicate when the I-V
tracer was offline and the pear-shaped border is due to the irradiance cutoff (5
W /m?) applied to remove the nighttime data. Table 4{shows the shading profile
of module 3 (BWh: GB) for each year, which quantifies when partial shading
occurred most frequently.

By converting the date and time of multistep I-V curves into the solar el-
evation and azimuth angles, using the longitude and latitude of the module’s
location, we can plot a shading Poynting vector diagram that shows the occur-
rence of multistep I-V curves (Fig. . The shading Poynting vector is so called
because the colinearity of the relative solar position vector with the energy flux
originating from the sun. Since both the PV module and the shading obsta-
cle are stationary, the two angles corresponding to clusters of multistep (green)
points indicate the relative position of the obstacles that cast shadows on the

PV module. We find the localized M S peak location in the solar azimuth angle

15
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to locate shading obstacles, as listed in Table

step > 1 FALSE TRUE

75

v
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Elevation (°)

N
&

-100 -50 50 100

0
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Figure 8: A shading Poynting vector diagram showing the occurrence of multistep I-V curves
for module 3 (BWh: GB) with solar position angles as coordinates. The shading Poynting

vector is collinear with the flux originating from the sun.

Table 5:  SOLAR AZIMUTH ANGLE WITH PEAK MS FOR ALL THREE PV MODULES IDENTIFIED
TO HAVE PARTIAL SHADING PROBLEMS.

Module ID  Solar azimuth angle (°) MS (%)

-99 34.9
3 35 93.5

87 52.7

-84 60.1
5

-11 72.7

-88 67.4
6 -34 71.6

81 42.3

Fig. [0 shows the distribution of I-V curve middle step locations in voltage
for multistep I-V curves. We can now extract the start and end voltages of each
local peak. For module 3 (BWh: GB), the first peak is close to 0 and exhibits

quite low density; this is not a real steps’ location existing in the I-V curves,
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280

285

but arises due to the spline model used in ddiv and the fluctuation of datapoints
close to the I, region of the curve. Additionally, there are too few datapoints
in such a narrow voltage range to determine the existence of a step at this low
voltage. We use the start and end voltages of the remaining multistep peaks in
Fig. [9]to classify each multistep I-V curve into one of the three shading scenarios

described in the methods section, with the results summarized in Table [6]
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Figure 9: The density of voltage locations for the middle I-V steps for modules 3 (the I-V

steps except Voe, approximately 34 Volts).

Table 6: CLASSIFICATION OF SHADING SCENARIOS BASED ON VOLTAGE CLUSTERS OF [-V STEPS’
LOCATION. CASE 1: ONE BYPASS DIODE ACTIVATED; CASE 2: TWO BYPASS DIODES ACTIVATED
WITH SAME CURRENT MISMATCH; CASE 3: TWO BYPASS DIODES ACTIVATED WITH DIFFERENT

CURRENT MISMATCH.

Module ID  Case 1 (%) Case 2 (%) Case 3 (%)

3 22.86 61.19 15.95
5 26.54 59.93 13.52
6 25.19 36.67 38.13

The classification of persistent and transient multistep I-V curves is based on
the existence of a multistep I-V curve “neighbor” in the time-series data, such

that the multistep curve persists through time, as opposed to being transient and
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only seen once in between single step I-V curves. The percentage of persistent
multistep I-V curves are 89.9%, 92.0%, and 95.2% for module 3 (BWh: GB),
module 5 (BSh: GB) and module 6 (BSh: GB), respectively. Fig. shows
the distribution of the duration of persistent multistep I-V curves for module
3 (BWh: GB), the peak is 12 minutes. The peak of module 5 (BSh: GB) and
module 6 (BSh: GB) are located at 11 and 12 minutes, respectively.
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Figure 10: Distribution of the duration of persistent multistep I-V curves for module 3 (BWh:
GB).

5. Discussion

From simple time-series datastreams of P, and I-V curves acquired from
single PV modules, we have demonstrated the determination of module per-
formance loss, active degradation modes, and patterns and characteristics of
module partial shading. The techniques we employ can also be adapted and
applied to strings of modules. Therefore these relatively simple datastreams
can provide a PV power plant owner, or operations and maintenance provider,
the information needed to diagnose and remediate their systems on an ongoing

basis.
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5.1. Long-term Performance Loss and Module Degradation Mechanisms

From the PLR result shown in Fig. [3| BSh causes faster degradation than
BWh considering all the PV modules studied, and this is especially true for
the double-glass PV modules. At a 5% statistical significance level (95% con-
fidence), the average PLR of module 1 (BWh: DG) is more positive (exhibits
less degradation) than that of module 4 (BSh: DG). The climate ET is the
mildest climate zone studied here for inducing PV module degradation, and
both modules there exhibit PLR values that are not significantly different from
zero. This finding is further supported by null hypothesis significance testing
(Kulinskaya et al| (2011); van Dongen et al| (2019)), whereby the 95% CI for
module 7 (ET: DG) and module 8 (ET: GB) are 0.6542%/a £ -0.0699%/a and
0.6434%/a + -0.0010%/a, respectively. Both of these CI ranges include 0, con-
firming the null hypothesis, and demonstrating that these modules effectively
did not degrade over their studied system ages. Double-glass modules, brand G,
show better performance than glass-backsheet modules (brand F) in the BWh
climate zone. Performance of the two brands is more comparable in BSh and
ET climate zones.

