
ALO-N M F: Accelerated Locality-Optimized

Presented by:

Gordon E. Moon
. 
, J. Austin Ellis

. 
, Aravind Sukumaran-Rajam

# 
,

Srinivasan Parthasarathy
t
, P. Sadayappan

t

Sandia National Laboratori
t
es
. 
, Washington State University

# 
,

The Ohio State University , University of Utah
1

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of
Energy's National Nuclear Security Administration
under contract DE-NA0003525.

SAND2020-5964C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Architecture-aware Machine Learning

Machine Learning is becoming an integral part of everyday life
How to achieve good performance on specialized architectures?
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FLOPs are free, but data movement is expensive

Minimization of data movement overheads is increasingly critical
1Source: John L. Hennessy (Stanford) and David A. Patterson (UC Berkeley)
2Source: Jim Demmel (UC Berkeley) and John Shalf (LBL)



Non-negative Matrix Factorization (NMF)

Given a matrix A E Ikv+xp and latent variable K << min(V, D) ,

NMF estimates two rank-K matrices W E ile+x/( and H E ile_Pc° such that, 1
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NMF Applications

Node Embedding for Graph Mining

A V XKI
D ►

Emonnol
Nomuuml

Topics

gene 0.04
dna 0.02
genetic 0.01
. „

life 0.02
evolve 0.01
organism 0.01
• , ,

brain 0.04
neuron 0.02
nerve 0.01

data 0.02
number 0.02
computer 0.01

Documents
Topic proportions and

assignments

Seeking Life's Bare (Genetic) Necessities
COLD SPRING HARBOR, NEW YORK— "we me ell 111.r

genome :Le I 'I;

here IWORC111111, researchers with rash,*

diffewnt appnywhes presented compleme,

tary views of the Facie gene. needed for lth

One research team. using computer anrk

ses ro compare known gen.,111, conclikkd more

that todav'scan be sustained wiih sequel, c.i 

just 2 50 gears, air-h—s t at the earliest life fimus

required a lucre 128 gene. The 1 Arcady Mushegian,
other resmircher mappixl genes ‘.„ lecular biologist at ilu

in a simple p anwite and esti s, for Biotechnology !Mona E.

mated that for this organism. `. in Bethesda. Mareland. Cer

BCCgenes am plenty mar the

ioh—hut that anything short

of IOC, wouldn't he enough.

Although the numbers don .1

march preciwdv, those pri I meow. •wme

comparison to rd.

• Genorne Mapping and Sec.,
mg. Gold Spring Harbor. Now York.
May 8 to 12

mine tip I.

Stripping down. Compeer analysis Holds an est..
mete ol the minimum mixiem and ancient grommet

,IENCE • WE :7: • 24 MAY I.E.

V

Topic Modeling for Text Mining*

D 

A
•

e•,./ti XKI

D ►
H •

1
V: number of unique nodes
D: number of unique nodes

V: vocabulary size
D: number of documents "Source: David Blei. "Probabilistic Topic Models". (2012)



NMF Algorithms

Objective function

1 1 vi
DF(Al IWH) = l IA — WHI IP = Z.,(A-vct (WH)vd )2
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Variants of NMF
Multiplicative Update (MU)
Additive Update (AU)
Alternating Non-negative Least Squares (ANLS)
Hierarchical Alternating Least Squares (HALS)



-1 Updating H

-1-Updating W

Performance Challenges in HALS-based NMF

input: A c litvExp: non-negative input matrix, £: machine epsilon

Initialize W E litYx1( and H E liki_ x131 with random non-negative numbers
repeat

R = ATW
S = WTW
for k = 0 to K-1 do

HK = max(E, HK+RK-HTSK)
P =AHT
Q = HHT
for k = 0 to K-1 do
WK = max(EI WKCIKK+PK WCIK)

Wk w
K 
- 

IlWkll2

until convergence

The main data movement overhead is
associated with these k loops

* 91% of the combined fractional
data movement overhead

How to reduce data movement cost of these k loops?



Original HALS-based NMF

Interaction between different columns of W with iterative matrix-vector
multiplications
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Overview of Our Approach

Our goal is to minimize data movement cost
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Original HALS-based NMF

transformation

tile id = I=1
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Our ALO-NMF

How to reformulate the original iterative matrix-vector multiplications to

matrix-matrix multiplication?



Brand New ALO-NMF (Accelerated Locality-Optimized NMF)

Updating W with tiled matrix-matrix multiplications
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Data Movement Comparison

Running on a PIE dense image dataset
V

(# rows in W)
K

(low rank)
T

(tile size)
C

(cache size)

11,554 256 16 33MB

Data movement cost for updating W

Original HALS-based NMF (byte)

K (V K + K + 6V + 1)

= 775,015,680

Our ALO-NMF (byte)

1 2
V (— + —) (K2 — KT) + KVT

T AIT'

= 338,840,256

2.29x reduced 1
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1 Performance Comparison: Speedup
ALO-NMF CPU/GPU achieved significant performance improvement
over the existing state-of-the-art parallel NMF implementations
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Summary and Conclusions

Architecture-aware machine learning algorithm design is critical

We focused on data locality optimizations for NMF
The associativity of addition is utilized to reorder additive contributions in updating

elements of matrices W and H

Our ALO-NMF achieved 2.29x lower data movement and , 4.45x
speedup compared to the existing state-of-the-art parallel NMF
implementations
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Please check out our paper to learn more about this work.
IThank you.


