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Abstract. Future high-performance computing (HPC) platforms increas-
ingly depend on heterogeneous node architectures to meet power and per-
formance requirements. While modern HPC design largely incorporates
GPUs with CPU resources, there is potential to further integrate novel
forms of computing. The ability to leverage efficient, non-conventional
computing technologies would be a fundamentally disruptive develop-
ment in advancing HPC. Neuromorphic computing is such an emerging
technology, which would interest the HPC community, due to its po-
tential for implementing large-scale calculations with an extremely low
power footprint. We will explore the example of mapping the connectome
of the brain to illustrate advantages of using a heterogeneous system that
incorporates neuromorphic hardware.
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1 Overview

In recent years, there has been an increasing trend for high-performance com-
puting (HPC) systems to incorporate multiple classes of processors on individual
HPC boards. Embracing this heterogeneity has been invaluable in moving to-
wards exascale computing, with significant reliance on general purpose graphics
processing units (GPGPUs) to more efficiently implement large-scale problems
that heavily rely on dense linear algebra. Recently, there has been more atten-
tion given to linear algebra accelerators, such as systolic arrays (i.e., Google's
Tensor Processing Unit) to achieve further efficiencies for suitable computations.
Unsurprisingly, this shift in HPC configuration has also expanded the scope of
applications for which HPC is relevant to include many current computationally-
expensive artificial intelligence (AI) tasks such as deep artificial neural networks
(ANNs). Importantly, however, this broadening of HPC components has been
limited to conventional processor approaches. Here, we present a vision for what
we refer to as truly heterogeneous HPC, whereby HPC systems include both con-
ventional components (e.g., CPUs, GPUs, systolic arrays) and non-conventional
components, such as neuromorphic hardware and processing-in-memory (PIM)
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devices. These emerging technologies promise substantial benefits in efficiency,
especially in terms of power requirements, but they also require a distinct ap-
proach to computation. These architectures often can be thought of as extremely
parallel with different trade-offs between precision and speed than are typically
encountered in von Neumann systems. Furthermore, the use-cases for neuromor-
phic hardware continue to evolve. For instance, while the long-term impact of
neuromorphic computing likely lies in future brain-derived algorithms [1]; much
of the recent focus has been on accelerating ANNs [2, 3] and it is increasingly
recognized to be capable for numerical computing applications [4, 5]. It is not
immediately obvious whether neuromorphic approaches are critical for scien-
tific applications that have driven HPC development to date. Since the original
computers, computing technologies have evolved to solve the computationally
intensive components of large physics models and similarly large-scale machine
learning approaches, such as ANNs, have outperformed alternatives bolstered by
GPUs. However, the scientific computing ecosystem is beginning to change. As
data collection begins to outpace theory in fields such as neuroscience, medicine,
and climatology, we increasingly find ourselves in a world where the simulation
of physics models is less important than deriving insight from extremely large
volumes of complex data. To illustrate this shift and how it would drive the
eventual requirements of a truly heterogeneous HPC platform, we work through
a specific scientific example: mapping and interpreting the connectome of the
brain. The connectome example is both salient (the US Government and EU
continue to spend significant funds on it) and representative of an emerging class
of data-intensive scientific endeavors where classical modeling and analytics are
only part of the solution. Within this example, we highlight how incorporating
the scientific exploration of data changes how computing needs to be used and
highlight how a system leveraging the strengths of CPUs, GPUs, accelerators
and emerging technology such as neuromorphic computing will be invaluable
and disruptive for HPC systems.

1.1 Connectomics and Electron Microscopy data

Mapping the connectome of a brain and deriving new understanding of the
underlying neural circuit function requires addressing a number of key challenges.
The technical challenge of scaling electron microscopy (EM) techniques to handle
a volume the size of an entire brain[6, 7] comes with the challenge of analyzing the
massive amounts of associated data. The first reconstruction of the C. elegans
nervous system [8] was performed almost entirely by human-hand, requiring
more than 10 years to map approximately 300 neurons and 7000 connections
between them [9]. For comparison, a Drosophila melanogaster (fruit fly) brain
comprises on the order of 100,000 neurons [10] while a mouse brain is estimated
at 70 million neurons [11]. The raw data for one cubic millimeter of mouse visual
cortex is on the order of 2 petabytes [12]. While advances in high-throughput EM
[12, 13] and automated segmentation and reconstruction algorithms [14] signify
the 'coming of age' of EM, interpreting newly-available, high-resolution whole-
brain connectomes will require overcoming significant computational challenges.
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Fig. 1. The computational efficiency of modern general-purpose processors has hit a
powerwall leading to the search for novel architectures and emerging devices.

