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2 | Introduction — Mini-Modules and C-AST

C-AST: Combined-Accelerated Stress Testing

° Subject modules to a combination of
environmental stress factors

> Mimic deployed module conditions
o Identify weaknesses

> How do multiple stress factors and their
combined effects impact modules?

Mini-Modules:

° Four-cell photovoltaic modules

o Account for size considerations of climate
chamber




3 | Goals

* Use finite element modeling to simulate this procedure

* Is a mini-module FEM representative of experimental modules?
* Validate simulation results against experimental measurements
* Are mini-modules representative of full-sized modules?

* Compare mini-module deflection curvature to full module curvature under
qualification loading

* How do temperature changes impact stress states of silicon cells and backsheet?
* Thermal simulation analysis

* Are these results valid?
* Model validation and uncertainty quantification

* Convergence study
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4 I Finite Element Modeling Procedure — Geometry

Geometry Development

* The geometry used to develop the finite element model

was based on an experimental setup i
Busbar

* The model includes the frame and load ring as used in

C-AST Load Ring Top Ribbon/Solder
* The model includes internal details surrounded by

encapsulant
* Interconnects are connected to PV cells with solder Load Ring

o

PTFE Rail

Y

[<x PV Cell \

Mini-module components and internal details

Frame
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; | Finite Element Modeling Procedure — Geometry
Geometry Decomposition and Meshing
* CUBIT software used to decompose and mesh mini-module geometry for simulation
* Conformal mesh assigned to laminated or welded surfaces
* Decomposition preserves quality of complex and small features

* 10 million element mesh demonstrated model convergence

Conformal
Mesh

Contact
Points

Geometry
decomposition
preserves the
mesh quality of
small features

Conformal
Mesh

Conformal Mesh

Mini-module mesh and geometry decomposition



6 | Uncertainty Quantification Set-Up

How do small changes in model parameters impact simulation Varied Parameters for Uncertainty Quantification

r CSUltS? # Parameter Lower Bound Upper Bound
* 26 parameters were varied to determine their impact on simulation NG piic e ) 3.00 340
2 Interconnect Thickness, [mm)] 0.27 0.33
results 3 Solder Thickness, [mm] 0.025 0.035
: ; ; : 5 ; 4 Encapsulant Thickness, [mm|] 0.80 1.00
* Parameters included geometric dimensions, material properties, and the 5 cai Thickness, fmm] T T
COCfﬁCiCﬂt Of friction 6 Backsheet Thickness, [mm)] 0.15 0.40
) ) 7 Interconnect and Solder Width, [mm] 0.90 1.10
* Incremental Latin Hypercube Sampling approach used to take 120 Bl e G 114 14.0
samples 9 PTFE Rail Width, [mm] 11.4 14.0
1. Glass Thickness P 10 Steel - Elastic Modulus [GPa] 174 212
. . 11 Steel - Poisson’s Ratio 0.276 0.305
2. Ribbon Thickness 7] [C e o a S [Grs 40 60
3. Solder Thickness Bl [CE s e 0.162 0.179
4. EVA Thickness 14 PTEE - Elastic Modulus [GPa] 0.458 0.506
. 5. Cell Thickness 15 PTFE - Poisson’s Ratio 0.437 0.483
6. Backsheet Thickness 16 Solder - Elastic Modulus [GPa] 20 60
7. Ribbon/Solder Width 17 Solder - Poisson’s Ratio 0.30 0.40
18 Silicon - Elastic Modulus [GPa] 162 179
19 Silicon - Poisson’s Ratio 0.266 0.294
20" Backsheet - Elastic Modulus [GPa] 0.968 1.450
PTFE Rail 21 Backsheet - Poisson"s Ratio 0.4 0.499
Width 22 Encapsulant - Elastic Modulus [GPa] 0.0021 0.0031
23 Encapsulant - Poisson’s Ratio 0.45 0.499
24 Copper - Elastic Modulus [GPa] 117 130
24 25 Coppet - Poisson’s Ratio 0.296 0.327
26 Coefficient of Static Friction 0.05 0.30

”

Mini-module geometry definitions for uncertainty analysis
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7 | Finite Element Modeling Procedure — Boundary Conditions

