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Energy Exascale Earth System Model (E3SM)

* Global earth system modeling framework

« Collaborative project involving 8 U.S. DOE
labs and 12 universities

* Development driven by energy and water
issues over the next 40 years

« Key computational goal: performance on
exascale computers
* Open source / open development
= Website: www.e3sm.org
= Github: https://github.com/E3SM-Project

= DOE Science youtube channel:
https://www.youtube.com/channel/UC_rhpiOl
BeD1U-6nD2zvIB




Context: the problem with coarse resolution

« Coarse resolution results in heavy
reliance on complicated/empirical
subgrid-scale parameterizations

* Uncertainty in subgrid-scale
parameterizations can be a major
source of uncertainty in large-scale
models / climate projections

Problem: how to parameterize this
subgrid-scale variability?



SCREAM - Simple Cloud-Resolving E3SM Atmosphere Model

» Goal is to keep code as simple as possible
— You shouldn’t trust results you don’t understand physically...
— Simplicity makes clean rewrite (needed for performance) possible
— Resolving more makes complex parameterizations less important

* Not quite cloud-resolving (yet!), but makes for a cool acronym
— Target dx = 3 km globally, 128 vertical layers with a top at 40 km

« E3SM: “Energy Exascale Earth System Model” (US Department of Energy
coupled earth system model)

« E3SM ocean and sea-ice already work at these scales
— Goal here is a coupled km-scale system, not just an atm model



Why 3 km resolution?

Topography at 25 km resolution Topography at 3 km resolution
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New 3 km resolution for SCREAM better resolves topographic features, as well as
eliminates need for parameterization of processes unresolved at previous “high
resolution” configuration of 25 km.



Why 3 km resolution?

 The impact of cold ] oo
pools on DMS transport
illustrates what'’s
missing at coarser
scales (see figure)
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Fig: Snapshot of DMS concentration (green=Ilow, red=high) in a 2d CRM
of oceanic deep convection (domain = 256 km, Ax = 1 km). Neglecting
the spatial pattern of DMS reduced convective transport by 50%. From
Devine et al, 2006 GRL, pointed out by Ken Carslaw



Thesis: Climate Change Can be Understood
from Short Runs
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This thesis is critical to SCREAM because high-res § 1 e
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+ Clouds are the main source of climate uncertainty Fixed-SST A,y (W m2 K2

« Clouds respond rapidly to forcing change Fig: Cloud feedback from full-

= Cleverly-designed short runs should tell us a lot  complexity (y-axis) versus fixed
SST simulations in CMIP5.

_ Adapted from Ringer et al, (2014
» Several clever short tests already exist GRL).

* 5yrCess (prescribed SST increase) runs
* 15 mo aerosol sensitivity tests nudged to observations



Components of a typical
global atmosphere model
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Components of a typical
global atmosphere model
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Resolved-scale fluid dynamics: Radiative transfer:
HOMME non-hydrostatic RRTMGP

spectral element model; semi-

lagrangian tracer transport C ) ( )

Subgrid-scale
turbulence and

L ! | cloud formation:
Cloud and precipitation N simplified

microphysics: Higher-Order
Predicted Particle Closure (SHOC)
Properties (P3)
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HOMME

* New non-hydrostatic dynamical core

— Important for non-hydrostatic effects at 3 km and finer
resolutions

« Reformulation of thermodynamic equation in
terms of potential temperature

* IMEX time-stepping
« Semi-Lagrangian tracer transport
« C++/Kokkos for performance portability

DCMIP2016 baroclinic
instability test at 3 km

(showing specific humidity)
> AT RN



Simplified Higher-Order Closure (SHOC)

« Bogenschutz and Krueger (2013)

* Represent subgrid-scale clouds and turbulence in cloud resolving models, but
at reduced computational cost relative to comparable methods

« PDF-based tri-variate double Gaussian closure

Diagnose length J “ | Update T, q, u, v,
scale and advance Diagnose moments TKE based on SGS
TKE equation mixing

Inputs: T, q, u, v,

TKE, buoyancy flux

| " Use PDFtoclose | )\ select PDF from given
Outputs: cloud ' N Diagnose cloud functional form y

fraction, liquid :::gsg%:l_:zé fraction and liquid to match 10
water, T, q, u, v, TKE . water from PDF moments
equation




