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3 1 Context and Introduction

■Wide-area measurements in power systems make possible to study global control
approaches.

■Inter-area oscillations are a phenomenon that affect sparsely interconnected power
systems and occur at a narrow and defined frequency range (0.1 — 1Hz). This
phenomenon is global (affects the entire interconnection) and can be addressed with
wide-area control

An approach that focuses the control action to a defined frequency range is
appropriate for this problem

Such an approach is frequency shaping optimal control



1 Frequency Shaping Optimal Control
°For a linear time invariant system described by

(t) = Ax(t)

y(t) = C x(t)

R" ti R''' y G
states control inputs outputs

The standard optimal control approach aims at finding the optimal input u(t) to minimize the cost function

pc'(t1) =J (x(t)T Q (t) u(t)T Ru(t)) dt where Q > 0 E R"" R > 0 c R ""11/ 

Using Parseval's theorem

Time domain

°('J(11)   1 ,1 (X (jw)" Q X (jw) U(jw)" RU (la))) dw 4— Frequency domain
27r 0



5 Frequency Shaping Optimal Control

°Working in the frequency domain, the state and input cost ( Q, R) matrices can be made frequency
dependent as

C2(jw) = Qf(jw)HQf(jw) _- 0

RUck;) = Rg(jw)H Rg(jw) 0

The state and the input can also be redefined as

Xf(jw) = Qf(jw)X(jw)

Ug(jw) = Rg(jw)U(jw)

The cost function can be rewritten as

J(u) =1 f°° PCf(jw)E I Xf(jw) + Ug(jw)HUg(jw)) du; 4-
27r Jo

Frequency domain

J (u) = el: (xf(t)T xf(t) + ug(t)T ug(t)) dt 4— Time domain



6 Frequency Shaping Optimal Control

The new variables can be interpreted as the output of filters

u(t)
 
Rt (b)

°The state representation of the filters are

,k0 (t ) = A Q ZQ (t) BQ X (t)

xf(t) = CQ,z(2(t) Dcdx(t)

HMO

 ur(t)

, .Ft(t) = A RZC2(t) B RU(t)

Uf(t) = CRZR(t) + DRu(t)

With the filters above and the original state space representation of the system, an extended state space
representation can be formulated as

L'Q(t()t)1 = ' [zxQ(td)1 UM4?(t) 0 0 AR ZR(t)
N.411..,s0011101\1111ftseon.,

xe Ae Xe Be



7 1 Frequency Shaping Optimal Control

oThe cost function can be redefined using these new variables as

where

1DC

(xe(t)T Q ex e(t) + 2u(t)T N ex e(t) + u(t)T Reu(t))dt

Qe , Ne, Re are defined as

[1-)- Dc2 r)-,C Q 0 

Qe — CQDQ C CQ 0
0 0 CLCR

= [0 0 DLC R] Re = DTRDR

oThe solution to this system is the following Riccatti equation

AePe + PeAe — (BeT Pe + Ne) The 1 (BeTPe + Ne) + Qe — 0

oThe optimal input to the system is

//opt (t) = — Re-1- (B-er Pe + Ne)xe(t)



8 Frequency Shaping Optimal Control

Considering the extended system outputs

ye(t) = Cexe(t) Dett(t)

where

C 0 0
Ce = [0 InQ 0

0 0 /77,_

[Di
DE-= 0

0

oConsidering the constraint that only the outputs are available (optimal output feedback control)

u(t) = Kye(t)

oThe optimal gain can be found by solving the following system of equations

Lyapunov-type

K = - 1V1(BeT P Ne)ACrer (CeAC e )-1 (E1)

10 = Qe + CerKTNe + AT;FICCe + CeT KT ReKCe+ P(Ae + BeKCe) + (Ae + BeKCe)T P

0 = (Ae + BeICC,)A + A(Ae + BeKCe)T + Xo (E3)



9 1 Numerical Solution

°The implemented algorithm follows the form
of a classic Anderson-Moore Algorithm

Select
Kk = Ko

6

= k +1

A

Kk+1 = Kk aAKk

A

Solve (E3) for A
A Ak

Solve (E2) for P

P Pk

Solve (E1) for K
K K k

Compute

AKk = kk — Kk

END



10 1 Controller Design

°Test system: two-area, four-machine power system with six energy storage devices

G1

ES1 ES2 ES3

G2

7

8

17 19

ES4 ES5 ES6

L17 L19

10

11

G4

The power system has a dominant inter-area oscillation that is poorly damped

G3

E
28

y E (machine speeds)

u E R6 (actuators)

°The mode is at -0.221 ± j3.435 (with a damping of 2.8% and a freq. around 0.55Hz)



1 1 Filter Design

Inter-area oscillations are in a frequency range of 0.1 and 1 Hz

The filter to weight the states is defined as

Qf(s) = qf(s)IpC

where qf(s) is a fourth order Bessel filter of the form

-was2

40

0

-20

qf(s) =
8 4 + b3s3 b2s2 bo

Filter qf(s)
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12 1 Filter Design

The filter to weight the input signals
7R(8 zr) 

rf(s) =
Trs + 1

where is a constant that determines the weight given to this filter

This work explores three different forms of rf (s)

a. No filter case rf (s) = R

b. case with Z r — 1 Tr — 5 named

c. case with = 1 Tr = 20 named rf2

Filter r f(s) Filter r f(s)

—No rf(s)

- -rfl(s)
-----rf2(s)

1 1 I

-150

1 1 1 1 1 1 1  1 1 1 1 I 
, . 

—No rf(s)
rfl(s)

-----rf2(s)

10-2 10-1 10° 101 10-2 10-1 100

Frequency [s-i] Frequency [s-1]
101



1 3 Linear System

The eigenvalues of the system for all cases studied
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14 Results in Time Domain
Time domain simulations were carried out to show how the proposed controllers damp the inter-
area oscillations of the 4-machine test system
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15 1 Results in Time Domain
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16 1 Conclusions

The paper presents a frequency-shaped approach to compute an optimal controller to damp
power systems inter-area oscillations

The method was selected because with it filters can be selected to emphasize the frequency interval of
inter-are oscillations. The paper shows how to select those filters.

The approach was based on optimal output feedback because only machine speeds are considered as
the available information.

-The paper also analyzes how the filter can be adjusted to not only damp the system inter-area
oscillations but also to modify the primary frequency regulation of the system

■The work presented the effectiveness of the proposed approach on a small test power system

A future avenue of research of this work is to include uncertainty (noise, parameter uncertainty)
into the control approach.
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