As larger volumes from both invertebrate [10, 15-17] and mammalian [12, 18,
19] brains become available with increasingly dense reconstructions and more
complete identification of different cell types and synaptic connections, so will
the need for semi-automated and increasingly sophisticated analysis.

In this paper, we focus on how a heterogeneous platform may be leveraged
to address the computational challenges associated with processing and analysis
of the EM imagery, including segmentation and analysis of the resulting connec-
tome graph. First, emerging technology may be used to accelerate current state-
of-the-art methods for EM imagery analysis. The use of flood-filling networks
for image segmentation and reconstruction [14] of large-volume EM constitutes
state-of-the-art today (e.g. see [16, 17, 20]). While these networks perform with
significantly better accuracy compared to alternative approaches, they are also
computationally expensive. As we will discuss, we believe that some of our ex-
isting approaches to developing for neuromorphic systems may be leveraged to
implement these networks at significantly lower computational cost.

Another challenge for fully realizing the potential of high-throughput EM is
analyzing the connectome to draw meaningful conclusions regarding the orga-
nization and function of neural circuits. Larger-scale connectomes with online
tools for visualization and analysis have only recently become widely available
(for examples, see https://microns-explorer.org [18, 19] and https://neuprint.
janelia.org [21]). Analysis of the associated neural graphs thus far have been
largely limited to statistics describing the input/output connectivity of specific
cell types [10, 19, 22] within individual volumes. Analysis of graphs combined
with functional data [23, 24], or across multiple specimens [25] are less com-
mon but will likely require more sophisticated but semi-automated approaches
as advanced EM technologies facilitate the availability of larger and more de-
tailed connectome graphs. We believe that our approaches to accelerating AI
algorithms on neuromorphic hardware can be extended to accelerate the process
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of identifying meaningful graph motifs contained within these images, thereby
facilitating meaningful interpretations of the data.
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Fig. 2. Mapping the Brain Connectome from 3D EM Structural Data

1.2 Relevance to DOE and HPC

It is worth noting that the recent advances in EM methodologies have continued
to draw the interest of BRAIN Initiative stakeholders, including NIH and NSF,
as well as potential new investments from DOE. Today, most AI algorithms are
designed independently of hardware considerations, with algorithm performance
the dominant criterion for a successful AI approach. As a result, the extreme
computational costs of emerging AI technologies, especially in deep learning,
have led to an explosion of proposed ANN accelerators. These accelerators are
largely conventional CMOS approaches tailored to accelerate the linear algebra
operations that current algorithms prioritize. We recognize that future AI so-
lutions, such as those integrated into high-throughput scientific pipelines, will
leverage both deep learning-based ML approaches and other AI algorithms that
may not be ideally suited for the current generation of deep learning accelera-
tors. Additionally, our proposed co-design strategy is scoped for two additional
observations regarding the scaling of AI performance: 1) the cumulative perfor-
mance of an AI system is critical, not simply the acceleration of any particular
kernel and 2) hardware acceleration cannot come at the expense of algorithm
performance. EM image analysis is an attractive 'test' application space for our
truly heterogeneous system because the field includes two important challenge
problems. First, image processing of 3D electron microscopy data using deep
neural networks already has a well-established approach as its solution (flood-
filling networks). Second, decomposition of deep neural connectivity graphs at
increasingly large scales is still relatively nascent and more effective approaches
have not yet been well-established. Both challenges are in need of approaches to
acceleration that can maintain performance without significantly increasing com-
putational cost. We consider this application space to be a particularly attractive
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domain because its challenges are illustrative of the data analytics pipeline in a
number of scientific research areas and highlight the challenges associated with
both ultra-large scale data and still rapidly-evolving AI and ML techniques.