Fixed g l Gravity
o ' i Symmetry Plane
* Quarter symmetry conditions applied i -
along XY and YZ planes

* Frictional contact acts between ring and
glass as well as between backsheet and rails

* Mechanical load applied to load ring and /

¢y - Fixed
gravity imposed on all components

* Frame post is fixed 1n all directions Fixed

i

1

Frictional e :

Contact, —— ]
" Fixed

Symmetry Plane

Mini-module boundary conditions
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| Model Results — Mini-Module Shape vs. Full Module Shape

T8 5
*
25} . * ©
5| = *
. e E o) o]
How does the deflected mini-module . . ;
compare to a deflected full module? T5F
— o * #* o]
* Points taken across the diagonal of both E o} . .
photovoltaic modules = = 5
< L
i - = 125 W
* Mini-module deflection curvature plotted g '
. . e
against deflection curvature of a full 8 5t 0 0
module bV e o
75
* Curvature roughly matches that of full
module 20 F
*  MiMo - 0.4 mm Displacement
%  Full Module - 1 kPa Pressure
225 O MiMo - 1.1 mm Displacement
©  Full Module - 2.4 kPa Pressure

_25 1 L 1 1 1 1 1 I
-1000 -750 -500 -250 0 250 500 750 1000 ‘

distance from module center [mm]

Comparison of full module and mini-module deflection curvature under
module qualification loading conditions



9 | Model Results — Mechanical Deflection vs. Load

How do model predicted deflections compare
to measured deflections under a known load? ok

* Preliminary results of uncertainty quantification

* Geometric and material variables sampled over
known and estimated uncertainties

y-deflection [mm]
o
o

* Mean and mean + two standard deviations of
backsheet deflection plotted under 5 psi actuation
pressure

data under two known loading conditions _— = = Sim.-5 psi+ 2 St. Deviation
® Experimental Data - 5 psi

_2 1 1 | | | |
-300 -200 -100 0 100 200 300

distance from module center [mm]

Comparison of simulated and experimental mini-module

e Simulation results plotted acainst experimental 1.5 / T —
3 \ Simulation - 5 psi
deflection under 5 psi actuation pressure M



10 | Model Results — Mechanical Deflection vs. Load

1:8 |
11 \ ' .
. . 0.5 - .
How do model predicted deflections compare
to measured deflections under a known load? ol |
* Mean and mean + two standard deviations of E
backsheet deflection plotted under 10 pst c -05F -
actuation pressure =
5 5 b} L .
* Measured values mostly fall within two standard % -
deviations of the mean s
: 151 -
* Mean deflection appears to overshoot
experimental measurements Py I
* Additional experimental data and simulations & - :
he full sample set needed to validate model — -25F %5 ’ Simuiatlan.- 19 ps!
over the tu p VaCaLe: thode T \ ® = = Sim. - 10 psi + 2 St. Deviation
, | | N o ‘. |. Experinllental Data - 1|D psi
-300 -200 -100 0 100 200 300

distance from module center [mm]

Comparison of simulated and experimental mini-module
deflection under 10 psi actuation pressure
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11 I Model Results — Sensitivity

X 107

; ; o . % s ; 44|
Which varied parameter is mini-module deflection

most sensitive to? 1.2}
* Linear correlation coefficients calculated for 26

sampled variables under a standard loading condition
* Glass elastic modulus demonstrated to be the

variable most-correlated with backsheet deflection

y-deflection at module center [mm]
~

15}
* Glass elastic modulus 1s sensitive to the composition
L O
of the glass -1.6
* Glass used in mini-modules is not as well | o
characterized as that used in full modules -
_1.8 1 1 1 1 1
4 45 5 55 6
Glass - Elastic Modulus [Pa] %1010

Mini-module deflection sensitivity to variations in the
elastic modulus of glass
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12 | Model Results — Sensitivity

Which varied parameter is mini-module deflection
most sensitive to?

