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ABSTRACT

Deep learning image classification and object detection models are widely used to identify and triage
images for additional human review. Current open source licensed and commercial deep learning
algorithms for understanding image content focus on commonly known items — plants, animals,
buildings, sports equipment, etc. For many applications, these common set of classes may be suitable.
However, multiple efforts within the nuclear nonproliferation community currently focus on applications
of these algorithms for international safeguards to support the review of surveillance images, open source
images, and images within an existing internal data repository. For safeguards applications, models must
be fine-tuned to recognize the specific characteristics of relevant objects or classes. Research is ongoing
to try to limit the numbers of images required to fine-tune these models, but typically several thousand
examples of a single class are needed. Curating a dataset of this magnitude poses several challenges for
international safeguards: 1) proliferation-relevant images may be rare due to their sensitivity or the
limited availability of a technology; 2) creating relevant images through real-world staging is costly and
introduces biases into the resulting model; and 3) expert-labeling is expensive, time consuming, and prone
to error and dissent. To address these challenges, we are generating high-quality, three-dimensional
computer graphic models which we use to render large numbers of images with high-variance lighting,
background, perspective, and material properties that can be used to train deep learning models. In this
paper, we will discuss our research goals, our experimental plan, and our results to-date using virtual,
rendered images to train deep learning object detection models to recognize real-world images.

INTRODUCTION

The review of visual information is a significant aspect of international nuclear safeguards verification
conducted by the International Atomic Energy Agency (IAEA). From the collection of open source
multimedia data and satellite imagery to review of surveillance camera data and examination of seals for
evidence of tamper, visual information abounds. Many safeguards activities that require visual inspection
face an increase in data availability that out-paces the human ability for review. Consequently, the ITAEA
is considering computer vision algorithms to aid safeguards inspectors and analysts.

Computer vision collectively refers to a set of tasks that include determining what objects are in an image,
where they are, how they relate to the background, and the meaning of the image as a whole. Computer
vision has a long history in computing but has gained significant attention recently due to improvements
in performance made possible by deep learning, large labeled datasets, and inexpensive computation. Two
of the most widely known computer vision tasks are image classification and object detection, where
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image classification predicts which of a finite set of labels best describe an entire image (Figure 1, left),
while object detection labels multiple regions within an image, which are identified by bounding boxes or
masks (Figure 1, right).
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Figure 1: Image classification (left) versus object detection (right) using Google Cloud Vision API. Image
credit: Jonathan Brennan, via Flicker. Image number 3635530311, 06/12/2009.

While deep learning approaches to computer vision have had impacts in many domains including
medicine (Esteva et al. 2017; Antony et al. 2016), commerce (Kumar 2019), and self-driving cars
(Bojarski et al. 2016), their use for international nuclear safeguards is still exploratory. An important
bottleneck is that deep learning models can require thousands to millions of labeled observations for
training, which requires considerable human expert time and is subject to human error and disagreement.
Further, some safeguards applications lack sufficient training data due to the sensitivity of the objects to
be detected, commercial proprietary concerns, or historical rarity of the objects in question. In addition,
since deep learning computer vision models learn explicitly from existing examples, they may not
recognize novel designs, configurations, proportions, or materials that are within the possibility of physics
but not represented in the training data.

We hypothesize that synthetic images, generated from three-dimensional CAD models of an object of
interest can be used during training to overcome these problems. Training images generated in this
manner can be parameterized to produce an unlimited variety of designs, materials, and environments,
and the ground truth in synthetic images can be explicit and unambiguous by-construction. Recent
research on this topic includes the level of realism needed in the synthetic images (Tremblay et al. 2018),
the integration of large real-world data sets with synthetic data (Ekbatani et al. 2017), and the use of
synthetic images for classes which approximate common objects already in pre-trained models
(Rahnemoonfar and Sheppard 2017). Our goal is to explore how synthetic images could be used to reduce
— or ultimately eliminate — the requirement for real-world images during training,

SYNTHETIC IMAGE GENERATION

For our experiments we needed a nuclear-fuel-cycle-relevant subject that wasn’t included in common
image datasets such as ImageNet (Stanford Vision Lab 2016) or Common Objects in Context (Lin et al.
2014), but for which we could obtain a reasonable number of real-world images for model validation.
Based on these criteria, we chose to model remote manipulator arms, specifically the master-side
controllers which a human operator would use (rather than the robotic arms within hot cells) such as those
used to separate plutonium isotopes.

We collected 220 images of manipulators from open sources (Figure 2), and 191 distractor images of
related environments such as spent fuel pools, lab space, and industrial equipment. A subset of the images



were graciously provided by colleagues at Lawrence Livermore National Laboratory working on a
nonproliferation and deep learning strategic initiative.?