2 Algorithmic Approach

Many scientific domains, ranging from astrophysics to materials science, are
leveraging large scale data collection and a series of AI analyses to extract sci-
entifically meaningful data. Image processing, or very similar data processing
step, is often the first step of such scientific analysis pipelines, and many of the
successful AI techniques being developed today are impacting this stage. The
convolutional neural network component of this AI pipeline is a well-established
algorithm that has broad applicability, and the process of identifying the com-
putationally expensive parts of these neural networks and tailoring them for
hardware acceleration is an immediately approachable research challenge. The
algorithmic approach will be primarily to identify critical computational ker-
nels that are suitable for neuromorphic hardware implementation that can be
extracted from an overall AI pipeline. Below we describe approaches that can
leverage neuromorphic architectures and enable the acceleration of EM image
analysis with lower computational cost.

2.1 Deep Graph Decomposition

Deep learning methods, as they may be applied to analyze graph structure is still
a developing field, with, for example, the work on graph neural networks (GNN)
in recent years, see [26] for a review. In contrast to more commonly studied so-
cial or information graphs, however, the data extracted from EM image analysis
admits a higher degree of complexity in its structure (e.g. cortical microcircuits,
high fan-in/out, etc.). To remain informative and useful to the researcher, sub-
graph analysis techniques in this area will be important to specify salient neural
circuit motifs, as well as measure their occurrence.

While the decomposition of graphs into subgraphs is typically in the purview
of conventional graph analytics, the scale of connectomes and the requirement for
tailoring answers towards an end-user's needs lends itself to being considered as a
data-driven machine learning problem, furthermore leveraging the advancements
in deep learning. Because the goal will be to decompose the graph structure from
EM data into functionally relevant subgraphs, we refer to the approach as Deep
Graph Decomposition, or DGD.

Supporting this approach are recent developments in graph embedding, such
as graph2vec, structural-rnn, or LINE, which enable effective vector represen-
tations that may be useful in identifying critical, repeating features in graphs
[27-29]. This is analogous to the role of convolution filters used for image pro-
cessing problems or acquiring dictionary elements for sparse coding. The learned
filters in either of these domains are effectively data-driven feature extractors.
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More specific to image processing, these filters may combine and stack into a lay-
ered hierarchy. For our subgraph task, we are specifically interested in patterns
that carry critical information about the composition (i.e. rate of occurrence)
in the larger graph, and we hypothesize that these can be determined either
directly (via inference) or indirectly (via network introspection).

Of note, embedding methods such as DeepWalk, which use random walks
from graph vertices to generate representational signatures, may better leverage
heterogeneous architectures [30]. We know from previous work [5] that neuro-
morphic systems can by highly efficient at computing diffusive random walks
on graphs. By categorizing and counting the types of walks that are observed,
we can extract an approximation of the common connectivity patterns within
a given graph. In contrast with more conventional, state-of-the-art algorithms
for subgraph counting (e.g. ESCAPE [31]), the motivating trade-off is to be
able to extend beyond the limited subgraph sizes (e.g. up to five vertices) of
exact methods. This leads to the scalability and subgraph complexity needed
to analyze EM data, where moreover, there will be expected variability within
equivalence-classes of neural circuit motifs.

2.2 Neuromorphic scaling of 3D Convolutional Neural Networks

Deep learning methods, particularly convolutional neural networks such as used
in EM segmentation, are becoming increasingly common within scientific ex-
perimental workflows. Researchers in several fields have been able to use deep
learning to help shift effort away from time-intensive tasks (e.g. hand-labeling
images) or to help mitigate technical bottlenecks (e.g. when storing large-scale
raw data is prohibitive). In large-scale applications, such as the use of flood-
filling networks to segment neural EM data requires a considerable amount of
compute power usually requiring a heterogeneous CPU/GPU system for high
performance. This compute requirement is made complicated by the inclusion
of 3D convolutional layers — a standard 2D convolution strides a 2D window
(filter) across the x and y dimensions of an image, whereas a 3D convolution
strides a 3D cube across the x, y and z dimensions of a 3D image or a stack of
2D images. These 3D convolutions are well-suited for stacked frames (such as
those found in EM data or video) or other 3D imaging (such as MRI images)
and despite possible acceleration via Fourier methods, these algorithms require
more compute and more memory than the common 2D counterpart.

