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; | Motivation

e Fireball characterization

* Validation of numerical
models such as CFD

* Platform for diagnostic
development in a
transient environment

A PETN detonator fireball at 27 ps

VS.

A standard flat flame burner (Holthius
and Associates)
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+ | Background

Detonators:
e Commercial RP-80

* Custom made PETN, PETN/AI, PETN/Ba(NO3)2
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s | Experimental setup

* Narrowband Emission (1)

Broadband Emission
spectroscopy (2)

MHz schlieren (3)

* High speed imaging (4)
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« | High Speed Imaging

* | MHz rate imaging using a Shimadzu high
speed camera perpendicular to the
schlieren axis

* Exposure was set to 200 ns to reduce
overexposure as much as possible while still
capturing sufficient fireball emission

Custom PETN Detonator



- 1 Schlieren

* 1 MHz rate schlieren imaging for gas
phase density gradients

* 640 nm Cavilux Smart laser unit with 10
ns pulses imaged using a Shimadzu high
speed camera Fastcam SA-Z
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. | Schlieren Results

Custom PETN Detonator Custom PETN/AI Detonator



s | Schlieren Results

* Introduction of aluminum
greatly increases density
gradients within the
detonation fireball

* Introduction of barium as a
tracer does not greatly affect
the schlieren measurements

* Aluminized detonator
features particulates
maintaining momentum past
shock front

PETN + Ba

25 ps



o | Side by Side Schlieren and Visible Emission

Custom PETN Detonator, Synced Timing



Narrowband Emission

* Pyrometer designed for measuring
fireball emission at 675 nm, 800
nm, 1450 nm

* 675 nm and 800 nm emission was
collected using Si Photodiodes (2.3
ns rise time) and 1450 nm was
collected using an InGaAs

Photodiode (15 ns rise time) Bandpass F||ters—>l:lPh0tOdIOde
InGaAs \
Photodiode _"" Dichroic Beam
Splitters

Si Photodiode IR



» | Narrowband Emission Results

* Each emission band was normalized to the 675 nm band using a gray body
tungsten source at 2800 K
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13 | Broadband Emission Spectroscopy

* 200 kHz rate spectra imaged using a
Fastcam SA-Z with an exposure of 3.26 s

Fastcam
Fiber SA-Z
* Collected light dispersed to 400-800 nm Optic |
using a transmission grating |

Transmission
Grating




1« | Corrected Broadband Emission Spectroscopy Results

* Molecular emission of
AlO and atomic
emission of barium
observed

* Potential for future
temperature sensitive
measurements as

demonstrated by Lewis
[2,3,4]
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s | Conclusions

* Demonstrated ability to perform simultaneous optical
diagnostics of benchtop-scale post detonation fireballs

* Capability for resolving optical differences for various
fireball compositions

* Potential for future diagnostic efforts such as using
molecular and atomic emission tracers such as barium

* Complementary to laser techniques in development at
Sandia and Purdue
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