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INTRODUCTION

Conditional Point Sampling (CoPS) is a recently devel-
oped algorithm for computing radiation transport quantities in
stochastic media. CoPS has some attractive qualities: a high
degree of accuracy in 1D [1] and multi-D [2], ability to com-
pute variance in outputs caused by material mixing [1], and
exactness in 1D mixtures with Markovian mixing statistics [1].
However, it involves a list of points that grows during simula-
tion causing potentially unbounded increases in runtime and
memory requirements and is more complicated to understand
and implement than some other notable approximate meth-
ods. In this summary, we investigate the accuracy of a simpler
“recent memory” approach to CoPS that reduces runtime and
memory and bears a resemblence to the well-known Chord
Length Sampling [3, 4] (CLS).

The “benchmark” method of generating a large ensemble
of material realizations and solving transport quantities on
each of them was employed to establish the ensemble-averaged
benchmark solutions. The atomic mix (AM) approximation [4]
is evaluated by solving transport results on one realization
that is a homogenization of the constituent materials. Chord
Length Sampling (CLS) is the Monte Carlo version of the
Levermore-Pomraning closure [3, 4, 5] and involves sampling,
but not remembering, one material chord at a time. Memory-
enhanced versions of CLS include “Algorithm B,” also known
as the Local Realization Preserving (LRP) [3, 4, 6] method,
and “Algorithm C” (Alg. C) [3]. In 1D, LRP operates as CLS
except that a material chord is remembered until the simulated
particle exits the chord. Alg. C involves further memory by
remembering the chord on each side in addition to the chord
containing the particle.

In CoPS, rather than sampling material chords, material
points are sampled on the fly. Delta tracking [7] is used such
that the algorithm only needs to know what material it is inter-
acting with at discrete pseudo-collision sites. The probability
of sampling a particular material at a pseudo-collision site
is based on material abundance and spatial correlation with
points that have already been sampled. A conditional probabil-
ity function incorporates these factors to determine the proba-
bilities of sampling each possible material at a newly sampled
point. To date, there are three primary versions of CoPS for
1D mixtures with Markovian mixing statistics [1] differenti-
ated only by the conditional probability function used: CoPS2
(uses 2-point material correlations), CoPS3 (uses 3-point mate-
rial correlations in a way easily extensible to multi-D [2]), and
CoPS3PO (uses 3-point material correlations and is errorless
for 1D, Markovian-mixed media; “PO” stands for ‘“Pseudo-
interface Optimum”). In each of these versions, all sampled
material points are stored in computer memory and used in
future conditional probability function evaluations.

In this summary, we investigate a simpler “recent mem-
ory” form of CoPS that stores only the sampled material assign-
ments of the most recently visited locations by a history rather
than that of every location. This simpler form trades accuracy
for simplicity making the method more approachable—giving
it a direct analogy to the celebrated Chord Length Sampling
(CLS) method and derivatives—as well as faster-running and
less memory intensive. In this study, we numerically investi-
gate limited-memory versions of CoPS2 and CoPS3PO using
the notation CoPSp-N to denote use of “p”-point material cor-
relations based on the N most recently visited pseudo-collision
sites, and compare its accuracy for several different user pa-
rameters to that of a collection of approximate methods on a
common benchmark set [4, 5]. Results for all methods except
the new limited memory CoPS were produced for Ref. [1]
and reused here. It is the hope of the authors that this “re-
cent memory” approach will improve theoretical and practical
understanding of Conditional Point Sampling and play an im-
pactful role in a broader “limited memory” scheme to come
that maintains the attractive qualities of CoPS while reducing
runtime and computer memory requirements.

THEORY

The following stochastic transport equation and bound-
ary conditions describe transport in one-dimensional, binary,
Markovian-mixed media on a slab geometry with an isotropic
boundary source and otherwise vacuum boundary conditions:
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where x and y are the particle spatial and angular variables,
respectively, w is the material realization, and L is the length
of the domain.