We can improve the inference performance of data-heavy neural networks by
several orders of magnitude by jointly addressing algorithm and hardware chal-
lenges together. The most straightforward approach to making neural networks
more efficient is to tailor algorithms to require less precision, in both weights
and activation functions, along with hardware capable of benefiting from this
low-precision.

High-performing neural networks traditionally use continuous-valued activa-
tion functions (e.g. rectified linear units) and floating-point precision weights.
However, the high precision afforded by these representations is costly both in
computation and communication. However, to address the challenge of big data
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science applications, such as the aforementioned EM data, the scale of today's
neuromorphic systems is vastly insufficient. For instance, the first layer of the
flood-filling network would likely require over 1 billion neurons, well beyond the
largest neuromorphic platforms available today. Such a scalable system would
require further design trade-offs such as fixed precision weights or limited con-
nectivity. We envision that future large-scale systems as described in Section 3.4
will rise up to these challenges.

3 Hardware Architecture

As digital systems saturate in terms of power efficiency, it is clear that the future
of computing is heterogeneous. With the slowing of Moore's law and the resur-
gence of neural networks, many emerging technologies such as neuromorphic
computing have gotten a new lease of life. Inspired by the brain, neuromorphic
architectures try to leverage properties such as massive parallelism, sparse con-
nectivity and event-driven computing. Neuromorphic engineering was pioneered
by Prof. Carver Mead in the late 1980s to use silicon devices to mimic biology.
These were analog circuits that utilized the sub-threshold dynamics of the CMOS
transistor to emulate biological systems. Today neuromorphic systems have also
come to encompass digital as well as mixed-signal approaches. Recently several
large-scale neuromorphic projects have paved the way to demonstrating problems
at scale on these systems. Spiking neuromorphic hardware fabricated in cutting
edge technology nodes is rapidly progressing to a billion neurons from vendors
such as Intel (Pohoiki Spring/Loihi). Recent developments in non-conventional
devices like nanoscale memristors that can be integrated with CMOS also shows
promising solutions to modeling dense synaptic memory.

Neuromorphic systems are uniquely suited to map and scale graphs because
of parallelism, local connections, and efficiency gains. Conventional architectures
of GPUs/CPUs are not suitable for graph based approaches, with data movement
and updates being a bottleneck. Accelerator approaches can alleviate some of
these issues, however neuromorphic approaches can yield 100x-1000x orders of
magnitude efficiency gains.

3.1 Analog Neuromorphic Computing

Recently researchers at Sandia have shown that analog-in memory computations
have a fundamental scaling advantage over digital memories. Analog crossbars
have been projected to reduce energy and latency by three orders of magnitude
compared to an optimized digital Application Specific Integrated Circuit (ASIC)
[32]. Different classes of devices including TaOx Resitive RAM(ReRAM) and
conventional floating-gate SONOS devices show promise. The analog ReRAM
shows the most promise when compared to digital SRAM based ASIC with bet-
ter performance when it came to area, energy and latency [32]. However, the
algorithms used to train and learn on these devices are not optimized for the
behavior of these devices. In-memory analog kernels are subject to analog noise
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and variability. The inherent variability in these devices can be leveraged by in-
corporating the hardware characteristics as features while training. Furthermore,
these systems tend to have lower bit-precision. Co-designing multi-precision al-
gorithms for these devices and integration with conventional CMOS approaches
will be crucial to unleashing their potential.

3.2 Digital Neuromorphic Computing

Developments in large-scale digital neuromorphic chips have shown the promise
of these systems at scale. University of Manchester's SpiNNaker chip (130nm
CMOS) represents a more configurable approach to neuromorphic cores with pro-
grammable ARM cores and an interconnect optimized for spiking [33]. This lends
the platforms flexible to different neuron and synapse models. IBM's TrueNorth
chip was the first neuromorphic chip with a million neurons [34]. Intel's Loihi
is fabricated in 14nm FinFET technology with a 128 neuromorphic cores and
with an integrated learning engine on-chip [35]. The SpiNNaker and Loihi ar-
chitectures lend themselves well to scaling and are front runners in the race to
achieving billion neurons with a million ARM core SpiNNaker system and Intel's
Poihiki Springs at 100 million neurons [36]. Plans on building the next gener-
ation of SpiNNaker2 chips in 22nm FDX CMOS are currently underway [37].
Both systems support learning on-chip, are configurable and have a dedicated
software stack to program the hardware. These systems also support research
communities which is key to the adoption of such emerging technologies.