Figure 2: Real-world image of remote manipulator arm. lage credit: Savannah River National
Laboratory via Twitter: https.//twitter.com/srnlab/status/983767392265306112

We identified eight visually distinct designs of manipulator arm and selected one of the more common
designs to model: a long, telescoping tube with a single articulation point at the wall attachment and
another at the operator handle. Based on images of this design, we constructed a parameterized three-
dimensional model (Figure 3) using SideFX Houdini,® a popular procedural modeling and rendering tool
used widely in the visual effects and gaming industries. By sampling from the parameters of the model,
we could generate an unlimited number of poses and configurations. We used similar random sampling to
generate a random camera angle for each image to be generated.

Figure 3: 3D manipulator model (left) with parameters (right).

Finally, to provide backgrounds combined with realistic lighting for the synthetic images, we sampled at
random from a collection of 33 panoramic high dynamic range images depicting real world industrial
environments such as a boiler room (Figure 4), machine shop, and pump house. Because the panoramic
images depict full, 360-degree environments, they produce plausible backdrops for any configuration of
randomly chosen camera angles.

2 https://www.lInl.gov/news/researchers-developing-deep-learning-system-advance-nuclear-nonproliferation-

analysis
3 https://www.sidefx.com/products/houdini/




Figure 4. Sample panoramic high dynamic range image used as a synthetic backdrop.

While many real-world images of remote manipulator arms are associated with an iconic glow from the
shielded hot cell (Figure 2), we opted not to generate hot cells in hopes that models trained using our data
could support identification of manipulator arms outside of operational environments, such as shipment
containers or prior to installation at a facility. We generated one thousand synthetic images of remote
manipulator arms with the single-tube design, with varying manipulator pose, camera position, and choice
of background and lighting (Figure 5). In addition, we generated one thousand background-only images,
to act as distractors. All images were rendered at a resolution of 720 x 720 pixels using the Redshift*
render engine.

Figure 5: Sample synthetic manipulator arm image.

BASELINE EXPERIMENTS: DATA AND MODEL VALIDATION

After preliminary experimentation with object detection models, we decided to focus on testing our
synthetic data using image classification, with which we have greater familiarity. All of our experiments
were conducted using a ResNet-50 image classification model (He et al. 2016), pretrained on ImageNet,
and provided by the torchvision.models package included with PyTorch.’ Since we were training models
to detect a single class (“manipulators™), we replaced the final 1000-output fully connected layer in each
model, substituting a 1-output fully connected layer with sigmoid activation function. This allowed us to
use a value of zero as the ground truth for images without manipulators, and one for images with
manipulators, treating the model’s output predictions as confidence levels. For all of our experiments, we

4 https://www.redshift3d.com
5 https://pytorch.org/docs/stable/torchvision/models.html#classification



used a value of 0.5 as the output manipulator detection threshold for purposes of calculating performance
metrics.

For these baseline experiments, we wanted to validate that we had enough real-world data and enough
synthetic data for training models generally, that our model was architecturally sound, and identify a
baseline for later results. To test this, we trained two sets of models: one trained and tested exclusively on
real-world data, and the other trained and tested exclusively on synthetic data.

First, we fine-tuned the ResNet-50 model for 500 epochs using our 411 real-world images. We used 5x2
cross validation - holding back 20% of our training data for validation - resulting in an average test
accuracy of 86% (Figure 6).
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Figure 6. Average loss and accuracy training and testing using only real-world images with 5x2 cross
validation.

We then performed a similar experiment exclusively using our 2000 synthetic images, resulting in cross
validated test accuracy of 90% (Figure 7). The higher performance in this case was expected, due to the
larger number of synthetic images. Note however that the validation loss in Figure 7 hits a low point
around epoch 150 and increases thereafter, suggesting that the synthetic data was overfit, a pattern we will
see again in later experiments.

Of course, neither of these experiments addressed our target of training using synthetic data to make
predictions on real world images, but these results gave us confidence that our real-world and synthetic
data sets were large enough for the fine-tuning process.
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Figure 7: Average loss and accuracy training and testing using only synthetic images with 5x2 cross
validation.

IMAGE BACKGROUND EXPERIMENTS

Once we had determined that we had sufficient data to fine-tune the models, the next step was to test the
performance of models trained on synthetic data only and tested on real-world data. Ideally, the
performance of the models trained using synthetic data would approach the performance of the models
trained on real-world data.

Since the training and test sets were fixed in this case, 5x2 cross validation didn’t make sense. Despite
this, we used a random 20% of our synthetic data for validation, repeating each experiment ten times and
averaging the results to avoid misleading results from random sampling. The results can be seen in Figure
8.
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Figure 8: Average performance of synthetic training data with real test data, for ten models.