RTE-RRTMGP

RRTMGP++ performance on Summit

. 6.00E-01 50.00
* Pincus et al. (2019)
i —® 4000 _
* Re-write of popular RRTMG >
. . L 4.00E-01 &
radiative transfer package, g 000 5
designed with increased & . 2000 3
parallelism in mind g oo B
’ w
* Ported to C++/YAKL as part - B & 000
of Exascale Computing ' 0 2500 5000 7500 10000 12500
Project effort (Matt Norman) Columns per node
® FortranCPU @ C++GPU Fortran GPU @ Fortran CPU / C++ GPU

@ Fortran CPU / Fortran GPU

Figure: single-node performance on Summit for example
problem (longwave only; similar results for shortwave)



Implementation strategy

100% 4

Effort (o< Height of Box)

Porting Planning

Nonhydrostatic F90 dycore

SCREAMVO| I

SHOC in F90

P3in F90

RRTMGP in E3SM

nel024 grids

Explore cIima|te of F90 version at ne1024

SCREAMv1

Port Parameterizations to C++/Kokkos
and Develop Unit Tests

New C++ Physics Coupler

C++ model
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v3 Coupled Runs start July 23

July ‘18

July ‘19

| July 20
time into project.

we are here




SCREAM v0 (F90 ve

* Goal = DYAMOND Phase 2
Intercomparison

* Includes ~10 global storm-system |
models (GSRMs)

* 40 day run starting Jan 20, 2020
* Results due Jan 1, 2021

* ne1024pg2 gets 5.2 simulated ¢
wallday on 3072 nodes of cori-k

» without performance optimization
* = 40 day run costs 22.7M NERSC

Fig: Snapshot of precipitation (color) and liquid water path R
(opacity with opaque white = 200 g m?) after 2.5 simulated days.



SCREAMvO0 Radiative Convective Equilibrium
(RCE)

Like other models. SCREAM self- Running varying SST simulations to look at cloud
: response to warming as well as model physical

aggregates in RCE _ . _
soundness in an idealized setup.
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Coding

« SCREAM will be rewritten in
C++ using the Kokkos
performance portability library

— Abstracts on-node parallelism

— Single codebase runs efficiently
with variety of hardware (CPU,
GPU, etc)

— Performance portability often
comes at the cost of increased
code complexity

Ported to C++/Kokkos

Original F90

kloop_sedi c2: do k = k_gxtop,k_gxbot,=kdir

gc_notsmall_c2: if (gc_incld(k)>gsmall) then
'— compute Vg, Vn
call get_cloud_dsd2(qgc_incld(k),nc_incld(k),mu_c(k), rho(k),nu,dnu, &

lamc (k) , tmpl, tmp2, Lcldmik) )}

ncik) = nc_incld(k)*Llcldm{k)

dum = 1._rtype / bfb_pow(lamc(k}, bcn)
V_ge(k) = acn(k)*bfb_gamma(4._rtype+ben+mu_clk) J*dum/(bfb_gamma(mu_c(k)+4._rtype))
V_nclk) =

acn(k)*bfb_gamma(l._rtype+bcn+mu_c(k) J+dum/ (bfb_gamma(mu_c(k)+1._rtype))

endif gc_notsmall_c2
Co_max = max(Co_max, V_gc(k)*dt_leftxinv_dzq(k))

enddo kKloop_sedi_c2

Kokkos::parallel_reduce(

Kokkos::TeamThreadRange(team, kmax-kmin+1), [&] (int pk_, Scalar& lmax) {

const int pk = kmin + phk_;

const auto range_pack = scream::

pack::range<IntSmallPack=(pkxSpack::n);

const auto range_mask = range_pack >= kmin_scalar &4 range_pack <= kmax_scalar;
const auto gc_gt_small = range_mask &% gc_incld(pk) = gsmall;

if {gc_gt_small.any()) {
// compute Vg, Vn
Spack nu, cdist, cdistl, dum;

get_cloud_dsd2<false=(qc_gt_small, gc_incld(pk), nc_incld(pk), mu_c(pk), rho{pk), nu, dnu, lamc(pk), cdist
ncipk).set(gc_gt_small, nc_incld{pk)*lcldm(pk));

dum = 1 / (pack::pow(lamc(pk),

ben));