A recent paper compared simulation of a full scale cortical column simulated
at speed 0.5x of real-time using NVIDIA Tesla V100 accelerator, and showed
it had better performance than a CPU cluster and SpiNNaker neuromorphic
system. However, the researchers conceded that through software improvements
alone SpiNNaker could achieve 0.11µJoule/synaptic event [38]. Besides, the cur-
rent billion neuron SpiNNaker chips were fabricated in 130nm CMOS technology
node and scaling down to 22nm(as planned) would considerably improve per-
formance. Such large scale demonstrations of neuromorphic supercomputers will
further demonstrate the possibilities for not only brain-inspired simulation but
their applicability to other scientific domains.

3.3 Integrating Neuromorphic Computing with conventional HPC:
Optimizing System Architecture

The fundamental principle guiding architecture design is to match the structure
of the physical machine to the structure of the algorithm. This leads us to focus
on two secondary principles: heterogeneity and information distance. Hetero-
geneity — No single machine structure will best fit every algorithm, even within
the specific domain of neural-inspired algorithms. The mix of available core types
still represents a commitment to a particular range of algorithms This can be
addressed by carefully planning for the average case and then idling some of the
system. Alternately, different installation could choose different combinations of
`plug-and-play' hardware modules to target a more specific set of algorithms.
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Information Distance — Data movement is the key limit in modern systems.
Individual transistors are already extremely efficient, requiring on the order of
le-17 Joules of energy to switch, not far above the thermal noise limit of .'-:-i
40kbT=2e-19 J. However, communication is orders of magnitude costlier, re-
quiring around 1 pJ to move data across a chip. The cost of computation is
dominated by Joules/(bit*meter). That is, energy cost scales with the distance
information must move. Consequently, the focus would be to use neuromorphic
accelerator kernels that process in memory and minimize data movement.

A full system design will consist of the following levels:

— Core: A single processing block. This may be either analog or digital.
— Package: A collection of cores assembled on a single die, or perhaps a

vertically-integrated stack of dies. The package may be heterogeneous, con-
taining several different types of cores, and perhaps mixing digital with ana-
log cores. A key question is how heterogeneous cores communicate with each
other. We make the simplifying assumption that cores always connect to a
digital network and follow a standard protocol. This protocol will be designed
to scale up to system and cluster levels.
System: Neuromorphic packages may be integrated with conventional com-
ponents (GPUs, CPUs, memory banks) on a compute node. Each package
could have dual-ported memory, such that it can be accessed on the main
system bus, or it may be accessed solely through the neuromorphic network
protocol, in which case a bridge device will appear to the rest of the system.
Cluster: Specifies how to scale-up systems which include neuromorphic com-
ponents to work efficiently at the petascale (machines that occupy an entire
warehouse or data-center). Interesting questions include whether there is any
impact on the design of cluster system due to the presence of neuromorphic
components. For example, will it move event packets over the main network
backbone, or will there be a separate neuromorphic network fabric?

To achieve this objective, high-level architecture simulations will be needed
to search the design space for good matches to specific algorithms. Tools that
optimize the system architecture to minimize costs such as energy, area, and time
will be key. This is analogous to the SWaP (size, weight, and power) constraints
often cited in neuromorphic applications, but here we are less concerned about
spatial restrictions and more concerned with throughput. Developing tools that
help evaluate mixed-precision, highly heterogeneous architectures incorporating
neuromorphic components will be key to enable adoption of these novel neuro-
morphic processors. We wil discuss co-design algorithms like the Joint Neural
Architecture and Hardware Search in Section 4.2 as well as analytical modeling
tools in Section 4.1.

3.4 Novel approaches

Novel approaches to build three-dimensional architectures and wafer-scale inte-
grated circuits can further disrupt. Early demonstration of 3D memory has been
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promising and integrating it densely with CMOS processing units will yield fur-
ther advantages. Stanford's Nano-Engineered Computing Systems Technology
(N3XT) program offer insight into 3D architectures via their simulation frame-
work for highly integrated ultradense (monolithic) 3-D integration of thin layers
of logic and memory devices that are fabricated at low temperature[39, 40].