Here, our test accuracy is discouragingly low: around 55%, only slightly better than random.
Interestingly, the test loss in Figure 8, highlighted in red, does decrease for the first ten epochs, meaning
that training with synthetic data does provide some benefit early in the training process; however, the
steadily increasing test loss in later epochs suggests the model has become overfit.



This led us to speculate that our synthetic data did not contain enough variety, compared to the real data.
As a simple way to introduce additional variance, we re-rendered our 2000 synthetic images, but
substituted randomly-selected backgrounds from our 191 real-world distractor images instead of our 33
panoramic HDR images. Because the real-world images weren’t panoramic, they were unlikely to ever
match our randomly chosen camera angles, but our hypothesis was that the benefit of the additional
variance would outweigh the decrease in realism. The results of re-running the experiment with this
hybrid synthetic-foregrounds-real-backgrounds dataset can be seen in Figure 9.
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Figure 9: Average performance of synthetic-foreground + real-background training data, ten models.

Surprisingly, the addition of real background images to the synthetic manipulator images further reduces
performance, to effectively random. Further, note that the test loss curve never decreases, suggesting that
the hybrid dataset is of zero value when training to make predictions on real images.

REAL-SYNTHETIC RATIO EXPERIMENTS

Although our initial set of experiments was disappointing, we wanted to test the hypothesis that our
synthetic data might be able to improve training outcomes when supplementing real world data rather
than replacing it. To test this, we conducted a second round of experiments where we used a combination
of real world and our (original, panoramic background) synthetic images to train classification models
while steadily reducing the number of real-world images used for training. We compared the performance
of these models against their real-world-only counterparts, to see whether the synthetic data improved
performance. Note that the plots that follow show the minimum, average, and maximum values for loss
and accuracy.

Figure 10 illustrates our first iteration, comparing the test loss and accuracy when training with 50% (205
images) of the available real-world data, versus 50% real-world images plus 100% (2000 images) of the
synthetic data. As can be seen on the right side of the figure, the synthetic data provides an early boost in
performance before converging to roughly the same performance (79% accuracy) as the real-world-data-
only models.
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Figure 10: Real-only versus real+synthetic test performance averaged across ten models.

In Figure 11, the number of real-world images is decreased to 12.5% of the available data (51 images).
Here, we see a more dramatic improvement in performance from the real+synthetic data. Interestingly,
the variance in the real+synthetic results are much lower than the real-only results, which may be of
value even if the results eventually converge in later epochs. The test loss for the real+synthetic data
demonstrates the same early-dip behavior as in prior experiments.
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Figure 11: Real-only versus real+synthetic test performance averaged across ten models.

Finally, we decreased the number of real-world images is decreased to roughly 3% of the available data
(12 images). Unsurprisingly, the performance of the models at this point is very similar to that of the
earlier no-real-world training data experiment, although the variance of the real+synthetic accuracy is
much better than real-world data alone as illustrated in Figure 12.
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Figure 12: Real-only versus real+synthetic test performance averaged across ten models.

CONCLUSIONS
Although our proof-of-concept results are extremely preliminary, they do point to several interesting
conclusions:

e From our results comparing panoramic to flat backgrounds, we speculate that the flat
backgrounds led to lower performance because they rarely aligned with the randomly chosen
synthetic camera angle. This suggests that realism may be more important than we originally
imagined.

e  QOur synthetic data led to useful loss reduction for the real-world prediction task in early epochs,
before diverging. This suggests that the distribution of our synthetic data needs to match the
distribution of our real-world data more closely, again implying that more realism is better.

e Synthetic data in combination with real world data was useful when real world data was limited,
and decreased variance in test accuracy even when there was no improvement in mean accuracy.
This suggests that synthetic data could be useful for decreasing uncertainty even when sufficient
real-world data is available (perhaps by training models on unlikely scenarios).

FUTURE WORK

Significant research remains to be done on the use of synthetic images to train object detection and
classification algorithms for international safeguards. There are many unexplored avenues remaining in
this work, such as the effect of different materials (paint, metal, plastic) on the synthetic models,
including aging materials (such as rusty metal). We also plan to develop additional 3D models for the
other manipulator designs appearing in our real-world data, and explore stratified training focusing on
specific models of manipulator. The unusual results from our studies of different backgrounds suggest
that they may play a larger role in performance than we originally imagined.

Assuming that we are able to improve the efficacy of our synthetic training data, additional experiments
will be needed to determine whether synthetic imagery can generalize to other computer vision tasks such
as object detection.
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