A common way to generate a Markovian-mixed realiza-
tion is by successively sampling chord lengths beginning at
a boundary [4, 5]. Another method is based on the prop-
erty that the average number of pseudo-interfaces, /, per slab
length r is Poisson-distributed [8]. The average number of
pseudo-interfaces is

I= A 2)
where in binary media, the correlation length A, is computed
using A, and Ag, the average chord lengths of materials o and
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B, respectively [8]:
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The number of pseudo-interfaces in a particular realization is
computed using the frequency of k pseudo-interfaces

Ik
fe.D) = Ee_" “)

and each pseudo-interface is distributed in a realization using
a spatially uniform distribution. The material type of each cell
defined by these pseudo-interfaces is sampled using material
abundances. For binary media composed of materials @ and 3,
the abundance or probability of sampling materials o and g,
respectively, are

A
P(r = = 5 5
Aa + Mg (52)
Py=1-P,. (5b)

CONDITIONAL POINT SAMPLING

In Conditional Point Sampling (CoPS), the use of delta
tracking [7] enables on-the-fly material point assignments.
The algorithm begins by initializing the particle position and
direction, x and u. A streaming even is selected by taking
the minimum of the distance to boundary and distance to
potential collision, & = —% In(€), where X7 is the largest total
cross section (i.e. the majdrant cross section) in the domain,
and ¢ is a randomly generated number uniformly sampled
between 0 and 1. If the particle streams to a potential collision,
the potential collision is accepted by sampling against the
probability of a true collision, expressed as the ratio between
the true and majorant cross sections: P, = %

The material type at a potential collision site is sampled
using the material abundance (Eq. 5a) if no other points have
been defined. However, if other point-based material assign-
ments have already been made, a derived conditional probabil-
ity function specific to the domain’s governing spatial statistics
is used to sample the material type at the new point condi-
tionally on neighboring points. For one-dimensional, binary,
Markovian-mixed media, conditional probability functions
dependent on only the nearest point or only the nearest point
on each side of a new point were derived in Ref. [1]. “CoPS2”
uses a 2-point conditional probability function to compute the
probability of sampling material a at a new point (in which «
denotes that the material type hasn’t been sampled yet) condi-
tionally on knowing the material type of the point at distance
ri away:
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“CoPS3PO,” in which the “PO” stands for pseudo-
interface optimum, uses a 3-point conditional probability func-
tion based on the nearest point on each side of a new point that
is errorless for 1D binary materials with Markovian mixing

statistics. The probability of sampling material « at the new
point based on points of material type m; and m, distances r|
and r, away on the left and right, respectively are
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In “CoPS3” an alternative derivation and notation are used
that are straightforward to extend to multi-D [2]. CoPS3 is
not as accurate as CoPS3PO in 1D; the two versions of CoPS
are compared in more detail in Ref. [1]. The probability of
sampling material a at the new point based on the nearest,
non-excluded points is denoted m(a|m) where m = {m;, my, ..}
is a vector containing the material types of the points and
r = {r, 2, ...} is a vector of distances to the points:

n(ale,a)) =1 - Pg(1 - ™% )(1 - e™5), (82)
relp.p) = Po(l—e v )(1-e %), (8b)
l—e )1 =Pyl —ea
ol gy =) ”( | R—
1 —e A
RESULTS AND ANALYSIS

Here, we present results produced using the 2-point
(CoPS2) and errorless 3-point (CoPS3PO) implementations of
CoPS that remember a maximum of N = 0, 1,2, 3, 10, 50 and
100 most recent points using 1E6 particle histories for a set
of problem parameters provided in Ref. [5]. CoPSp-1 draws
analogy to CLS in that each new point is sampled based only
on knowledge of the most recently visited point similar to how
CLS samples each new chord based only on knowledge of
which material type the particle is in. CoPSp-N for N > 1 is
analogous to memory-enhanced versions of CLS, i.e., LRP
and Algorithm C, in that additional memory of previously
sampled geometry features are remembered. In the limit as
N — oo, the original versions of CoPS are recovered; for
brevity CoPSp-co is simply denoted CoPSp.

