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Simulations cover a wide range of length and time scales
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Energy minimization of a molecule

Dichloroethane
C,H4Cl5

Potential
Energy Surface
(rotation about
the C-C bond)

1.63 kcal/mol

Transition
State

-1.28 kcal/mol

Local Minimum

Global Minimum



Intramolecular properties — vibrational spectrum
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Molecular simulation of clay minerals

Crystal structure models of clay minerals are typically unknown

* Nanocrystalline materials (less than 1 um grain size)
* No large single crystals for X-ray diffraction refinements
* Hydrogens positions are often unknown (neutron diffraction analysis)
* Complex chemistry with multicomponent
systems, cation disorder, and vacancies
* Low symmetry (monoclinic or triclinic)
* Stacking disorder complicates structural
analysis

Atomistic simulations of clay minerals are non-trivial

* Require accurate empirical energy forcefield;
quantum methods are typically too costly

* Large unit cells or simulation supercells
are required (100s to 106 atoms)

* Significant electrostatic fields associated
with layer structure

* Validation of models is difficult

Interlamellar
hydrate layer

with M*



Radial distribution function

Molecular simulation of dynamical processes at mineral interfaces

pyrophyllite
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0 Clay hydration and swelling

Effect of interlayer cation
Teich-McGoldrick et al, J. Phys. Chem. C 2015

PHYSICAL, CHEMISTRY

pubs.acs.org/JPCC

Swelling Properties of Montmorillonite and Beidellite Clay Minerals
from Molecular Simulation: Comparison of Temperature, Interlayer
Cation, and Charge Location Effects

Stephanie L. Teich-McGoldrick,” Jeffery A. Greathouse,* " Carlos F. Jové-Colén,” and Randall T. Cygan'

TGeochemistry Department and *Nuclear Waste Disposal Research and Analysis Department, Sandia National Laboratories,
Albuquerque, New Mexico 87185, United States
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lon diffusion and electrical conductivity

PHYSICAL CHEMISTRY

pubs.acs.org/JPCC

Molecular Dynamics Simulation of Diffusion and Electrical
Conductivity in Montmorillonite Interlayers

J. A. Greathouse,™" R. T. Cygan,” J. T. Fredrich,” and G. R. Jerauld*

TSandia National Laboratories, Albuquerque, New Mexico 87185-0754, United States
*BP America, 501 Westlake Park Boulevard, Houston, Texas 77024, United States

ABSTRACT: The diftusion of water and ions in the interlayer region of smectite
clay minerals represents a direct probe of the type and strength of clay—fluid
interactions. Interlayer diffusion also represents an important link between
molecular simulation and macroscopic experiments. Here we use molecular
dynamics simulation to investigate trends in cation and water diftusion in
montmorillonite interlayers, looking specifically at the effects of layer charge,
interlayer cation and cation charge (sodium or calcium), water content, and
temperature. For Na-montmorillonite, the largest increase in ion and water
diffusion coefhcients occurs between the one-layer and two-layer hydrates,
corresponding to the transition from inner-sphere to outer-sphere surface
complexes. Calculated activation energies for ion and water diffusion in Na-
montmorillonite are similar to each other and to the water hydrogen bond energy,

mrvvvantine tha heanlrias Afvrabne cratbae and wrabae clasr hordeanann haande Ao A Lilzales
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Adsorption of radionuclides
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Gibbsite nanoparticle aggregation
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NPT
0.3 ns
300 K

100 MPa

54 NPs, 55k H,O
30 x 30 x30 Nnm3

Virtual’ pump removes waters
from a pre-defined region.

Ho et al, Sci Rep. 2017
“Fast” dewatering “Slow” dewatering
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Competitive I2 sorption

>

Gas separation in MOFs.

Gas diffusion in carb tubes.
st roon nanoives Sava et al, Chem. Mater. 2013

Greathouse et al, Mol. Sim. 2015
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Saturates
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Adsorption of Crude Oil Molecules at Kaolinite Edges

Resins
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* Enhanced Oil Recovery (EOR): better

understanding of the adsorption tendencies of
crude oil components on mineral surfaces.

* Resins have polar groups:

* Increased adsorption on hydrophilic surfaces. |
 Targeted in enhanced oil recovery efforts (e.g., |
low salinity waterflooding).

» Adsorption trends on clay basal surfaces have

been modeled (no pH dependence).
Greathouse et al, J. Phys. Chem. C 2017, 121, 22773

» Adsorption trends on pH-dependent edge surfaces

is needed, particularly for resins.



16 ‘ MD Simulations of Resin Adsorption on Kaolinite Edges

* (010) surface created from an 8 x 5 x 6 supercell.
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Zeitler et al, J. Phys. Chem. C 2017, 121, 22787

removing a proton from adsorbed H,O.
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MD Snapshots Showing Adsorption Trends

Charged Surface

Neutral Surface
—N Y

@Ca* |  Water molecules removed for clarity

Neutral Surface: AlIO,(OH);(OH,)

« Very little interaction with edge sites
W (only Na*).

