

Synthesis, Modeling and Kinetics of Rationally Designed Defects and Substitutions in 2D Materials

DE-LC-000L059

Sandia National Laboratories
2019-2021

Stanley S. Chou, Sandia National Laboratories

U.S. DOE Advanced Manufacturing Office Virtual Program Review
June 2-3, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

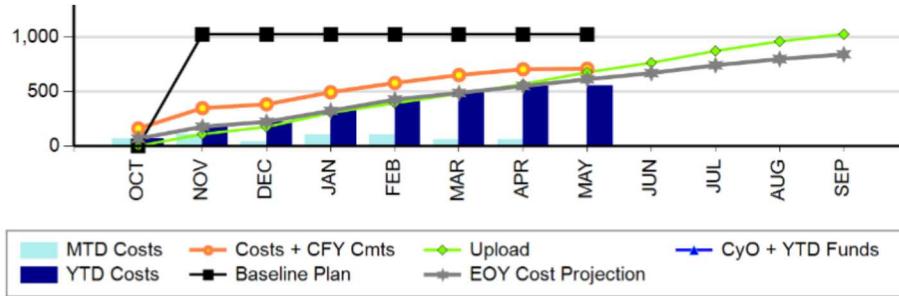
Overview

Project Title: Synthesis, Modeling and Kinetics of Rationally Designed Defects and Substitutions in 2D Materials

Timeline:

Project Start Date: 10/01/2018
Budget Period End Date: 9/30/2020
Project End Date: 9/30/2021

Project Goals:


- Ethylene and ammonia are two of the most produced and highest energy consuming chemicals.
- Demonstrate catalyst supported conversion of nitrogen to ammonia with electricity.
- Integration of reactor and catalyst design for ethylene process intensification, at > 57% yield with high conversion and selectivity.

AMO MYPP Connection:

- Chemical manufacturing
- Process intensification

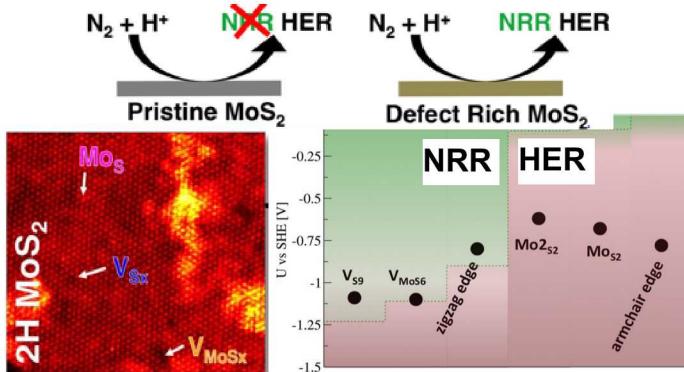
Project Budget and Costs:

Budget	FY20 DOE Share	FY21 DOE Share	Total	Cost Share %
Overall Budget	\$1,000,000	\$1,000,000	\$2,000,000	0%
Approved Budget (BP-1&2)	\$1,000,000	\$1,000,000	\$2,000,000	0%

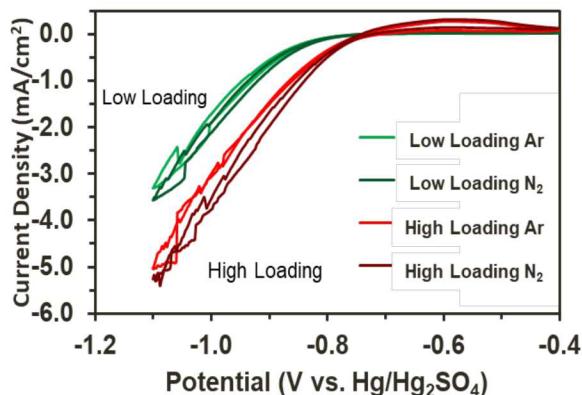
Project Team and Roles:

- Stanley Chou (PI, Materials Development, SNL)
- Abhaya Datye (Dehydrogenation Task Lead, UNM)
- Plamen Atanassov (Ammonia Task Lead, UCI)
- Stephen Percival (Ammonia catalyst synthesis lead, SNL)
- Andrew De La Riva (Dehydrogenation benchmark, UNM)
- Chris Riley (Catalyst development, SNL)
- James Park (Catalyst development, SNL)
- Ivana Gonzales (Theory, UNM)
- Chris Kliewer (Dehydrogenation, Operando measurements, SNL)
- Yuanchao Liu (Ammonia, Operando measurement, UCI)
- Kevin Leung (Theory, SNL)

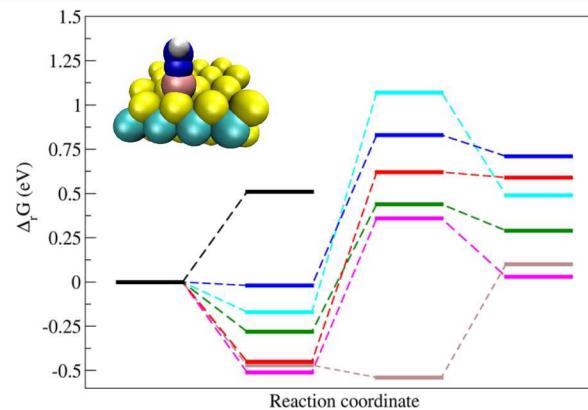
Project Objective(s)

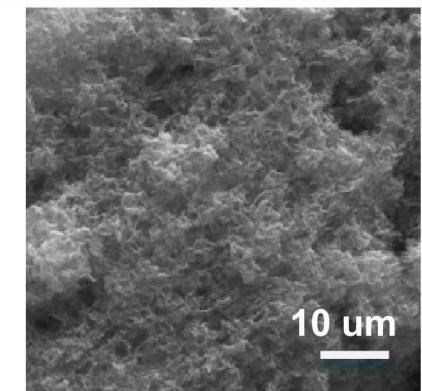

- **Objective:** Reduce the energy intensity of manufacturing ammonia and ethylene by design of new catalytic processes and use of distributed, modular chemical intensification.
- Key Targets
 - Ethane to Ethylene Conversion
 - Develop non-oxidative dehydrogenation methods for ethylene production from ethane rich gas.
 - Utilize new integrated catalyst and reactor design to achieve ethylene yield of $> 57\%$, with high conversion and selectivity.
 - Ammonia from N₂
 - Reduce energy intensity of ammonia production using electrochemical catalysts.
 - Develop active site and electrochemical interface for improved charge transfer and nitrogen reduction efficiency.
 - Design bench scale parameters for pilot systems.

Technical Innovation

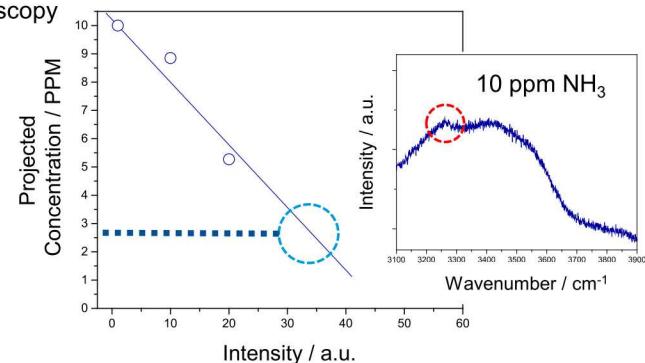
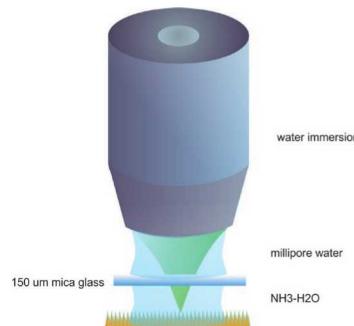


