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Current IAEA safeguards perform well, but could be
improved through effectively leveraging existing data

* Often enrichment plant operators make an accountancy declaration for
an MBA and IAEA verifies the declaration

* Verification measures include auditing and independent measurements
of the declared MBA

* Measurement technologies used for verification are frequently used to
target a specific safeguards task

* OLEM and environmental swipes to detect changes in enrichment
* Accountancy scales to detect excess production

* Could leveraging multiple data streams improve the probability of
detection for all safeguards tasks?

* Example use case: The use of temperature and pressure utilized by
OLEM may also improve the probability of detection for excess
production

* Machine Iearning could provide better Er_obability of detection using
existing safeguards data streams through improved data utilization

* Success in other domains such cybersecurity



Development of
an enrichment
model with

thermophysical
feedback is
challenging

Tracking of discrete and continuous entities

Thermophysical feedbacks

Modeling realistic measurement systems

Accurate representations of measurement errors

Capture of normal facility variations



s | GCEP model is modeled in MATLAB Simulink which allows for
easier conversion between discrete and continuous entities
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Detecting
anomalies in
multivariate
time-series data
is difficult!

Few to no anomalies available for
training, which implies
unsupervised training

Traditional methods for anomaly

detection may not perform well
due to temporal dependencies

False positives increase with
measurement error and noise




What are neural approaches, really?
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Developing the data format —
signature matrix

Correlations between different pairs of features can be
used to characterize system status [Hallac 2017, Song 2018]
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Multiple signature matrices can be formed to detect
anomalies of different lengths

Shorter anomalies can be detected with shorter windows,
but will perform poorly on longer, more subtle anomalies

Anomaly detection can now be formulated as pattern
detection
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Determining the network
structure - autoencoder

Autoencoder is an unsupervised machine
learning approach

Similar conceptually to principal component
analysis

Attempts to use a compressed representation
of the input to reconstruct an output

Compression forces the network to learn
important features and underlying data
structure

Autoencoder should have a hard time
recognizing patterns that are anomalous




Choosing the layers —
convolution

Convolutional neural networks (CNNs) excel at a
variety of image tasks

Operate on images in small patches
Attempts to find patterns within training data set

More robust than literal comparison
Translations / rotations would fail in literal case

Much fewer parameters than fully connected
network

Images can be large even when scaled down

https://brohrer.github.io/how_convolutional_neural_networks_work.html




Pulling it together — ™
Multi-Scale Recurrent
Encoder Decoder
(MSCRED)
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2 I Conditions for initial benchmarking

* GCEP process model has

approximately 300 different Normal Reconstructed Signature Matrix
outputs 0 | Lo.0oss
* 160 used as 140 were linearly 140 —
dependent 120 |
* Final signature matrix size 160x160 100

80

Feature

* 1% systematic and random error
applied to all measurements 60

40

* Relies solely on thermophysical
measurements outside cascade hall
(temperature and pressure) 0o 20

* Cylinder properties from accountancy
scale to be added in future work
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3 I Evaluation case 1 — abrupt material loss

* Abrupt material loss for a
single location within the
GCEP

* Brightly colored bands
indicate high reconstruction
error

* Error for anomalous band is
1-2 compared to normal
reconstruction error of
~0.003.

* Feature corresponds to
location of material loss
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14 I Evaluation case 1 — protracted material loss

* Protracted material loss at
single location in GCEP

* Brightly colored bands
indicate high reconstruction
error

* Error for anomalous band is
0.05 compared to normal
reconstruction error of
~0.003 and abrupt of 1-2.

* Note that magnitude of
reconstruction error is
correlated with magnitude
of anomaly
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5 I Inconsistent results warrant future work

* Signature matrices inconsistent when
detecting anomalies

* Used principal component analysis in
similar way as autoencoder 160

140

Reconstructed inature Matrix - PCA

* Results suggest insufficient
compression in autoencoder inner

120

layers 1
* Future work will improve inner autoencoder § 8 H
|ayers - 60 BRSSO E 3, 1N T :.
* Although PCA has increased results in 0
some cases, it cannot provide 20
information on anomaly magnitude B BRSNS SR NN
* PCA also provides poor normal Feature

reconstruction which would inevitably
hurt probability of detection

* PCA limited to linear mapping vs CNN’s
non-linear mapping



Conclusions and Future Work

* Initial results are promising, but need improvement

* Demonstrated ability to detect, locate, and diagnose anomalies in
GCEP dataset

* Considerable future work remains
* Formalizing probability of detection
* Increasing MSCRED compression

* Examining other anomalous scenarios
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