
Case Study: Debugging Other
People's Libraries via PRELOAD

Chris Siefert and James Elliott

Sandia National Laboratories

Special thanks to Christian Trott

Wink NffS4
Sandia National Laboratories is a rnultirnission
laboratory rnanaged and operated by National

Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell

International lnc., for the U.S. Department of
Energy's National Nuclear Security Administration

under contract DE-NA0003S2S.

SAND2020-5956C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2 Motivation:What in the World is that Library doing?

When using libraries it is often hard to understand what they are doing

• MPI makes this more complicated!

• CUDA even more so!

Profiler output (X happened at time I") are insufficient

• Linear graph is impossible to follow for long enough calculation.

• No stack information (e.g. the code called MPI_Barrier, but who did that??).

Goal: Stack-based output with a special attention to MPI and Cuda.

Method: Use of LD PRELOAD

Case Study: Understanding how the Kokkos::deep_copy0 calls handle device
synchronization.



3 Case Study: Kokkos::deep_copy() on NVIDIA GPUs

For this discussion, Kokkos::deep_copy0 does one of two things

• GPU/CPU: Copy data between GPU and CPU memory.

• GPU/GPU: Copies data between two GPU buffers.

These two tasks imply different synch semantics

• GPU-to-CPU: We need to wait until Cuda streams are done working before copying to CPU
memory (e.g. call cudaDeviceSynchronize()).

• GPU-to-GPU: For single stream operation, this should just queue up as a regular kernel
launch. No sync needed.

Question: Does Kokkos actually do that correctly? How can we tell?

Hand inspection won't cut it (Kokkos is too complicated). We could add lots of
printf's... but there's a better way.



4 Method: LD_PRELOAD

We use a PRELOAD mechanism to intercept MPI and Cuda library calls and dlsym
to call the "real" function.

Use a Teuchos::TimeMonitor to wrap the calls.

This integrates with Teuchos::StackedTimers which give us stack-based output,
across MPI ranks.

Caveats: Requires Shared builds.

Goal: Release this tool as part of Trilinos.

■



5 Method: LD_PRELOAD ... How does it work?

A very common R&D problem is having a binary and wanting to understand what
that binary is doing

. Having access to the original source is not guaranteed, and even if you do, you may not
know what hacks/edits/adulterations went into it.

. If you do have the source, build times can be prohibitive, and you run the risk of building
in a manner different from the original developer.

Solution:
. Use shared libraries and inject.

App code
void myfunc() {
MPI barrier(comm);

}

MPI Library
int MPI_Barrier(MPI_Comm* c) {



6 Method: LD_PRELOAD ... How does it work?

A very common R&D problem is having a binary and wanting to understand what
that binary is doing

. Having access to the original source is not guaranteed, and even if you do, you may not
know what hacks/edits/adulterations went into it.

. If you do have the source, build times can be prohibitive, and you run the risk of building
in a manner different from the original developer.

Solution:
. Use shared libraries and inject.

A code
void myfunc() {
M PI barrier(comm);

}
J

Caveat: MPI can be done via standard-
specified MPI profiler hooks, rather than
dlsym (presuming your MPI is standard
compliant).

Our Tool
int MPI_Barrier(MPI_Comm * c) {
auto rb = dIsym(RTLD_NEXT,"MPI_Barrier");
return rb(c);

MPI Library
int MPI_Barrier(MPI_Comm* c) {



7 I Kokkos::deep_copy0 Test Code

{ // This uses the GPU-to-CPU style semantic

Teuchos::TimeMonitor timer2(*Teuchos::TimeMonitor::getNewTimer("deep copy(v2,v1) x3"));

Kokkos::deep copy(v2,v1);

Kokkos::deep copy(v2,v1);

Kokkos::deep copy(v2,v1);

}

{ // This uses the GPU-to-GPU style semantic

Teuchos::TimeMonitor timer2(*Teuchos::TimeMonitor::getNewTimer("deep copy(space,v3,v1) x3"));

Kokkos::deep copy(MySpace,v3,v1);

Kokkos::deep copy(MySpace,v3,v1);

Kokkos::deep copy(MySpace,v3,v1);



8 I Test Code Output

1// This uses the GPU-to-CPU style semantic

// deep copy(v2,v1) timer

Kokkos::deep copy(v2,v1);

Driver: 0 [1]

deep_copy(v2,v1) x3: 0.000599708 - 7.44129% [1]

Kokkos::deep copy(v2,v1);

Kokkos::deep copy(v2,v1);

I

I

I

I

l

cudaDeviceSynchronize: 6.5433e-05 - 10.9108%

cudaMemcpy: 6.8193e-05 - 11.371% [3]

Remainder: 0.000466082 - 77.7182%

[6]

{ // This uses the GPU-to-GPU style semantic

// deep copy(space,v3,v1) timer deep_copy(space,v3,v1) x3: 3.9182e-05 - 0.486178% [1]

Kokkos::deep copy(MySpace,v3,v1); I cudaMemcpyAsync: 2.9618e-05 - 75.5908% [3]

Kokkos::deep copy(MySpace,v3,v1); I I Remainder: 9.564e-06 - 24.4092%

Kokkos::deep copy(MySpace,v3,v1);

l Remainder: -0.00805919

Results for Kokkos 3.1. Kokkos 3.0 didn't do this right and this tool helped us expose the issue.



9 Conclusions

Used existing profiler API (Teuchos Timers)
■ Developers familiar usage and standard output.

Intercept tools developed independent of app profiled
■ Went from Trilinos test to Kokkos mini-app (previous slide) flawlessly.

■ Have used with ATDM apps as well.

Tool provides unadulterated report of API usage
■ We discovered API calls we did not expect to find!

■ Profiling technique avoids risk of only finding what you intentionally search for.

■ Output format is natural for Trilinos users and required no code modifications.


