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2 Problem:Arctic sea ice minimums impact the full Earth system

Loss of Summer

Sea Ice

Impacts:

Mid-latitude weather

changes; ocean current

alterations

Greenland Ice

Sheet Melt

Impacts:

Sea level rise; ocean

current alterations

 1
Permafrost Thaw

Impacts:

Significant greenhouse gas

release; changes in hydrology;

increased erosion

Shutdown of Atlantic

Thermohaline Circulation

(THC)

Impacts:

Regional cooling;

significant weather shifts

in the N. hemisphere

Photograph Credit: D. Perovich et al., NOAA, Arctic Report Card: Update for 2018



3 Problem: predicting the minimum extent (km2) each year
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4 Problem: most CMIP5 models
underestimate sea ice decline

In a study [1] of Arctic sea ice predictions from
theWorld Climate Research Programme's
Coupled Model lntercomparison Project 5 
(CMIP5):

1 18 simulations run using 40 models in
CMIP5

Only l l % of model runs agree with the
observed trend

This worlc examines the Energy Exascale Earth
System Model (E3SM)

Not in CMIP5 but E3SM is derivative of a
model in CMIPS

[I] Erica Rosenblum and lan Eisenman. 2017. Sea ice trends in climate models only accurate in runs with biased
global warming. J. Cum. 30,16 (August 2017), 6265-6278. DOI:https://doi.org/10.1 I 75/JCLI-D-16-0455.1
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6 Goals ■

First Steps

Identify features in June that
are the most impactful for
sea ice extent in September

Final Goal

Improve both physics-based
and data-driven models of
the Arctic climate

• Conduct a feature
analysis on observed
climate data in the Arctic

• Feature analysis can be
conducted on any
trained model.

• Compare results with a
feature analysis on
simulated data

• Make adjustments to
physics-based models to
adapt for inconsistencies
with observed data

• Evaluate newly tuned
physics-based model for
change in accuracy
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9 Data
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6 Datasets

Observed 

• NOAA

• NSIDC
NSIDC

Nalional Snow and Ice Data Center

• Polar Science
Center

Polar Science Center

5 E3SM Ensembles

• Separate I 65-year
runs with differing
initial conditions

• I 65 years allows
initial model chaos to
settle

• Last 35 years
extracted for datasets

SIV1 Energy Exascale
Earth System Model

•



ML Model
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I 2 Methods: Feature Importance

Gini Importance — default for R and Python's scikit-learn

o Measures how each feature reduces variance

o Fast

o Highly biased for data with many unique values

cp cp
b _,.L,

Gini Importance
c) o 0.

.r.

I
I

Random Variable



13 Methods: Feature Importance

Gini Importance — default for R and Python's scikit-learn

• Measures how each feature reduces variance

o Fast

o Highly biased for data with many unique values

Permutation Importance — stochastic

o Permutes each feature and measures the changed in error

o Fast

o Results can depend on the specific permutation of each feature

Cannot be run on training data alone

CD
o

Gini Importance
co co co co

1--1

Random Variable
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14 Methods: Feature Importance

Gini Importance — default for R and Python's scikit-learn

• Measures how each feature reduces variance

o Fast

o Highly biased for data with many unique values

Permutation Importance — stochastic

o Permutes each feature and measures the changed in error

o Fast

o Results can depend on the specific permutation of each feature

Cannot be run on training data alone
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Drop-column Importance — deterministic

o Drops each feature from the data set one at a time
and retrains the model each time

o Very slow

o Returns repeatable, objective results

•
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I 5 Results

• 0, 1, and 5 year forecast results

o Feature importance values for each data set

• Error metrics for each data set's regression

4

-4

Observed

R2: 0.9384 -0.1504

RMSE: 0.2057 0.6533

MAE: 0.1335 0.4622

•



16 Results: 0 Year Forecasts
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17 Results: I Year Forecasts
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18 Results: 5 Year Forecasts
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21 Results: 5 Random Test Years
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22 N ext Steps

❑Investigate high variance of results
❑ Likelihood of multicollinearity

❑ Use principal component analysis and feature selection techniques to eliminate features

❑ Retrieve more features from E3SM that can be measured in nature

❑ Obtain domain expertise to determine relevant features



23 Multicollinearity: Dependency Matrix
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2 4 Multicollinearity: Spearman Rank Order Correlation Matrix
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25 Conclusions

Inconsistency between data sets at all forecast intervals.

Model accuracy increases when it can train on more years but feature importance values do not
become more consistent.

Choosing a random set of test years is ideal but introduces large variance in feature importance
results.

Multicollinearity is likely the culprit as indicated by the correlation and dependency matrices.
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27 Results: I 0 Year Forecasts
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