V_gc(pk).set(gc_gt_small, acn{pk)*pack::tgamma(4 + ben + mu_c(pk)) * dum / (pack::tgamma(mu_c(pk)+4)));

if (log_predicthc) {

V_ncipk).set(gc_gt_small, acn{pk)*pack::tgamma(l + bcn + mu_c(pk)) * dum / (pack::tgamma(mu_c(pk)+1))});

const auto Co_max_local = max(gc_gt_small, -1,

if (Co_max_local = lmax)
lmax = Co_max_local;

}. Kokkos::Max<Scalar=(Co_max));
team.team_barrier();

V_gc(pk) * dt_left * inv_dzq(pk));




Testing

 Strive for property tests (check that
code behaves physically) in addition
to BFB testing (check that answers
have not changed)

« Example of property tests:
convergence in dt, dz, dx; Applying to
SHOC revealed problems with:

— Bretherton & Park (2009) shear
production boundary condition

— Blackadar (1984) turbulent length scale
near surface
« Encapsulation of parameterizations
makes unit testing straightforward

Original
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Fig: SHOC standalone simulations running the BOMEX test case
(trade wind Cumulus) for 6 hrs with a variety of vertical

resolutions. By Peter Bogenschutz




SCREAMv1

« C++ version of non-hydrostatic (NH)
dycore done
— Used for recent Gordon-Bell submission
(see figure)
— 0.97 SYPD using all of Summit

— Not including semi-lagrangian advection,
which gives a further speed-up

Simulated Years Per Day

— P3 port nearing completion 33 km, GPU, C++ | €1 km, GPU, C++
: A-3 km| P9, Fortran <@=3 km, P9, C++
— SHOC port starting now 8 3km, KNL, Fortran ©-3 km,[KNL, C++
— RRTMGP port mostly done (starting 0.001 reference
interface now) 512 1024 2048 4096 8192

Number of Summit/Cori-KNL nodes

Fig: Nonhydrostatic C++ dycore-only

NGGPS benchmark sca/lng £10 tracers).



Process coupling

* New atmosphere driver; all atmosphere processes are instances of a

atm process class

Atm Driver

* Having all processes behave the same way:
— Makes adding/reorganizing/parallelizing processes easy
— Improves code readability

* Processes broken into:
— SCREAM-specific interface layers

Proc1 _| !
¢ field
Interface manager
Process

Representation

Proc 2

Interface

Process
Representation

— Model-agnostic process implementations that make:
* Code easy to share with/implement in other models

Fig: SCREAM coupler structure

» Standalone process simulations straightforward (useful for testing)

* Processes communicate entirely through a field manager that provides

interface layers with pointers to requested variables




I n iti a I resu lts . DYAMOND 1: Global mean evolution

" i b et A
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« DYAMOND Phase 1 configuration 20| s
o 2y o TOA SW -SCREAM
— Initialized from IFS reanalysis for 01 Sa0| —— TOA LW -SCREAM
g ; v Daily Avg CERES SW
AUQUSt 2016 g 200 4 Daily Avg CERES LW
— Showing 2-day simulation from T 10bo 025 050 075 100 125 150 175 200
initialization s
— Prescribed SST/sea ice £,
* Results are reasonable after initial £3 t
' 2. —
spin-up 22 « Day Aug GPM Precp
— Both shortwave and longwave fluxes are “lobo 025 050 075 100 125 150 175 260
slightly above CERES daily average Th. "

Figure: comparison of SCREAM top of
atmosphere fluxes with CERES, and
precipitation rate with GPM

— Global mean precip rate slightly above
GPM daily average

* Rigorous evaluation coming soon...



Initial results

50 75 100 125 150 175 200 225 250 275 300

Figure: animation of total gridbox-mean cloud water
path from initial simulation at 3 km resolution



Challenges 225

- 200 1
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* 3 km global resolution makes for
huge grids
— Very expensive (~5 simulated days
per wallclock day)
— 1/O is a problem (restart files for

175 A

150

125 A

Lowest model level temperature

atmosphere alone are > 3 TB in size) = %91
» Debugging 75 — nel024npd
— Difficult if not impossible to debug at 50 neld24pg2 2x nu_div
scale — nell24pg2 SHOC fix
— Bugs specific to coupling at high 2016-08-01 07:00 2016-08-01 22:00 2016-08-02 13:00
resolution not always reproducible at Time
lower resolution Fig: temperature instability arising only when
coupling physics and dynamics at very high
resolution



Next steps

« DYAMOND Phase 2
« Continue porting to C++/Kokkos for performance portability

* Migrate to pre-exascale and exascale machines
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