



ICNMM



SHTC



FEDSM

VIRTUAL CONFERENCE  
JULY 13-15, 2020  
SAND2020-6789C

# A Discrete Element Approach to Rectified Bubble Motion

Mark Ferraro, Timothy Koehler, Scott Roberts, Benjamin  
Halls, Dayna Obenauf, and John Torczynski

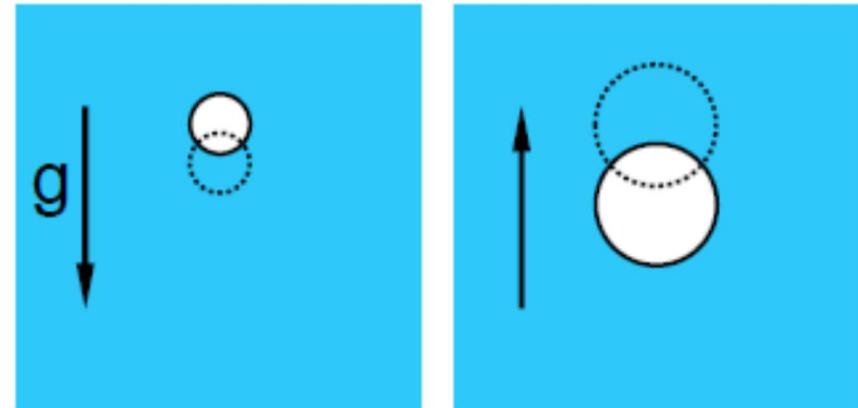


Virtual Presentation Recorded By: Mark Ferraro, PhD

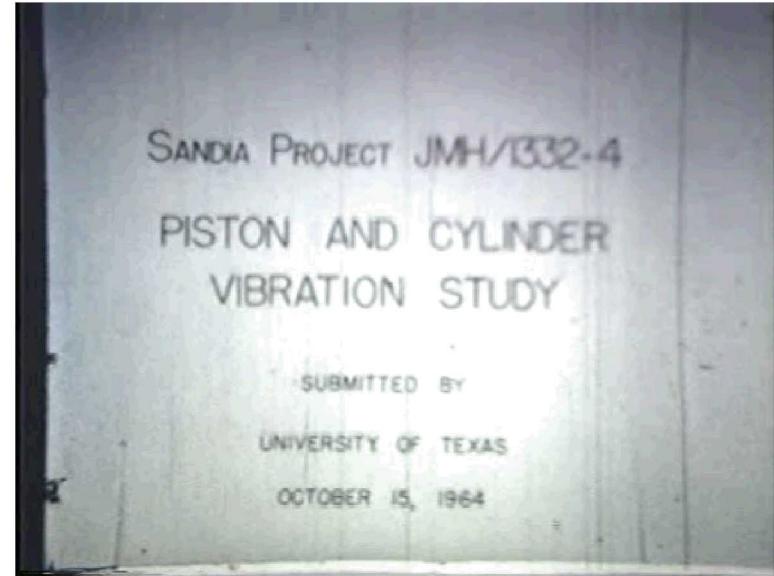
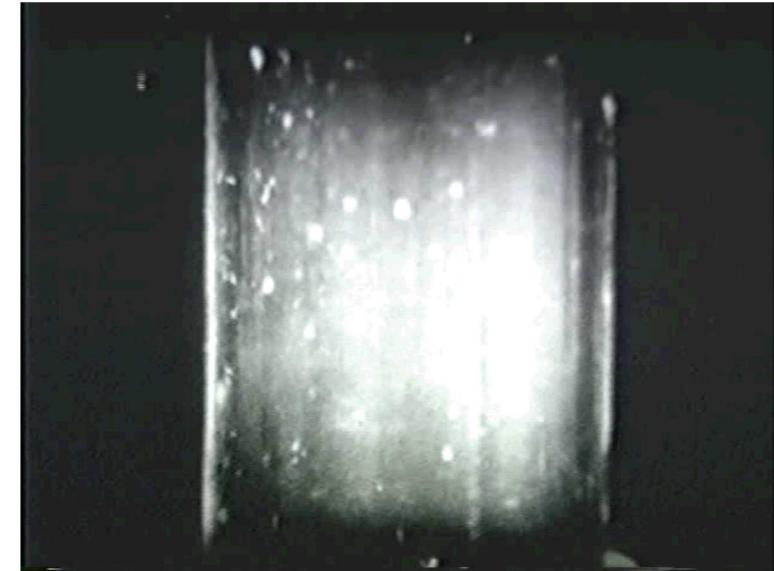
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