« Strong ion pairing between resin and
6#; g Ca?* but not with Na*.
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Trends in Resin Adsorption

Effect of surface charge

.

Neutral, Na

Charged, Na

Surface, Counterion

Neutral, Ca

Charged, Ca

cation bridging
Divalent cation, charged surface

Effect of cation (monovalent/divalent)
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Reduced organic adsorption at higher
Na*/Ca?* ratios (cation bridging)

Zeitler et al, J. Phys. Chem. C 2017, 121, 22787
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The adsorption of a representative crude oil molecule (resin
anion) on clay mineral surfaces depends significantly on:

» Surface hydrophilicity.

» Surface charge and type of bridging catlon (pH dependent

edge surfaces).

Adsorption trends on kaolinite edges:

* Neutral surface (lower pH): weak adsorption. N\

« Charged surface (higher pH): strong adsorption (Ca?*).

weak adsorption (Na*).

Divalent cations such as Ca?* are able to efficiently bridge
surface sites and organic anions.
These results support ongoing EOR efforts based on low salinity
waterflooding.

Funding People
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Surfactant-Mineral Interactions

Motivation

* Understand the behavior of complex fluids in the
subsurface.

e Control the distribution of complex fluids by changing
fluid chemistry, and to control rheological properties of
complex fluids.

Relevance

Energy extraction, water treatment (produced water,
energy generation)

Project goal

Quantify at the molecular scale the competing roles of
fluid-fluid and fluid-surface interactions on fluid

partitioning at a well-characterized mineral surface (mica).

mica Y
K(AI,S|)3AI3010(OH)2 I

Si0, or AlO,
— & tetrahedron




s Research Plan

Experimental measurements + molecular modeling
- Trends in wetting properties of a complex fluids on mineral surfaces.

Complex fluid components: water, aqueous cations, nonpolar liquids, and polar
surfactant molecules.

Determine how the adsorption properties change with cation composition.

Ys1

Contact angle measurements

MD simulation

Cryo-STEM fiid == %<,
Dendrite J 4
(type )

Dendrite

. (ypell)

Carbon Oxygen Fluorine

Cryo electron microscopy
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Preliminary Study: 2-Component Fluid

MD simulation
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Driving forces for observed interfacial structure:
K* adsorption on the mica surface, K* hydration

water

n_
butylamine
(polar)

water
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AOT Surfactant

* Dioctyl calcium sulfosuccinate (Aerosol-OT, AOT)

' * Neutron data suggests bilayer formation on mica.

* 2 AOT monomers bridged by Ca?*.
* Formation of polar and nonpolar regions.

* Bidentate coordination with each sulfate.
e Coordination with carbonyl oxygens.



26 Effect of Surfactant Concentration on Interfacial Structure @
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2 Cation Dependence on Interfacial Structure

Cation hydration energy
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Micelle

Surfactant Structure — Layer Thickness

Ca2+

Bilayer

2.0 nm 2.3 nm

AT AT

Ideal thickness of a single AOT chain 1.8 nm
Bilayer thickness from neutron reflectometry 2.2 nm
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radial distribution function

Surfactant Binding Mechanisms

LK

Cation-oxygen distances from radial distribution functions (RDFs)
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» Weakly hydrating cations (K*) bind sulfate O

atoms directly (inner-sphere coordi

nation).

* Strongly hydrating cations (Ca?*) retain water
hydration shells, which in turn form H-bonds

with sulfate O atoms (outer-sphere
coordination).
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Micelle vs Bilayer

30
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31 Raman Microscope

Raman spectrum
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Organized layer near
interface

Interfacial micelle layer is
not continuous(no bilayer)
Micelles in amorphous-ice
bulk tend to cluster
Thicker ~10 nm interfacial
layer is not always visible,
possible artifact

Mica tilted towards [100]
zone to show basal planes

Preliminary Cryo-EM Results

2.3 mM NaAOT on Mica
Imaging — Talos 120 kV

Micelles ~ 2 nm
Interfacial layer thickness 2-3 nm
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Summary of Surfactant Interactions with Mica Surfaces

MD simulations of an anionic surfactant (AOT) are consistent with observations from published
neutron reflectometry:

« AOT binds to the negatively-charged mica surface via cation bridging.

« Surfactant thickness is consistent with a bilayer (or micelle).

Cation hydration properties govern the presence of water layers at the mineral-surfactant
interface.

AOT bilayers form at the mica surface at surface concentration of ~ 1 AOT/nm?. In experiments,
the critical micelle concentration (CMC) of the cation-AOT pair must also be considered.

The combination of nano-scale characterization (spectroscopy, cryo-EM) and molecular modeling
will provide the molecular-level insight to drive innovation to control complex fluid behavior in the
subsurface.
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