- Design the catalytic system from the ground up
 - Reaction design with light infrastructure, to allow for modular, distributed operation
 - Catalyst design that operates with less waste than traditional systems.
- Electrocatalytic ammonia production
 - New MoS₂ composite is low cost, highly scalable
 - Rapid screening method allows the evolution of catalytic designs with in/ex-situ validation in ~ 1 week
- Ethane to Ethylene Conversion
 - An integrated approach for catalyst-reactor design, addressing key bottlenecks in ethane dehydrogenation reaction, for ethylene production
 - Easy to implement geometry and processes for industrial translation
 - Achieved 57% yield benchmark using dilute ethane streams to mimic natural gas percentages (5%)


Technical Approach – Electrochemical Ammonia production


We can engineer low-cost MoS_2 defects to work in concert with co-catalysts, SNL IP filing SD#15404

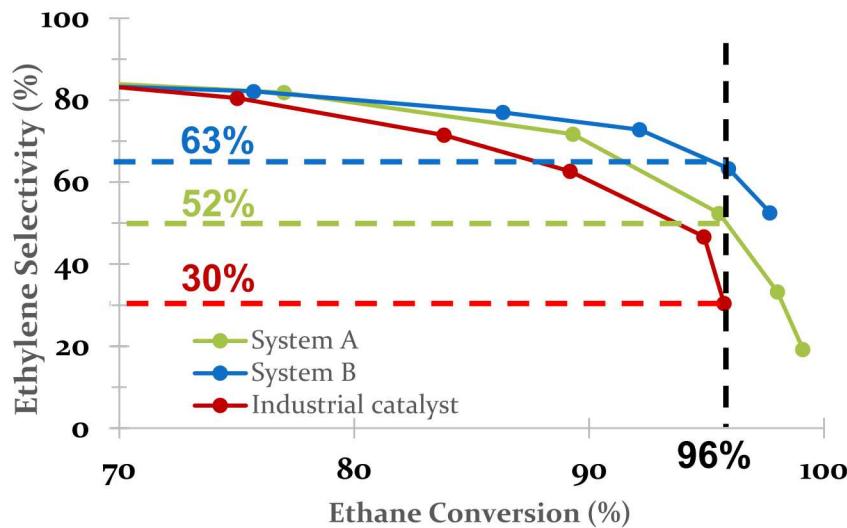
Rapid screening electrode-reactor setup identifies promising combinations in < 1 day (IP filing in process)

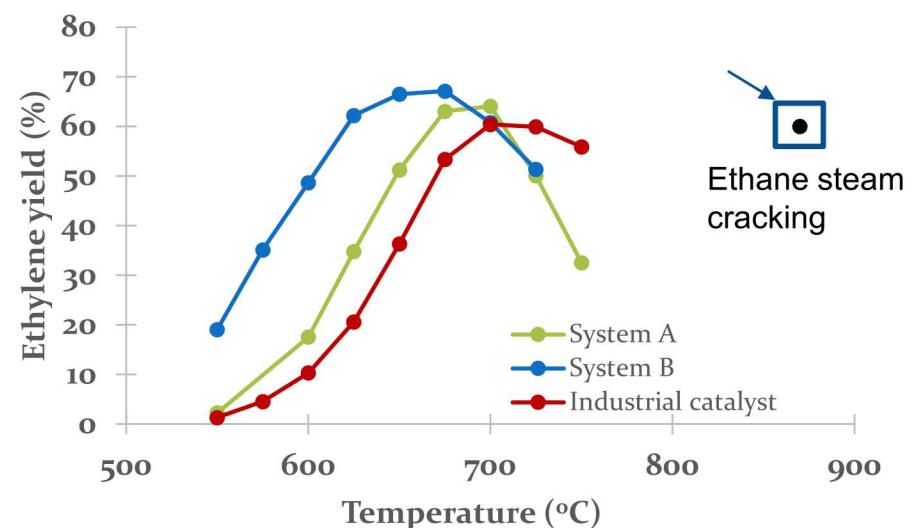
Catalyst design uses theory and density functional theory to identify bottlenecks

Catalysts synthesized at scale, using aqueous reactions (SNL prepatent, SNL IP filing 15460).