## 2 Rectified Bubble Motion

- With vertical orientation, a counterintuitive result can occur
- Oscillations can be modeled as an alternating gravity field
- Asymmetry in upward and downward movement can push the bubble against gravity



$$g = g_0 + x_0 \omega^2 \cos \omega t$$

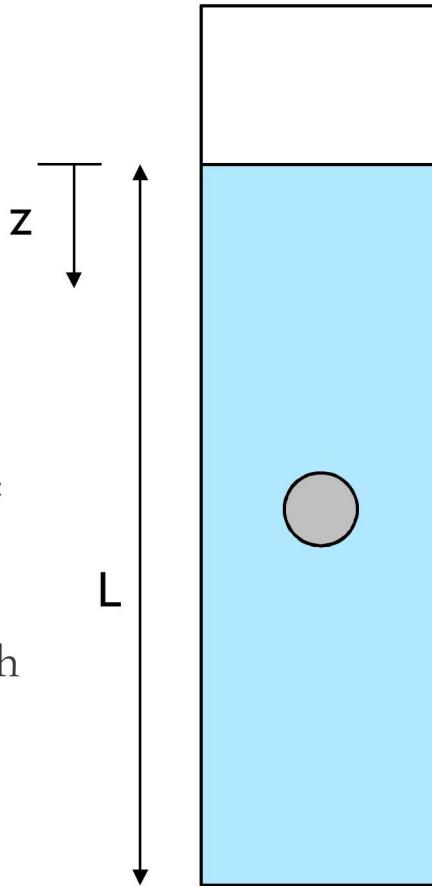


UT-Austin, 1964

This behavior can be seen through experiment, though predictive modeling capabilities are still needed

# The Model

- Simulation performed in LAMMPS
  - Assumption – Spherical bubbles of variable volume
- First look at a single bubble submerged in liquid with a single free surface above
- Pressure field will determine both force on the bubble and volume of the bubble (assuming ideal, isothermal)



$$\text{Pressure Force} = F = -V \frac{\partial P}{\partial z}$$

$$\text{Buoyancy Force} = F = \rho g \frac{4}{3} \pi R^3$$

$$\text{Drag Force} = F = -4\pi\mu R \frac{\partial z}{\partial t}$$

| Parameter    | Value (unit)          | Parameter | Value (unit)          |
|--------------|-----------------------|-----------|-----------------------|
| $\rho_L$     | 950 kg/m <sup>3</sup> | $\rho_G$  | 1.2 kg/m <sup>3</sup> |
| $g$          | 9.81 m/s <sup>2</sup> | $c_G$     | 331 m/s               |
| $L$          | 0.1 m                 | $c_L$     | 1450 m/s              |
| $D_{bubble}$ | 1 mm                  | $\mu$     | 0.02 Pa · s           |

# Single Bubble – Video Comparison

Frequency Range: 200Hz

Amplitude Range (n): 5-30G

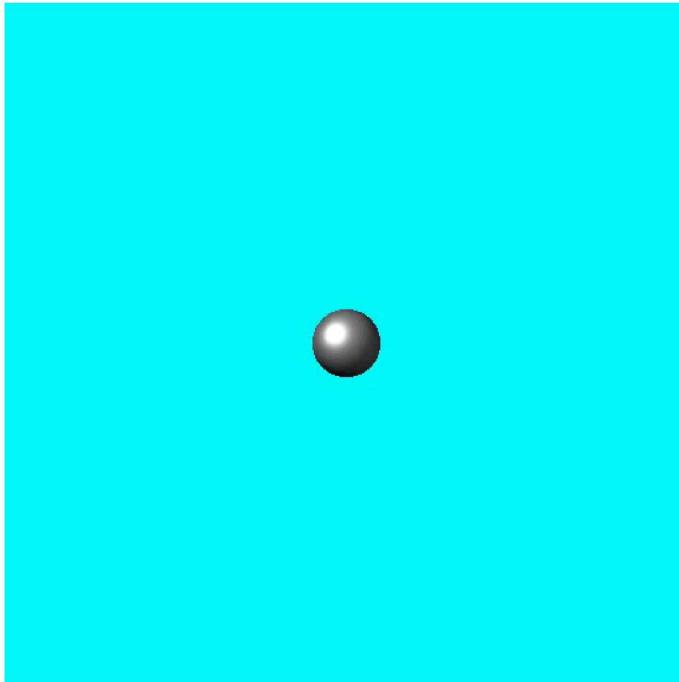
Bubble Diameter: 1mm

Column Height: 0.1m (~4")