Table [2| shows the dominant power loss mode (in bold text) for the six
modules with system ages longer than three years; the dominant power loss
modes have the most negative rate of change. The dominant power loss mode
for the five modules included in Fig. [0} located in BWh and BSh climates, is
the uniform current loss, except for module 2 (BWh: DG). Module 2 (BWh:
DG) is less comparable to the other DG modules; though fabricated by the same
company, it is a different model and vintage, and the number of cells and bypass
diodes are different from other double-glass modules as recorded in Table
Comparing the rate of change of the four power loss modes for module 1 (BWh:
DG) and module 4 (BSh: DG), the maximal difference (0.3678%) occurs for
the dominant power loss mode, APy, with a 5% significance level, as shown
in Fig. [0 The BWh climate zone caused significantly less change in AP,
compared to the BSh climate zone for double-glass modules. But for glass-

backsheet modules, comparing module 3 (BWh: GB) and module 6 (BSh: GB),
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the rate of the four power loss modes are very similar and the maximal difference
is less than 0.05%. This finding supports the PLR results, which find that the
double-glass modules are more different between BWh and BSh climate zones
than glass-polymeric backsheet modules. The outdoor Is.-V,. and loss factor
method helps to further identify that this performance difference is primarily
due to the increased uniform current power loss for the BSh-fielded double-glass
modules. The dominant power loss mode for glass-backsheet modules located
in ET is APgs, but the average is not significantly different from zero, as can

be inferred from Fig. [f]

5.2. Partial Shading and the Local Environment

In this study, modules 3 (BWh: GB), 5 (BSh: GB), and 6 (BSh: GB) are
found to experience frequent partial shading. All three of the PV modules have
M S significantly higher than the detection accuracy criterion of 20%, and these
values are also significantly higher than any of the other modules as summarized
in Table These PV modules are all brand F modules with glass-polymeric
backsheet architecture, but we believe the module architecture is unrelated to
the partial shading observed; the bypass diodes installed in all commercial PV
modules are supposed to activate when the PV module experiences partial shad-
ing. The difference in M S between these three modules and the others is most
likely due to differences in the local surroundings, of their specific installation
locations.

The partial shading diagram shown in Fig. [7]is a very useful data visu-
alization showing temporal patterns of partial shading. However for system
diagnosis, quantitative results are preferred, so we developed the shading pro-
file as summarized in Table [d] Here we chose an annual reporting period for
the shading profile. One can shorten this time period to allow more frequent
monitoring, as long as the number of I-V curves is sufficient for finding the
localized peaks of M S. Consistent times of day when shading occurs is found,
for example, in the shading profile of module 3 (BWh: GB): there is one peak

in the morning located around 8 am and another peak in the afternoon near
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3:30 pm.

The shading Poynting vector diagram, shown in Fig. is more helpful to
locate shading obstacles on a map if on-site inspection is unavailable. The solar
azimuth angle corresponding to the local peak of the M S is summarized from
Fig. in Table [5] providing detailed insights for shading remediation. The
empty space at high solar elevation angle in Fig. [§]is caused by the five minute
time interval of the data, which has a relatively low resolution at noon due to the
faster change in solar azimuth angle with time during these months (summer in
the northern hemisphere). The solar azimuth angle reported in Table [5| that is
close to 0 © corresponds to the obstacle that is most important to remove since it
is right in front of the module under study, and obscures the module during the
highest insolation period of the day. While this analysis can be applied using
different time periods to allow more frequent monitoring similar to the shading
profile, the results presented here use the complete system age.