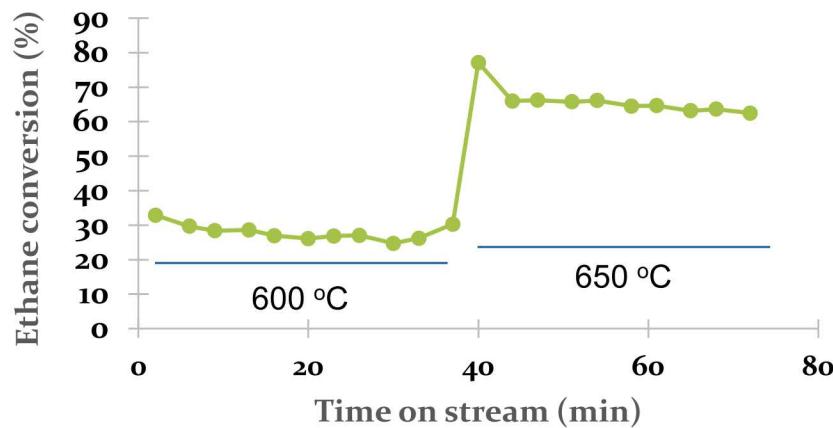
Surface Enhanced Raman Spectroscopy

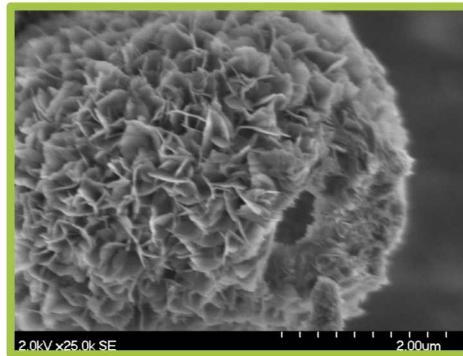

SERS Substrate

New approach to monitor ammonia production in-situ, with exquisite sensitivity: 10 ppm sensitivity and 400 ppb projected sensitivity (U. S. Provisional Appl. No. 63/021,912)


An integrated approach to catalyst design

- IP summary: 4 technologies in patent process, with two additional to file.
- Kinetic bottlenecks: Address at atomic scale with theoretical guidance
- Scalable synthesis: Catalyst manufactured with low cost solution methods, with inexpensive ingredients
- Measure, visualize and confirm: Rapidly screen catalysts, measure product quality and iterate design


Technical Approach – Ethane to Ethylene Production


New system offers greater selectivity at higher conversion. At 95% conversion, selectivity is 33% greater than reference catalyst

New system achieves greater yield at lower temperature. Peak yield > 57% observed at reduced, temperature, 650 °C

New system shows stable performance

Surface area of oxide assemblies after aging at 800 °C.

Aged sample	m ² /g
2D alumina assembly	116
2D Spinel assembly	163

Results and Accomplishments

- Intellectual property and patent filings
 1. Controlled loading of disperse metal electrocatalyst on 2D nanosheets, *Technical Advance*, SD#15404.
 2. High Throughput Synthesis of High Surface Area Textured Exfoliated 2D MoS₂ Sheets, *Technical Advance*, SD#15460.
 3. Assembly of Spinel- γ Alumina Heterostructures with High Temp Stability *Technical Advance*, SD#15405.
 4. Synthesis of high surface area high entropy oxides, SD#15391
 5. Method for Rapid in-situ detection of ammonia, U. S. Provisional Appl. No. 63/021,912
- Highlights

#	Title	% Completed
1	Identified key bottleneck of non-oxidative ethylene production from ethane, and first iteration of reactor catalyst design	100
2	Achieve ethylene yield >57%, with dilute ethane feed-stream comparable to natural gas percentages (5% ethane)	100
3	Synthesize and demonstrate integrated, hierarchical MoS ₂ based electrocatalysts with ammonia production in aqueous system	100
4	Develop system for rapid screening and evolution of ammonia electrocatalyst	100

Transition

- Catalytic system at TRL3 by program end
- Patent and Intellectual property licensing with engagement through Sandia Labs IP Office
- Collaboration with Precision Combustion, Inc (North Haven, CT) for integration of systems, reactor and catalyst design