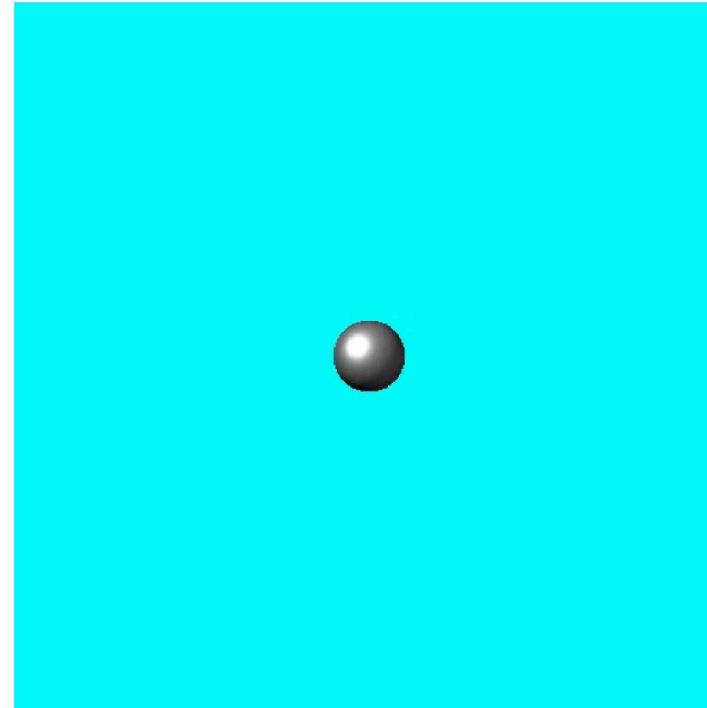
Forces: Bjerknes, Buoyancy, Stokes Drag

Bubble starts halfway down the column

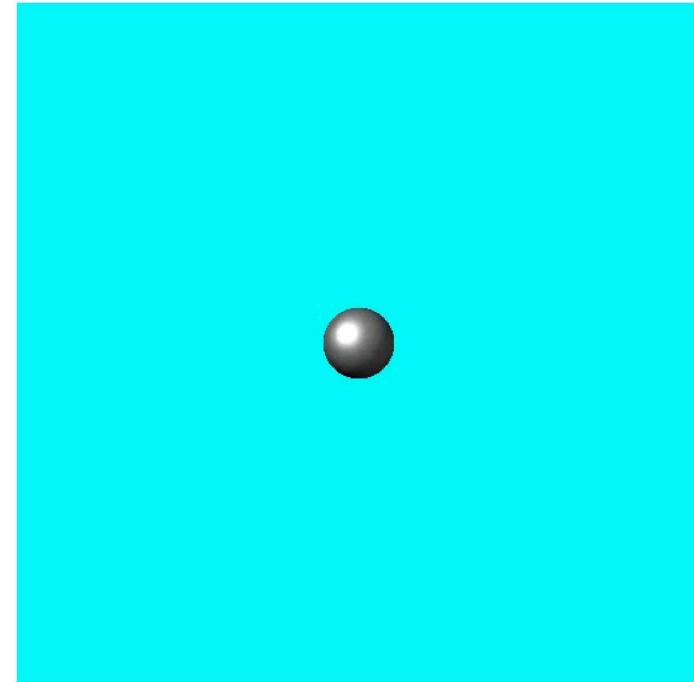
$n = 0G$



$n = 10G$



$n = 30G$



Bubble volume oscillates depending on local Pressure, assume bubbles are not coalescing and follow isothermal, ideal gas behavior

