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2 Motivation:What in the World is that Library doing?

When using libraries it is often hard to understand what they are doing

• MPI makes this more complicated!

• CUDA even more so!

Profiler output (X happened at time I") are insufficient

• Linear graph is impossible to follow for long enough calculation.

• No stack information (e.g. the code called MPI_Barrier, but who did that??).

Goal: Stack-based output with a special attention to MPI and Cuda.

Method: Use of LD PRELOAD

Case Study: Understanding how the Kokkos::deep_copy0 calls handle device
synchronization.



3 Case Study: Kokkos::deep_copy() on NVIDIA GPUs

For this discussion, Kokkos::deep_copy0 does one of two things

• GPU/CPU: Copy data between GPU and CPU memory.

• GPU/GPU: Copies data between two GPU buffers.

These two tasks imply different synch semantics

• GPU-to-CPU: We need to wait until Cuda streams are done working before copying to CPU
memory (e.g. call cudaDeviceSynchronize()).

• GPU-to-GPU: For single stream operation, this should just queue up as a regular kernel
launch. No sync needed.

Question: Does Kokkos actually do that correctly? How can we tell?

Hand inspection won't cut it (Kokkos is too complicated). We could add lots of
printf's... but there's a better way.



4 Method: LD_PRELOAD

We use a PRELOAD mechanism to intercept MPI and Cuda library calls and dlsym
to call the "real" function.

Use a Teuchos::TimeMonitor to wrap the calls.

This integrates with Teuchos::StackedTimers which give us stack-based output,
across MPI ranks.

Caveats: Requires Shared builds.

Goal: Release this tool as part of Trilinos.

■



5 Method: LD_PRELOAD ... How does it work?

A very common R&D problem is having a binary and wanting to understand what
that binary is doing

. Having access to the original source is not guaranteed, and even if you do, you may not
know what hacks/edits/adulterations went into it.

. If you do have the source, build times can be prohibitive, and you run the risk of building
in a manner different from the original developer.

Solution:
. Use shared libraries and inject.

App code
void myfunc() {
MPI barrier(comm);

}

MPI Library
int MPI_Barrier(MPI_Comm* c) {
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Solution:
. Use shared libraries and inject.

A code
void myfunc() {
M PI barrier(comm);

}
J

Caveat: MPI can be done via standard-
specified MPI profiler hooks, rather than
dlsym (presuming your MPI is standard
compliant).

Our Tool
int MPI_Barrier(MPI_Comm * c) {
auto rb = dIsym(RTLD_NEXT,"MPI_Barrier");
return rb(c);

MPI Library
int MPI_Barrier(MPI_Comm* c) {



7 I Kokkos::deep_copy0 Test Code

{ // This uses the GPU-to-CPU style semantic

Teuchos::TimeMonitor timer2(*Teuchos::TimeMonitor::getNewTimer("deep copy(v2,v1) x3"));

Kokkos::deep copy(v2,v1);

Kokkos::deep copy(v2,v1);

Kokkos::deep copy(v2,v1);

}

{ // This uses the GPU-to-GPU style semantic

Teuchos::TimeMonitor timer2(*Teuchos::TimeMonitor::getNewTimer("deep copy(space,v3,v1) x3"));

Kokkos::deep copy(MySpace,v3,v1);

Kokkos::deep copy(MySpace,v3,v1);

Kokkos::deep copy(MySpace,v3,v1);



8 I Test Code Output

1// This uses the GPU-to-CPU style semantic

// deep copy(v2,v1) timer

Kokkos::deep copy(v2,v1);

Driver: 0 [1]

deep_copy(v2,v1) x3: 0.000599708 - 7.44129% [1]

Kokkos::deep copy(v2,v1);

Kokkos::deep copy(v2,v1);

I

I

I

I

l

cudaDeviceSynchronize: 6.5433e-05 - 10.9108%

cudaMemcpy: 6.8193e-05 - 11.371% [3]

Remainder: 0.000466082 - 77.7182%

[6]

{ // This uses the GPU-to-GPU style semantic

// deep copy(space,v3,v1) timer deep_copy(space,v3,v1) x3: 3.9182e-05 - 0.486178% [1]

Kokkos::deep copy(MySpace,v3,v1); I cudaMemcpyAsync: 2.9618e-05 - 75.5908% [3]

Kokkos::deep copy(MySpace,v3,v1); I I Remainder: 9.564e-06 - 24.4092%

Kokkos::deep copy(MySpace,v3,v1);

l Remainder: -0.00805919

Results for Kokkos 3.1. Kokkos 3.0 didn't do this right and this tool helped us expose the issue.



9 Conclusions

Used existing profiler API (Teuchos Timers)
■ Developers familiar usage and standard output.

Intercept tools developed independent of app profiled
■ Went from Trilinos test to Kokkos mini-app (previous slide) flawlessly.

■ Have used with ATDM apps as well.

Tool provides unadulterated report of API usage
■ We discovered API calls we did not expect to find!

■ Profiling technique avoids risk of only finding what you intentionally search for.

■ Output format is natural for Trilinos users and required no code modifications.


