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Architecture-aware Machine Learning

Machine Learning is becoming an integral part of everyday life
- How to achieve good performance on specialized architectures?
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- FLOPs are free, but data movement is expensive
> Minimization of data movement overheads is increasingly critical

1Source: John L. Hennessy (Stanford) and David A. Patterson (UC Berkeley)
2Source: Jim Demmel (UC Berkeley) and John Shalf (LBL)



Non-negative Matrix Factorization (NMF) |

Given a matrix A € RY*? and latent variable K «< min(V, D), ‘

NMF estimates two rank-K matrices W € RY*X and H € R¥*? such that,
A ~ WH

D : K

Matrix A Matrix W Matrix H |



| NMF Applications
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Node Embedding for Graph Mining
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NMF Algorithms

Obijective function

1 1
D (A[WH) = ~[|A = WHI[2 = 2> (Ayq = (WH)yq )2
vd

Variants of NMF
> Multiplicative Update (MU)

- Additive Update (AU)
> Alternating Non-negative Least Squares (ANLS)
- Hierarchical Alternating Least Squares (HALS)



Performance Challenges in HALS-based NMF

Input: A € RY*P: non-negative input matrix, € machine epsilon

Initialize W € RY*X and H € RX*P with random non-negative numbers
repeat

R =ATW
S=WTW
fork =0to K—1 do

Hy = max(e, Hk+Rx—HTSy) s The main data movement overhead is
~ P=AHT associated with these k loops

— T
Q = HH » 91% of the combined fractional

; fork =0to K-1do
Updating W=
P 9 W, = max(e, W, Quu+Pr—WQ,) ‘ data movement overhead

w
Wy = —k
Wil

=

until convergence

How to reduce data movement cost of these k loops?



Original HALS-based NMF |

Interaction between different columns of W with iterative matrix-vector ‘
multiplications
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Overview of Our Approach

Our goal is to minimize data movement cost
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How to reformulate the original iterative matrix-vector multiplications to
matrix-matrix multiplication?




Brand New ALO-NMF (Accelerated Locality-Optimized NMF)

Updating W with tiled matrix-matrix multiplications
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Data Movement Comparison

Running on a PIE dense image dataset

|74 K T C
(# rows in W) | (low rank) (tile size) (cache size)
11,554 256 16 33MB

Data movement cost for updating W

Original HALS-based NMF (byte) Our ALO-NMF (byte)
1 2
K(VK+K+6V+1 VI=+—=|(K?—KT) + KVT
( ) (T ﬁ) ( )
= 775,015,680 = 338,840,256
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2.29% reduced



Performance Comparison: Speedup

ALO-NMF CPU/GPU achieved significant performance improvement ‘
over the existing state-of-the-art parallel NMF implementations
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Summary and Conclusions

= Architecture-aware machine learning algorithm design is critical

= We focused on data locality optimizations for NMF
> The associativity of addition is utilized to reorder additive contributions in updating
elements of matrices W and H

= Our ALO-NMF achieved 2.29x lower data movement and ~4.45X
speedup compared to the existing state-of-the-art parallel NMF
Implementations

Please check out our paper to learn more about this work.
Thank you. ©