# Single Bubble – Parametric Study

Frequency Range: 50-250Hz

Amplitude Range: 5-30G

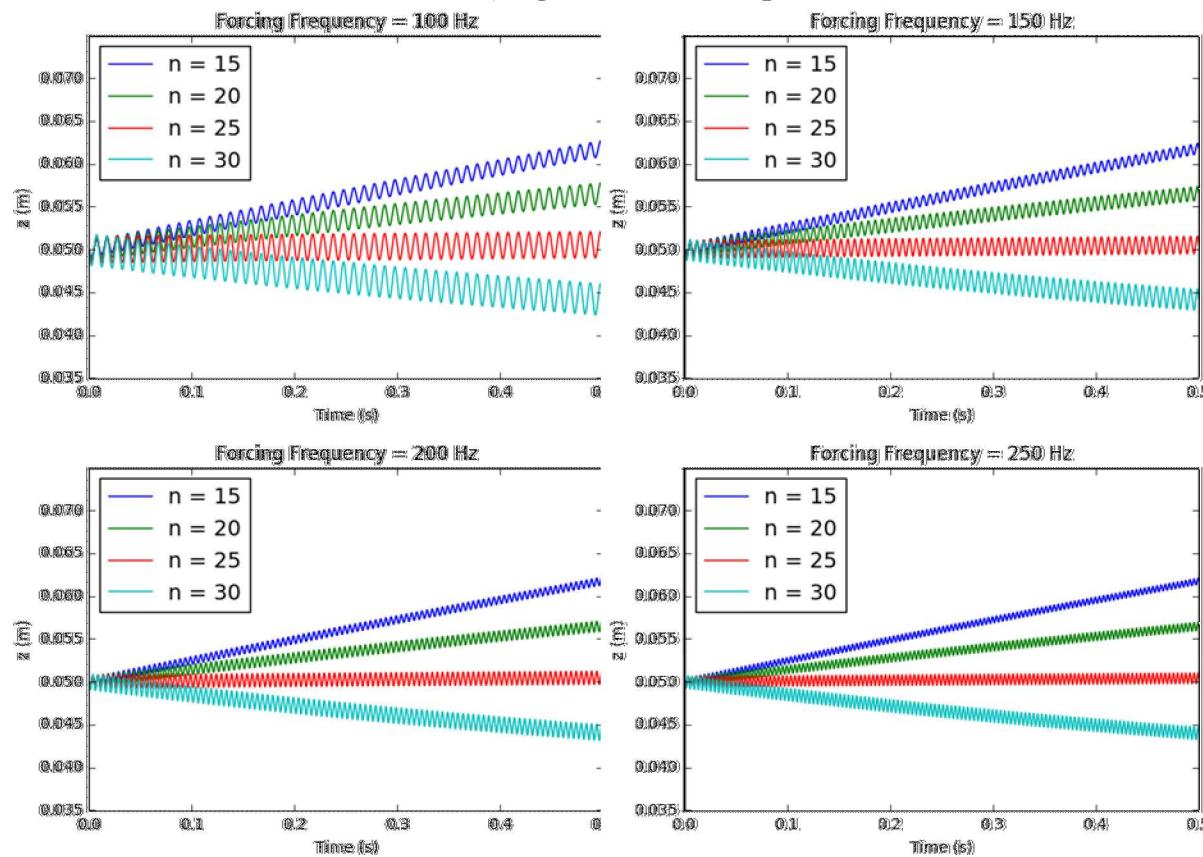
Bubble Diameter: 1mm

Column Height: 0.1m ( $\sim 4''$ )

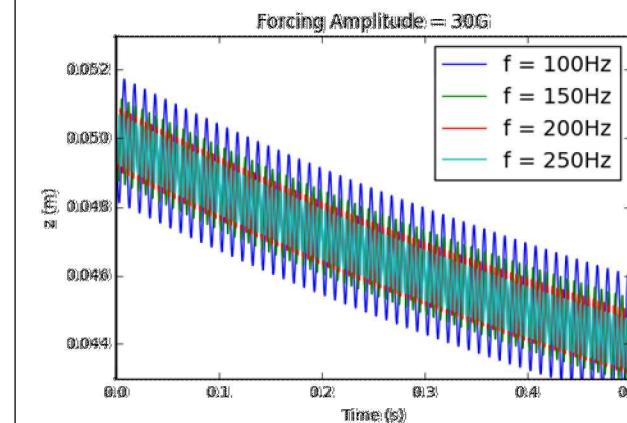
Forces: Bjerknes, Buoyancy, Stokes Drag

Bubble starts halfway down the column

Constant Vibration Frequency ( $f$ )  
Varying Vibration Amplitude ( $n$ )



