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Elimination of on-site laboratories at reprocessing
facilities is a long-standing goal of the IAEA

e Require small measurement uncertainties
e Expensive and time consuming

e Can require onsite laboratory

e Mature and proven

Traditional safeguards for
large throughput facilities
are challenging

Data science driven e Can leverage large streams of data
=lejelerzle =t ool o palsle)/=l | o Could utilize unattended monitoring systems
safeguards, but have e Compliments existing safeguards
challenges of their own e Can be difficult to interpret and require more R&D



Hypothesis: An arbitrary function learned under normal
conditions will poorly represent anomalous facility
behavior

* Bulk throughput facilities often have a
normal operating regime

*How well could an entire facility be
modeled by a function?

*How well could individual unit operations
be modeled by a function?

*Would anomalous behavior be represented
by a different function than normal
behavior?




Detailed facility model is used to
enerate training data
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Feedforward neural
networks are powerful tools
that can learn any
continuous function
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* — synapse
axon from a neuron o
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s, W = Neurons receive signals, send
dendrite

output to connected neurons
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output axon
activation = WWeights are adjusted during
function training to more closely match

W22 desired output

= Neurons are arranged in a
network

http://cs231n.github.io/neural-networks-1/#feedforward
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent neural networks learn time-dependent behavior by

Rec urre ﬂt Neura | N etWO rkS passing information to other parts of the network
SR eSS EMIEEIEN | i e e SRR

d e pe n d e n Cl eS | n d ata Long-Short Term Memory (LSTM) networks, a type of recurrent

neural network, is used in this work




LSTM networks
are used to
predict the
future output of
a unit operation

Train LSTM network to predict the future

3/1:+1 f(x )

y¢4 1 is the prediction of the LSTM network for feature
n at time (t+1)

f() is the learned function

x{t =[x 199, .-, X{'] for 199 < t, is some historical
window of data

y{ 1 is the observed value for feature n at time t+1

The LSTM is trained on some historical input to a unit
process, x;* , and attempts to predict the output of the

process, ¥/’ 4

The reconstruction error, /. ; - y{% 4 is used to
determine if anomalous behavior is occurring



Learning the facility
Mixing Tank Inventory function — unit
. \ \ \ \ | Operations

\ \ e Certain areas of the facilities
\ require special consideration
\_ \ \ * Mixing/buffer tank outputs are a

function of their entire history
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e Tank may also have non-uniform
output sizes

0 * Feature representing running

average of inventory concentrations
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Time (hr)

* Feature representing bulk level
measurement required



Reconstruction error is arbitrary and
must be converted to a useful metric

Under normal operation the difference between the LSTM prediction and observed value
should be small

Anomalies should have larger differences than normal conditions

Changes in reconstruction error can be subtle and occur across multiple features making

anomalies difficult to detect

Isolation forest is used to translate arbitrary reconstruction errors into a measurement of
normality




Calculating the
residual
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https://github.com/sahandha/eif

Fei Tony Liu, et al. Isolation Forest, IEEE, 2008
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Isolation forest
output is used to
set thresholds for
alarms

Isolation forest is trained to
partition a part of the data as
anomalous

Required since in practice
there are no or very few
examples of anomalies

Intuition is that the most
extreme normal cases are
labeled as anomalous

Occasionally and sparsely normal
data will be labeled as an
anomaly

A true anomaly will have a dense
clustering of anomalous labels
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Putting it all together...

Train algorithm to
predict output of
unit operation given
historical data

Calculate the
difference between
the ML prediction
and observed values,
aka the “residual”

Classify the residual
as normal or off-
normal using
isolation forest

Determine if alarm
should be raised
based on frequency
of off-normal
classification




Benchmarking setup

* Substitution material loss at a generic PUREX
facility |

* Removal of 1SQ of Pu over various lengths of time,
expressed as multiple of MBP

* Masses from process model used as inputs to
machine learning models and traditional
safeguards tests

* In practice the machine learning approach would utilize

NDA features such as gamma counts, but mass was used
to reduce computational overhead

* A 1% random and systematic error was added to
all measurements




16 | Initial machine learning results exhibit poor results

Probability of Detection for 1SQ of Pu
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Mismatches in
systematic
error causes
biases in
residuals
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18 | Results improve drastically with cross-calibration of sensors

which reduces differences in systematic biases

Probability of Detection for 15Q of Pu
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ML can
enhance
safeguards
when applied
appropriately

Results of current approach work very
well when systematic error is controlled

Good ML performance requires
understanding of underlying process

Working to resolve systematic error
Issues

Work with IAEA to discuss ML based
approaches
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LSTM regression coverage increased to entire MBA

\/ Improved anomaly detection through isolation forest

Supplementary
- Key
Improvements
for FY20

Improved LSTM architecture

L

Examined performance of supervised methods in light of systematic

A Determined systematic error must be resolved systematically
@ biases

§- Conducted parametric studies to determine required training data




22 | Supplementary — validation error on cross-calibrated data vs

raw data
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23 I Supplementary slide — non-linear feedback in bias correction /

estimation
Nonlinear feedback in error correction
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