Wafer-scale processors are an approach to dramatically reduce communica-
tion overhead for large-scale systems but are very challenging owing to thermal
issues as well as process yield issue. BrainScaleS is an example of a wafer-scale
neuromorphic system with analog circuits to emulate point neurons and digital
communication (digital interconnect network) fabricated [41]. Current wafer-
scale accelerator chip like Cerebras demonstrate that wafer-scale approaches are
feasible at lower technology nodes with a lot of innovation in fabrication and
packing of these system.

Stanford% n3XT

architecture

Ultra-dense
vertical connections

Computing logic

3D Monolithically Cerebras

Integrated Nanofabric Wafer Scale Engine

(a) (b)

Fig. 3. Novel Approaches in development (a) 3D memory and compute architecture.
Breakthroughs in CMOL (CMOS + Molecular nanodevices) allow us to build for
Terabyte-density memory cells. Image reproduced from [40]. (b) Wafer-Scale Systems
such as Cerebras' Wafer Scale Engine promise high bandwidth and low latency.

4 Co-Design of Heterogeneous Architectures

While algorithm-hardware co-design is critical for achieving high performance
and energy efficiency, there is a practical challenge in linking design at these
different scales. In terms of hardware development, a bottom-up approach is
typically followed, whereby architectural designs are assumed and potentially-
accelerated algorithms are sought after the fact. Similarly, because most real-
world AI research focuses on task performance, the implications of algorithm
design choice on potential hardware acceleration are often considered once an
approach is set. To achieve the overall objective, both algorithmic and hardware
optimizations need to be incorporated into a design.
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Fig. 4. Co-design of Algorithms and Architectures is critical for heterogeneous HPC
systems.

4.1 Analytical Modeling

To meet the computational demands of ML workloads, exploration of accelera-
tor designs has introduced a new 'Golden Age in Computer Architecture' [42].
Enabling this research, a spectrum of computer architecture design tools have
been emerging to facilitate research into these new computational architectures.
This ranges from analytical assessments to high fidelity simulations. The ana-
lytical approaches assess the steps which must occur for a given neural network
to be computed given the architectural choices of a target platform. This in-
cludes calculating how the computation must be decomposed to pass through
the computational units, how many memory accesses are required for retriev-
ing input values and weights as well as storing results, and how communication
structures facilitate these data movements. These counts are then multiplied
by appropriate costs attributed to a targeted node technology (e.g. how much
energy a multiplication or memory access requires). Effectively, this forecasts
how a neural network maps onto a target architecture. Example analytical ap-
proaches include Modeling Accelerator Efficiency via Spatio-Temporal Resource
Occupancy (MAESTRO) and Eyeriss Eyexam [43, 44]. Other analytical tools
focus upon assessing properties of a hardware architecture such as the utiliza-
tion of resources and identifying what is an optimal dataflow strategy for the
architecture. An example is the Timeloop tool [45]. More accurate, but slower
tools offer cycle accurate simulation capabilities. This increased fidelity often
incorporates component models to attain the cycle accurate analysis and some-
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times couples with executable hardware description level simulations. Examples
include Systolic CNN AcceLErator Simulator (SCALE Sim) and Nvidia Deep
Learning Accelerator (NVDLA) [46, 47]. The above techniques have largely fo-
cused upon ML accelerator approaches such as systolic arrays and CNN ac-
celerators. Additional interest is in how emerging neuromorphic architectures
may also be modeled. For example, NeMo utilizes the Rensselaer's optimistic
simulation system (ROSS) discrete event simulation tool to provide a functional
simulation of the IBM TrueNorth spiking neuromorphic architecture [48]. Other
capabilities seek to account for the performance of emerging device technologies
such as CrossSim and PUMA [32, 49]. Effectively, this spectrum of analytical
modeling capabilities help enable co-design and the assessment of the impact
of incorporating emerging ML accelerator and neuromorphic architectures into
truly heterogeneous HPC systems.