As for the shading scenarios (1 vs 2 bypass diodes activated, similar vs
dissimilar current mismatch for 2 bypass diodes), module 3 (BWh: GB) and
module 5 (BSh: GB) have similar percentages in each case as recorded in Table
[6l The dominant case for both of those modules corresponds to two bypass
diodes being activated with similar current mismatches. Meanwhile for module
6 (BWh: GB), the percentage of each case is quite comparable. In addition,
the percentage of persistent multistep I-V curves is in the range of 89.9% to
95.3%, which indicates that the five minute time interval of the I-V datastreams
are long enough to capture most of the continuity in partial shading. The
distribution of the duration of persistent multistep I-V curves, shown in Fig.
for module 3, are all right-skewed with a peak located around 11 to 12
minutes. This approximate 10 minute duration of partial shading is relatively
short (2 consecutive I-V measurements) considering that a stable object would
continuously cast shadows on the module. We believe this could be caused by
unstable weather conditions, and/or occasional I-V curve misclassification by
the step detection algorithm such that a long duration of partial shading is

broken up into several shorter periods.
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The partial shading detection method, based on time-series multistep I-V
curves, has the advantage of not requiring a reference system for comparison.
However, partial shading does not always activate bypass diodes and thereby
cause multiple steps in I-V curves. If the bypass diode is broken or if the partial
shading situation is the same for all cell strings in the module (e.g., for inter-
row shading of portrait-oriented modules), such cases won’t be captured by this
approach.

Partial shading is a known risk factor for module degradation. The effects
of frequent partial shading are well known for fixed shading objects located
very close to an array and shade the same area of a module and block a large
percentage of the incident light, repeatedly and for long periods of time. The
resulting repetitive and persistent hot spotting and activation of the same bypass
diode can lead to materials changes in the module, and eventual failure of the
bypass diode. Long-term, close-range partial shading can even lead to safety
issues such as electrical shorts or fires.

Close-range shading obstacles are easily identified in the field, particularly for
a research system such as the one studied here. Furthermore, close-range partial
shading would influence APy,,;s (power loss related to current mismatch), due
to persistent unequal shading and degradation of different cell strings. APrm,is
accounts for changes in mismatch due to both 1) evolving string-level perfor-
mance differences within a module, and 2) changes in the shading profile of the
module. APy,,;s does not significantly worsen for any of the modules that were
detected to experience frequent partial shading, so this agrees with the mod-
ule operator’s assessment that none of the shading obstacles detected in our
Poynting vector or shading profile analyses are close to the modules.

The I4.-V,. loss factor results for the modules that experience a high per-
centage of multistep I-V curves may however suggest that frequent partial
shading from distant objects can contribute to module degradation. Distant
objects cause a smaller degree of current mismatch, as the amount of diffuse
light reaching the shaded string is greater than for shading caused by nearby

objects. Shading patterns from distant objects are also likely to traverse the
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surface of the module, and therefore cause more comparable shading of each
cell string throughout the course of a day. Modules 3, 5, and 6, which experi-
enced the greatest percentages of partial shading (above concluded to be due
to distant objects), also showed the greatest uniform current loss power degra-
dation (APrs.) of all modules studied. Modules 3 and 6 are included in our
long-term degradation study, and degraded similarly as shown in PLR (Fig. [3)
and power loss factor results Fig. [6] While these modules happened to be of
a single brand, the fact that they both experienced relatively high frequency

partial shading could contribute this similarity in degradation.

6. Conclusions

In this research, we obtain the PLR and four power loss mode rates of change
that relate to the active degradation mechanisms of eight modules installed
in the field for up to nine years. Methods to analyze time-series P, and
I-V curves included the XbX + UTC predictive method with year-on-year
regression, and outdoor I.-V,. and loss factor calculation. The results show
that the BSh Képpen-Geiger climate zone causes faster degradation considering
both brands/architectures of PV modules under study, while the ET climate
zone causes the slowest degradation. The dominant degradation mode for most
modules located in BWh and BSh is uniform current power loss. Double-glass
modules (the same model) have better performance in the BWh climate zone
compared to BSh climate zone, mainly due to a reduction in the rate of change
in uniform current loss. Glass-polymer backsheet modules located in BWh and
BSh climate zones have similar rates of change for each power loss mode. The
study procedure and methods we used for the long-term degradation study can
be generalized to a larger population of PV modules and systems, including
strings of modules. We presented a statistical partial shading detection method
based on time-series I-V curve datastreams, which is able to return the temporal
shading profile, the shading Poynting vector representing the relative locations

of shading obstacles, classification of shading scenarios, and the distribution of
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partial shading duration. The result shows three of the modules in the dataset
experience frequent partial shading. The five minute time interval of the I-V
datastreams is sufficient to capture over 90% continuity of the partial shading
occurrences on average. The degradation mechanism study, using outdoor I.-
V,e, and the partial shading study share common initial processing steps, which
can reduces the analysis effort required for quantifying partial shading. Frequent
and persistent partial shading is a potential local environmental stressor, which
should be considered in degradation studies. This partial shading detection
method is unable to capture the particular partial shading case where the same
shadow is uniformly present on each cell string in a module or array. At the
same time, this method realizes partial shading detection using only data from
the studied module or system, without requiring a separate reference system for
comparison. Partial shading detection using time-series I-V' curves provides a
quantitative method to bridge the gap between I-V curve shape and specific

shading scenarios for PV modules in the field.
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