The problem parameters of Tables 10-18 in Ref. [5] for
planar geometry are listed in Table I, where X, ; is the to-
tal cross section, A; is the average chord length, and c; is
the scattering ratio for each material j € {0,1}. Only slab
length L = 10 is considered. To compare the accuracy of each
method, the relative error is calculated using

Xapprox — X

Ep=—"——, ©))
x



TABLE I. Benchmark Set Parameters

Case Number %, pIg Ay A
1 10/99 100/11  99/100 11/100
2 10/99  100/11 99/10 11/10
3 2/101 200/101 101/20 101/20
Case Letter co ci
a 0.0 1.0
b 1.0 0.0
(o 0.9 0.9

where x is the benchmark leakage value and X, is the
leakage value computed by the various solvers. The root
mean squared (RMS), mean absolute, and maximum absolute
relative error of leakage results are computed for each solver
over the benchmark:

1
RMS Ep = ||~ > E3. (10)

1
Mean|Eg| = 5 Z |ER,|, (11

Max|Eg| = max |Eg,|. (12)

Table II provides reproduced mean leakage results us-
ing the benchmark, CoPS2, CoPS3, and CoPS3PO methods
from Ref. [1]. CoPS2, CoPS3, and CoPS3PO results from this
reference were produced by remembering all points defined
throughout a particle history, which is effectively CoPS p-co.
This table also provides CoPS2-N mean leakage results up
to N = 3. In Table III are the root mean squared (RMS),
mean, and maximum relative error of established approximate
methods produced in Ref. [1] and of CoPS2-N up to N = 3.
In parentheses are the statistical uncertainties (i.e. standard
error of the mean) on the last digit. Figure 1 shows the be-
havior in RMS Ej for CoPS2 and CoPS3PO as a function of
points remembered compared to other approximate methods
for reflectance and transmittance.

In Table IIT and Figure 1, CoPS2 and CoPS3PO are simi-
lar in accuracy to the atomic mix (AM) approximation when
remembering zero points and to Chord Lenght Sampling (CLS)
when remembering one point for both reflectance and transmit-
tance. Remembering more recent points improves the accuracy
of CoPS monotonically with the upper limit of accuracy being
that achieved by CoPS when remembering all points. For
reflectance, CoPS3PO achieves comparable accuracy to LRP
and CoPS2 at N = 50, and at N = 100, it approaches the
accuracy of Alg. C. When remembering a maximum of 100
points, CoPS2-N approaches its accuracy limit (CoPS2-c0).
For transmittance, CoPS2 and CoPS3PO achieve an accuracy
close to that of LRP for N = 5. CoPS2-50 is almost as accu-
rate as Alg. C while CoPS3PO-50 surpasses it. At N = 100,
CoPS3PO surpasses the accuracy of CoPS2-co.

CONCLUSIONS

The accuracy of recent memory versions of Conditional
Point Sampling (CoPS) remembering N most recent material
points were investigated using 2-point and errorless 3-point
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Fig. 1. Reflectance (top) and transmittance (bottom) root mean
squared error of results across benchmark set

conditional probability functions on a common benchmark
suite. Accuracy was compared to other approximate methods.
Notably, CoPS2 and CoPS3PO were roughly as accurate as
the atomic mix approximation for N = 0 and Chord Length
Sampling for N = 1. Increasing the number of points remem-
bered monotonically increased the accuracy; at 100 points
remembered, the accuracy was meaningfully improved over
few points remembered but had not yet reached the accuracy
achieved when remembering all points.

In the future, we plan to investigate other memory reduc-
tion techniques in CoPS designed to retain a high degree of
accuracy while improving runtime and memory efficiency as
well as hybrids of new techniques with the recent memory
technique presented here. After evaluating the accuracy of
various limited-memory techniques in 1D, we plan to compare
their runtimes and extend to multi-D.
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TABLE II. Computed CoPSp-N Reflectance and Transmittance Results