Constant Vibration Amplitude  
Varying Vibration Frequency



# Hydrostatic Components

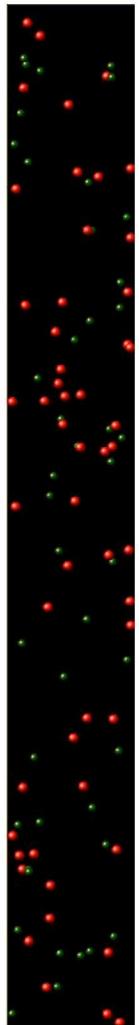
- With a large bubble volume fraction, both hydrostatic force and wave speed are affected
- Density varies with volume fraction  $\rho = \alpha_L \rho_L + \alpha_G \rho_G$
- Treat pressure as a perturbation  $P = \bar{P} + \tilde{P} \cos(\omega t)$
- Wave equation derivation becomes: 
$$\frac{\partial}{\partial z} \cdot \frac{\partial \tilde{P}}{\partial z} + \frac{\omega^2}{c(z)^2} \tilde{P} = -\frac{\partial \rho(z)}{\partial z} \tilde{a}$$

where  $c(z)$  is the local sound speed,  $\omega$  is the forcing frequency,  $\rho$  is the local density, and  $\tilde{a}$  is the forcing amplitude

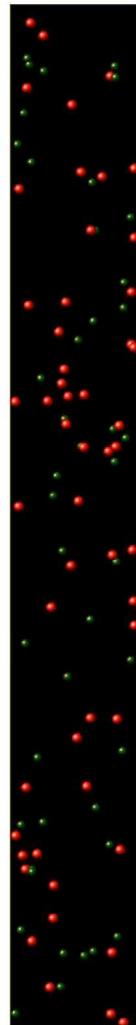
- Boundary condition set to match wall velocity
- A Runge-Kutta (RK4) algorithm provides a numerical solution for the pressure perturbation

