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3 Motivation

• Fireball characterization

• Validation of numerical
models such as CFD

• Platform for diagnostic
development in a
transient environment

VS.

A PETN detonator fireball at 27 ps A standard flat flame burner (Holthius

and Associates)



4 Background

Detonators:

• Commercial RP-80

• Custom made PETN, PETN/Al, PETN/Ba(NO3)2
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5 Experimental setup

• Narrowband Emission (I)

• Broadband Emission
spectroscopy (2)

• MHz schlieren (3)

• High speed imaging (4)
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, High Speed Imaging

• I MHz rate imaging using a Shimadzu high
speed camera perpendicular to the
schlieren axis

• Exposure was set to 200 ns to reduce
overexposure as much as possible while still
capturing sufficient fireball emission
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7 Schlieren

• 1 MHz rate schlieren imaging for gas
phase density gradients

• 640 nm Cavilux Smart laser unit with 10
ns pulses imaged using a Shimadzu high
speed camera
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8 Schlieren Results

25 mm l us 25 mm l us
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9 Schlieren Results

• Introduction of aluminum
greatly increases density
gradients within the
detonation fireball

• Introduction of barium as a
tracer does not greatly affect
the schlieren measurements

• Aluminized detonator
features particulates
maintaining momentum past
shock front

5 ps I 0 ps 25 ps



lo Side by Side Schlieren and Visible Emission
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11 Narrowband Emission

• Pyrometer designed for measuring
fireball emission at 675 nm, 800
nm, 1450 nm

• 675 nm and 800 nm emission was
collected using Si Photodiodes (2.3
ns rise time) and 1450 nm was

NM Si
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1 2 I Narrowband Emission Results

• Each emission band was normalized to the 675 nm band using a gray body
tungsten source at 2800 K
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13 Broadband Emission Spectroscopy

• 200 kHz rate spectra imaged using a
Fastcam SA-Z with an exposure of 3.26 ps Fastcam

Fiber SA-Z I
• Collected light dispersed to 400-800 nm Optic 1 

using a transmission grating
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14 I Corrected Broadband Emission Spectroscopy Results

• Molecular emission of
A10 and atomic
emission of barium
observed

• Potential for future
temperature sensitive
measurements as
demonstrated by Lewis
[2,3,4]
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1 5 Conclusions

• Demonstrated ability to perform simultaneous optical
diagnostics of benchtop-scale post detonation fireballs

• Capability for resolving optical differences for various
fireball compositions

• Potential for future diagnostic efforts such as using
molecular and atomic emission tracers such as barium

• Complementary to laser techniques in development at
Sandia and Purdue
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