(L) | Case | Bench [1] | CoPS2-0 CoPS2-1 CoPS2-2 CoPS2-3 | CoPS2[1] CoPS3[1] CoPS3PO [1]
la | 0.4360(5) | 0.4951(5) 0.3778(5)  0.3894(5) 0.3951(5) | 0.4282(5) 0.4372(5)  0.4368(5)
1b | 0.0850(3) | 0.0196(1) 0.0584(2)  0.0590(2) 0.0594(2) | 0.0747(3) 0.0846(2)  0.0849(3)
lc | 0.4778(5) | 0.4778(5) 0.3694(5) 0.3888(5) 0.3955(5) | 0.4514(5) 0.4785(4)  0.4775(5)
2a | 0.2373(5) | 0.4957(5) 0.1804(4) 0.1913(4) 0.1984(4) | 0.2339(4) 0.2375(4)  0.2375(4)

(Ry | 2b |0.2876(5) | 0.0198(1) 0.2182(4) 0.2187(4) 0.2189(4) | 0.2605(4)  0.2862(5)  0.2865(5)
2¢ | 0.4326(5) | 0.4778(5) 0.2889(5)  0.3157(5)  0.3295(5) | 0.4073(5) 0.4332(5)  0.4332(5)
3a | 0.6904(5) | 0.7861(4) 0.6068(5)  0.6226(5)  0.6307(5) | 0.6825(5)  0.6903(5)  0.6903(5)
3b | 0.0364(2) | 0.00197(4) 0.0242(2) 0.0242(2) 0.0245(2) | 0.0310(2)  0.0360(2)  0.0363(2)
3c | 0.4452(5) | 0.4778(5) 0.3268(5)  0.3508(5)  0.3632(5) | 0.4212(5) 0.4436(5) 0.4447(5)
la | 0.0149(1) | 0.00468(7) 0.0265(2) 0.0239(2)  0.0229(1) | 0.0163(1)  0.0148(1)  0.0149(1)
1b | 0.00167(5) | 0.000008(3) 0.00149(4) 0.00157(4) 0.0015(4) | 0.00163(4) 0.00162(5) 0.00163(4)
Ic | 0.0163(1) | 0.00389(6) 0.0239(2) 0.0225(1)  0.0221(1) | 0.0168(1)  0.0160(1)  0.0159(1)
2a | 0.0980(3) | 0.00468(7) 0.1284(3) 0.1227(3)  0.1185(3) | 0.1002(3)  0.0982(3)  0.0983(3)

(T | 2b | 0.1953(4) | 0.000012(3) 0.1794(4) 0.1794(4) 0.1802(4) | 0.1898(4)  0.1957(3)  0.1958(4)
2¢ | 0.1870(4) | 0.00389(6) 0.1953(4) 0.1973(4) 0.1988(4) | 0.1905(4)  0.1871(4) 0.1870(4)
3a | 0.1639(4) | 0.0668(2) 0.2400(4)  0.2254(4) 0.2172(4) | 0.1723(4) 0.1644(4) 0.1643(4)
3b | 0.0762(3) | 0.000010(3) 0.0760(3) 0.0756(3) 0.0756(3) | 0.0762(3)  0.0763(3)  0.0763(3)
3c | 0.1042(3) | 0.00387(6) 0.1195(3) 0.1176(3) 0.1173(3) | 0.1067(3)  0.1040(3)  0.1039(3)

TABLE III. Reflectance and Transmittance Ensemble Error Metrics of Reproduced Results [1] and Computed CoPSp-N Results

(L) Error AM CLS LRP Alg.C CoPS2 CoPS3 CoPS3PO | CoPS2-0 CoPS2-1 CoPS2-2 CoPS2-3
RMS Egr | 0.631 0.257 0.080 0.035 0.078 0.005 0.002 0.632 0.256 0.229 0.215

(R) | Mean |Eg| | 0.465 0.246 0.069 0.021 0.064 0.003 0.001 0.465 0.245 0.216 0.200
Max |Eg| | 1.088 0.341 0.148 0.087 0.146 0.011 0.004 1.089 0.335 0.334 0.325
RMS Er | 0.894 0.355 0.207 0.087 0.042 0.013 0.012 0.893 0.362 0.288 0.257

(T) | Mean |Eg| | 0.881 0.260 0.139 0.045 0.033 0.008 0.008 0.881 0.267 0.216 0.197
Max |Eg| | 1.000 0.765 0.489 0.239 0.099 0.030 0.026 1.000 0.779 0.610 0.538
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