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Elimination of on-site laboratories at reprocessing
facilities is a long-standing goal of the IAEA

Traditional safeguards for
large throughput facilities

are challenging

Data science driven
approaches could improve

safeguards, but have
challenges of their own

• Require small measurement uncertainties

• Expensive and time consuming

• Can require onsite laboratory

• Mature and proven

• Can leverage large streams of data

• Could utilize unattended monitoring systems

• Compliments existing safeguards

• Can be difficult to interpret and require more R&D



Hypothesis: An arbitrary function learned under normal
conditions will poorly represent anomalous facility
behavior

Bulk throughput facilities often have a
normal operating regime

How well could an entire facility be
modeled by a function?

How well could individual unit operations
be modeled by a function?

Would anomalous behavior be represented
by a different function than normal
behavior?



Detailed facility model is used to
generate training data
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Feedforward neural
networks are powerful tools
that can learn any
continuous function

Neurons receive signals, send
output to connected neurons

Activation functions allow for
learning of non-linear functions

Weights are adjusted during
training to more closely match
desired output

Neurons are arranged in a
network
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent neural networks
can address temporal
dependencies in data

Recurrent neural networks learn time-dependent behavior by
passing information to other parts of the network

Very effective in other areas of machine learning such as speech
recognition or language translation

Long-Short Term Memory (LSTM) networks, a type of recurrent
neural network, is used in this work
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LSTM networks
are used to
predict the
future output of
a unit operation

Train LSTM network to predict the future

Ytn+ 1 = f (41)

)7;1+1 is the prediction of the LSTM network for feature
n at time (t+1)

f() is the learned function

xiti. = [41_199, ...,41 for 199 < t, is some historical
window of data

.)P.+1 is the observed value for feature n at time t+1

The LSTM is trained on some historical input to a unit

process, 4 , and attempts to predict the output of the
process, ytn+1

The reconstruction error, ytn+i - yl'i.+1 is used to
determine if anomalous behavior is occurring
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Learning the facility
function — unit
operations
• Certain areas of the facilities
require special consideration

• Mixing/buffer tank outputs are a
function of their entire history

• Tank may also have non-uniform
output sizes

• Feature representing running
average of inventory concentrations
required

Feature representing bulk level
measurement required
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Reconstruction error is arbitrary and
must be converted to a useful metric

Under normal operation the difference between the LSTM prediction and observed value
should be small

Anomalies should have larger differences than normal conditions

Changes in reconstruction error can be subtle and occur across multiple features making
anomalies difficult to detect

Isolation forest is used to translate arbitrary reconstruction errors into a measurement of
normality
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Calculating the
residual
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Anomalies should be few and different when compared to normal data
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Isolation forest
output is used to
set thresholds for
alarms
Isolation forest is trained to
partition a part of the data as
anomalous

Required since in practice
there are no or very few
examples of anomalies

Intuition is that the most
extreme normal cases are
labeled as anomalous

• Occasionally and sparsely normal
data will be labeled as an
anomaly

A true anomaly will have a dense
clustering of anomalous labels

1.00 -

0.75 -

0.50 -

0.25 -

0.0D -

-0.25 -

-0.50 -

-0.75 -

-1.00 -

0
,

1000 2000 3000 4000 5000
1

6000

13



Putting it all together...

Train algorithm to
predict output of
unit operation given
historical data

Calculate the
difference between
the ML prediction
and observed values,
aka the "residual"

Classify the residual
as normal or off-
normal using
isolation forest

Determine if alarm
should be raised
based on frequency
of off-normal
classification



Benchmarking setup
Substitution material loss at a generic PUREX
facility

Removal of 1SQ of Pu over various lengths of time,
expressed as multiple of MBP

Masses from process model used as inputs to
machine learning models and traditional
safeguards tests

In practice the machine learning approach would utilize
NDA features such as gamma counts, but mass was used
to reduce computational overhead

A 1% random and systematic error was added to
all measurements



16 Initial machine learning results exhibit poor results
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17 I Mismatches in
systematic
error causes
biases in
residuals
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18 Results improve drastically with cross-calibration of sensors
which reduces differences in systematic biases
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ML can
enhance
safeguards
when applied
appropriately

Results of current approach work very
well when systematic error is controlled

Good ML performance requires
understanding of underlying process

Working to resolve systematic error
issues

Work with IAEA to discuss ML based
approaches
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,L4 LSTM regression coverage increased to entire MBA

Improved anomaly detection through isolation forest

Improved LSTM architecture

Determined systematic error must be resolved systematically

Examined performance of supervised methods in light of systematic

biases

Conducted parametric studies to determine required training data

Supplementary
- Key
improvements
for FY20
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22 I Supplementary — validation error on cross-calibrated data vs
raw data

Systematic error on training
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23 I Supplementary slide — non-linear feedback in bias correction /
estimation

Nonlinear feedback in error correction
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