# Multi-Bubble Simulation

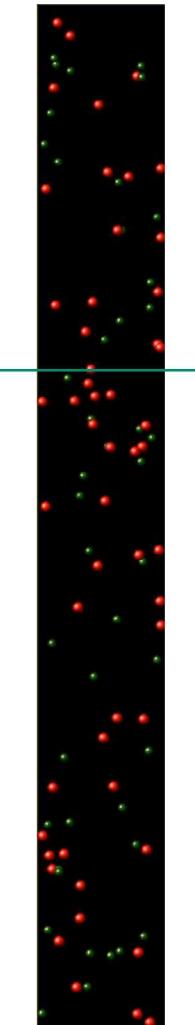
$n = 0 \text{ G}$



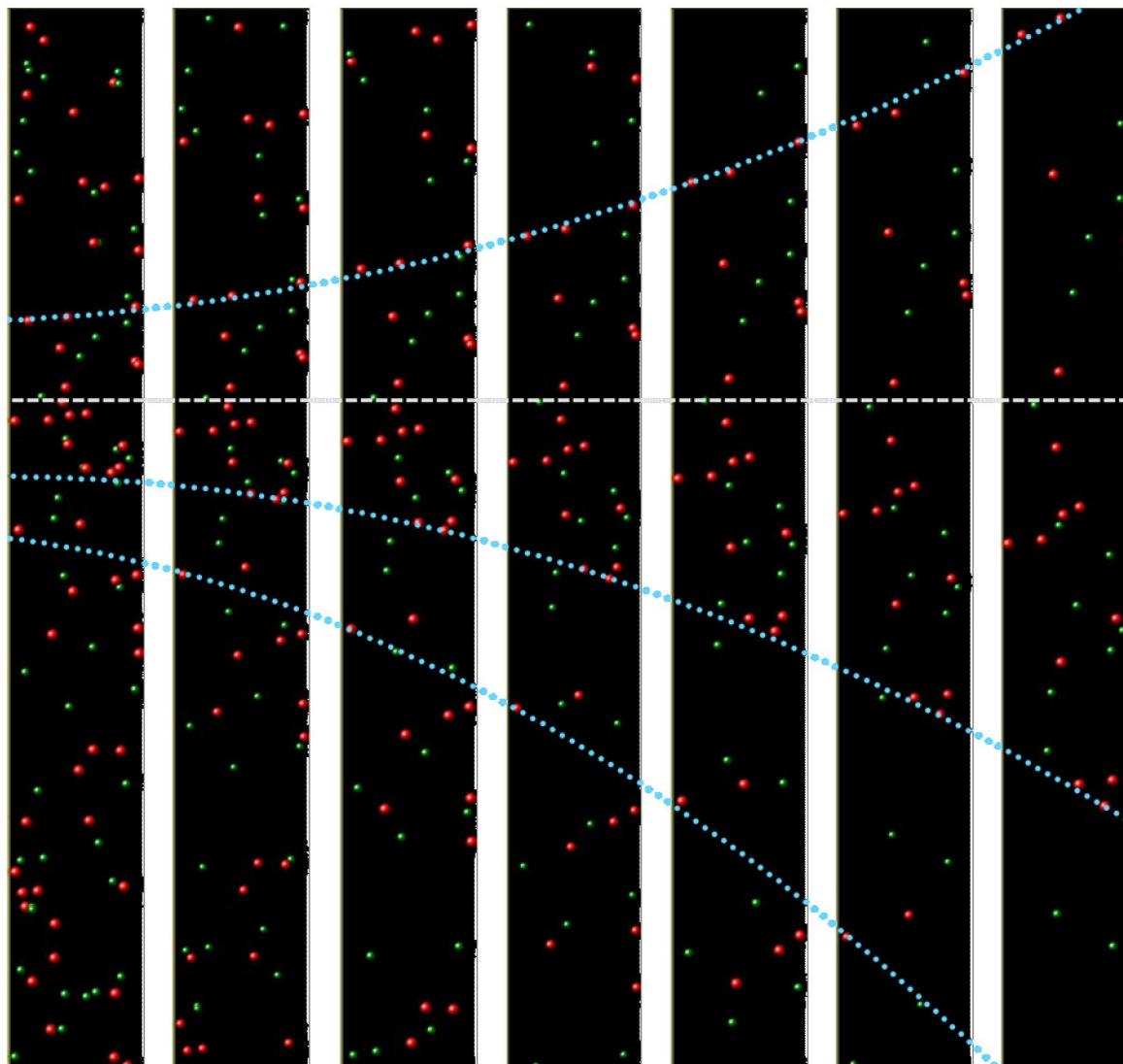
$n = 10 \text{ G}$



$n = 30 \text{ G}$



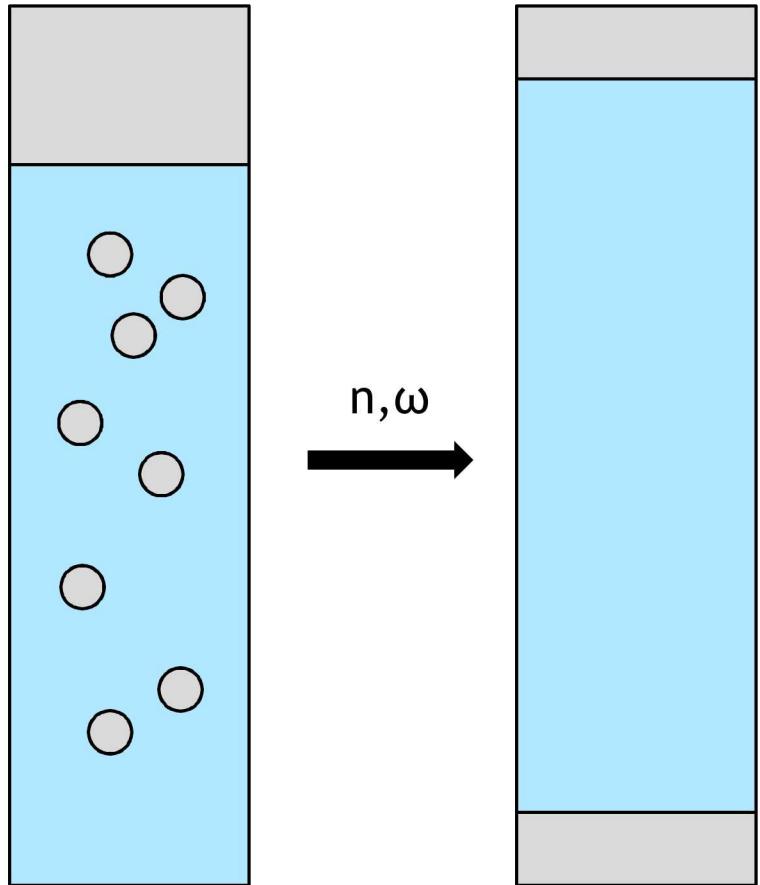
- With no forced oscillation (left), bubbles rise smoothly, with a speed determined by size and position.
- Light oscillation (middle) shows bubble vibration, but all net migration remains upward
- Heavy oscillation (right) displays both net upward and net downward motion, resulting in migration toward both ends of the tube
- There exists an equilibrium position which determines bubble movement