Second most-correlated parameter is the elastic
modulus of the encapsulant

Top two most-correlated variables are significantly
greater than the others

Module Sensitivity to Varied Parameters

Parameter Correlation
Coefficient
Glass — Elastic Modulus 0.6604
Encapsulant — Elastic Modulus 0.3082
PTFE — Elastic Modulus 0.2004
Copper — Elastic Modulus 0.1914
Coeftficient of Friction 0.1595

Interconnect Thickness 0.1275

1
— —_
N N

'
kl
w

Y
(&)}

y-deflection at module center [mm]
> s

-1.7

X 10

O

IR| = 0.3082

1 1 1 ) 1 1 1 J

2 2.2 24 26 2.8 3 3.2 34

Encapsulant - Elastic Modulus [Pa] %x10°

Mini-module deflection sensitivity to variations in the

elastic modulus of encapsulant



3 | Model Results — Backsheet Behavior at 85 °C

Mini-module behavior at 85 ° C with and without 1.1 mm

displacement
* Mechanical load causes backsheet deflection
* Backsheet lifts off of the rails under mechanical load
* Does not increase the magnitude of maximum

Von Mises Stress [Pa]

3.100e+06
2.400e+06
1.700e+06
1.000e+06
0.000e+00

stress substantially Von Mises Stress [Pal

3.100e+06
2.400e+06
1.700e+06

1.000e+06
0.000e+00

1<x Von Mises stress on backsheet at 85 °C, 1.1 mm displacement.
Displacement in the y-direction exaggerated 10 times.

Von I\;Iises stress on backsheet at 85 °C, no mechanical load.




14 | Model Results — Backsheet Behavior at -40 °C

VVon Mises Stress [Pa]

2.800e+07
2.100e+07
1.400e+07
7.000e+06
0.000e+00

Mini-module behavior at -40 ° C with and without 1.1 mm displacement
* Mechanical load causes backsheet deflection, but
does not increase the magnitude of stress substantially

* Backsheet material contracts at lower temperatures
(-40 °C) and remains in frictional contact with the rails

Von Mises Stress [Pa]

2.800e+07
2.100e+07 i

1.400e+07
7.000e+06
0.000e+00

1<x

Von Mises stress on backsheet at -40 °C, 1.1 mm displacement.
Displacement in the y-direction exaggerated 10 times.

]<x

Von Mises stress on backsheet at -40 ° C, no mechanical load.



15 | Model Results — Cell Behavior under Thermal & Mechanical Loads

* Obvious influence of load ring on the stress distribution on the cell
* Maximum stress magnitude on the cells does not appear to be
substantially impacted by mechanical loading

Max Principal Stress [Pa] Max Principal Stress [Pa]

3.500e+07 3.500e+07
3.167e+07 3.167e+07
2.833e+07 2.833e+07
2.500e+07 2.500e+07
0.000e+00 0.000e+00

‘ Maximum principal stress on cells at 85 °C, no [ Maximum principal stress on cells at 85 °C,
mechanical load. Legend scaled to show 1.1 mm displacement. Legend scaled to
influence of interconnects. show influence of load ring.




16 | Model Results — Cell Behavior under Thermal & Mechanical Loads

* Maximum stress magnitude is greater in the 85 °C case than the -40 °C case
* Impacted of the interconnects on the stress distribution is visible

Max Principal Stress [Pa] Max Principal Stress [Pa]

6.200e+08 4.400e+08
4.400e+08 3.050e+08
2.600e+08 1.700e+08
8.000e+07 3.500e+07
-1.000e+08 -1.000e+08
X X
[ Maximum principal stress on cells at [ Maximum principal stress on cells at

85 °C, 1.1 mm displacement. 40 °C, 1.1 mm displacement.




17 I Summary

* Mini-module under mechanical loading exhibits a similar deflection curvature as a
full photovoltaic module

* Mini-module curvature exhibits a more shallow curvature than the full module
* FEM validated against mechanical experimental data
* Deflection behavior of a mini-module under load in the C-AST procedure.

* FEM under thermal and mechanical loading:
* Higher stress magnitudes are due to material expansion/contraction rather than mechanical loading

* Backsheet stresses are influenced by the interconnects in both thermal & thermal-mechanical loading cases

* Uncertainty quantification and sensitivity analyses were completed with available
results



18 1 Future Work

* Additional validation of the FEM against experimental results

* Complete uncertainty quantification and sensitivity analyses

* Explore module behavior under thermal cycling and compare to experimental data
* Inclusion of additional physical effects

* Moisture diffusion

* Material viscoelasticity

* Inclusion of junction box into finite element model
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