4.2 Joint Neural Hardware and Architecture Search

Currently, the deep learning community increasingly leverages systematic pa-
rameter exploration of the algorithm space, but it generally does not explicitly
consider the interaction of algorithms with its hardware implementation. Hy-
perparameter optimization techniques are often used to systematically explore
sets of parameters — such as learning rates, kernel widths, and layer sizes — to
help tune neural network structures to optimize algorithm performance in new
domains. Hardware constraints can also be viewed as hyperparameters that can
be optimized for.

4.3 Learning Algorithms for Neuromorphic Hardware

In contrast to standard artificial neural network (ANN) training methods, neu-
romorphic hardware increasingly utilizes brain-inspired, local-learning rules to
update weights between nodes. Standard ANNs implemented on CPUs are of-
ten trained using extended versions of gradient decent (Rumelhart et al., 1986)
learning algorithms Although these ANNs have proven quite effective at specific
tasks, even surpassing human performance on some, such as image processing
(Russakovsky, 2015), natural language processing (LeCun et al, 2015), and play-
ing games (Minh et al. 2015; Silver et al. 2016), there are drawbacks to these
networks. Weight adjustments require both a forward and a backpropagation
pass through the entire network. This makes them computationally expensive
to train. They require enormous amounts of labeled data for training and they
can be quite rigid and fail in unexpected and catastrophic ways (Eykholt et al,
2018). Many, techniques have been developed to address these problems, how-
ever, resolutions only treat the symptoms, not underlying issues.

The ability of biological brains to quickly synthesize, process, and act on
large or small amounts of unlabeled data, while consuming very small amounts
of power, have long inspired scientists and engineers from all fields. Brains use
a different approach for learning. In local learning, also referred to as Hebbian
learning (Hebb, 1949) or spike time dependent plasticity (STDP; Caporale and
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Dan, 2008) in biology, the weights are adjusted between the pre and post synaptic
neurons based on their activity. If a pre synaptic neuron fires before a post
synaptic neuron, the weight is strengthened. If post fires before pre, the strength
is weakened. Although there are feedback signals in the brain, it is unlikely there
is an error signal backpropagated though the network. Instead, it appears the
brain uses correlated activity to learn patterns in mostly unlabeled data.

Local learning may have substantial computational benefits. First, it enables
learning with spikes without contrived methods to estimate gradients. Second,
it is intrinsically parallel; learning does not need a signal to be forward and then
backpropagated though a network. Third, it is relatively unsupervised; weights
are strengthened via correlated activity, not, via a backpropagated error signal.
How to effectively utilize local learning in deep networks is an active research
topic in neuroscience and computer science. The realization of local learning will
likely unleash the next generation of adaptive, low-power, deep neural networks;
neuromorphic hardware is ready to capitalize on these new algorithms.

Current HPC

Accelerator

Cores

Future Extremely

Heterogeneous HPC

System Bus

Towards Truly Hete ogeneous Systems

Neuromorphic

Fig. 5. Future of Heterogeneous computing

5 Future of HPC: Truly Heterogeneous Architectures

The low cost of development, fabrication and testing dictated the development
of synchronous digital approaches so far. But, with the very high development
and fabrication cost of sub-lOnm CMOS circuits, the trend in the industry is to
move towards more specialized hardware as opposed to general-purpose proces-
sors. This is truly a 'Golden Age for Computer Architecture', with innovation
required from devices to architectures. But with AI/ML algorithms as com-
pelling use cases for these architectures, co-design of hardware and algorithms
will be crucial. The future of HPC is heterogeneous and committing to a truly
heterogeneous approach has the potential to fundamentally change the role of
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computing in science. We discussed the example of brain connectomics using

serial electron microscopy (EM) to construct the ̀ connectome' (i.e., the graph of

neurons and connections between them) of progressively larger volumes of brain

tissue. Producing terabytes of data per day, image analysis of EM data already

demands an HPC approach. However, the ultimate goal of EM of the brain is to

extract computational understanding of its structure in order to advance neu-

roscience. Neuromorphic technologies, specifically, provide both low-power and

configurable acceleration of such challenging AI algorithms If designed into a

heterogeneous system with other accelerators and conventional computing plat-

forms, this technology has the potential to augment the capabilities of traditional

HPC platforms. We described the strategies to integrate neuromorphic accelera-

tors to design highly heterogeneous HPC platforms to enable massively parallel

computation.
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