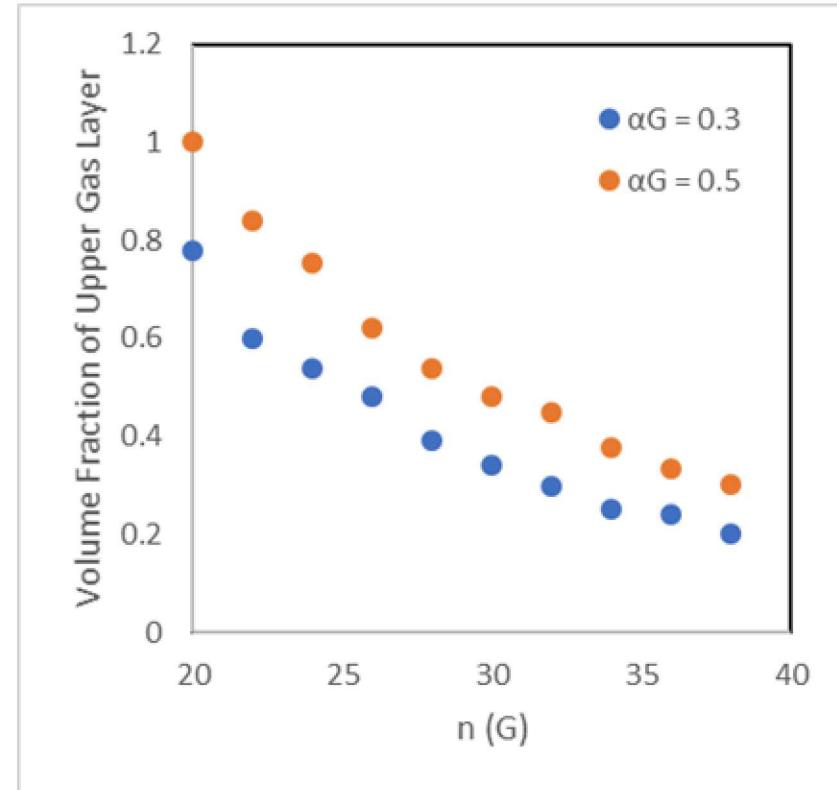
Time →

- Tracking individual bubbles shows trajectory over time
- Near the equilibrium point, bubbles hardly move
  - However this is unstable
- Moving further away from this line causes an increase in bubble velocity

# 9 Multi-Bubble Gas Migration



- Bifurcation of upward and downward movement predicts experimentally observed “cap” formation
- Fraction of gas in each region is dependent on vibration conditions
- Initial fill fraction of gas =  $\alpha_G$
- Higher gas fraction  $\rightarrow$  More gas migrating upward
- Higher forcing amplitude  $\rightarrow$  More gas migrating downward



# Conclusions

- A Discrete Element Approach can be a useful simulation tool for modeling rectified bubble migration
- Frequency of oscillation is not as significant as amplitude
- There is an equilibrium location which bubbles move away from dependent on their starting location

## Future Work

- Compare simplified model with experiment
- Allow bubble accumulation/coalescence at interface
- Solve for the pressure field in 3-dimensions