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Task E Kickoff Meeting Outline

■ First step (Step 0) of Task E

1. Small-Scale Brine Inflow Test (unheated brine migration)

2. Brine Availability Test in Salt temperature response (heat conduction)

3. Sensitivity analysis

4. Uncertainty quantification

■ High-level review of all steps

■ Introduction of teams

• Who is participating / background & interests

• Which modeling tools

• Experience / knowledge about salt & WIPP

• Thoughts on good/bad aspects of Task E

BATS heated array
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1. WIPP Small-Scale Brine Inflow Test (1987-1992)

• Monitored brine inflow to 17 unheated boreholes

• Immediately after drilling (-new drifts)

• Weekly brine inflow mass 20

• Used in INTRAVAL comparison

• Effects of stratigraphy
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1. WIPP Small-Scale Brine Inflow Test (SSBIT

• .pdf reports and .xlsx spreadsheets in D2023 fileshare
D2023 Team > Task E > Data > Finley-etal-1992

• Data details presented in Finley et al. (1992)
• Data from Appendix E copied into spreadsheets

• Only simulate early monotonically decreasing brine production 

• INTRAVAL project, Phase 2 (1990-1997)
• Reported in Beauheim et al. (1997)

• Dutch, French & US teams analyzed SSBIT data

• Q: Can Darcys Law be used to predict brine flow?

• McTigue (1993) "Permeability and Hydraulic Diffusivity ..."

• Analytical solutions (unheated) fit to SSBIT

• Details SSBIT "data cleanup" efforts ( § 6.2.1 )

• Webb (1992) "Brine Inflow Sensitivity Study ... 7

• 1D simulations using TOUGH2

• Single-phase vs. two-phase flow & uniform vs. intact + DRZ

SANDIA REPORT
SAND91 1956 • UC - 72r
Unlimited Release
Printed April 1992

Small-Scale Brine inflow Experiments—

Data Report Through 6/6/91

Sharon J. Finley, David J. Hanson, Ron Parsons

REFERENCE COPY

StRC

SANDIA REPORT
SAND97-0788 • UC-721
Unlimited Release
Printed May 1997

INTRAVAL Phase 2 WIPP 1 Test Case
Report: Modeling of Brine Flow Through
Halite at the Waste Isolation Pilot Plant
Site

Richard L. Beauheim, Atrnane Ait-Chalal, Gerard Vouille, S.-M. Tijani, David F. McTigue,
Christine Brun-Yaba, S. Matid Hassanizadeh, G. M. van der Gissen, H. Holtman,
P. N. Mollema
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1. WIPP Small-Scale Brine Inflow Test (SSBIT)

• Comparison: Simulate inflow rate to boreholes
• Only fit to monotonically decreasing brine production

• Include boreholes L4B01, DBT10 & DBT11 (+ others if you want)

• Predictive H1 models:
• Simple or include geometrical (borehole extent + room DRZ) complexity

• Uniform parameters or include geological complexity
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2. Brine Availability Test in Salt (BATS) As-Built
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• thermocouples (blue dots)

• Heated interval (red box)
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Discrete fractures in BATS near-drift EDZ
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2. Jan-Mar 2020 BATS Temperature Response
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2. Jan-Mar 2020 BATS Temperature Response
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2. Jan-Mar 2020 BATS Temperature Response

• Data:
• Measured temperature at -62 locations through time (15-minute averages)

• Estimated x, y, z locations of thermocouples [TC] (assuming on borehole axis)
UT1: TC1 (36" left)

• Power delivered to heater (15-minute averages) 29.4 TC1 TC9

TC2 TC10

29.2 - 
TC3 TC11

• Possible complications: 
TC4 TC12

29 0 
TC7

LTH • -

• Ambient 0.8 C AT over 6 m (hotter drift)

• Near-drift temperatures fluctuate -0.1 C (ventilation) 
28 4

28.2 - I

• Heater controller had issues in first -2 hrs (on-off 3x) 
280 

15 22 Feb

UT2: TC2 (24" left)

TC1 TC9

TC2 TC10

TC3 TC11

TC4 TC12

TC5 TC13

TC6 TC14

TC7 TC15

TC8 TC16

08 15 22 Mar 15 22 Feb 08 15 22 Mar
2020-Mar 2020-Mar

• ERT nightly: applied current —> crazy TC readings (deleted)

• Salt thermal conductivity is a function of temperature (Acton, 1977; BATS lab data)

• Most TC are grouted into boreholes (grout properties being characterized)

• Constant-temperature heater controller

• setpoint = 120 C (HHP-TC5), but actual borehole wall temperature may be less (96 to 120 C)

• Possibly due to effect of lamp shining directly on controller thermocouple

• Possibly due to poor contact between controller TC and borehole wall

SFWST 9 energy.gov/ne



2. Jan-Mar 2020 BATS Temperature Response

• Comparison: 
• Change in temperature through time at least 5 locations (heating + recovery)

• HT1-TC8, HT2-TC8, HE1-TC3 are -same depth as the heater (0.3, 0.6, 0.9 m radially from heater)

• HF2-TC4, TC1-TC16 are deeper into the salt (1.8, 2.8 m radially from heater)

• Power and temperature at HHP borehole wall through time (one is specified)

• Early-time recovery data don't have on-off issues in early-time heating data

• BATS data are "preliminary" and cannot yet be released beyond the group
• SNL/LANL/LBNL to coordinate release of data 12

• Predictive T (conduction) models:
• Include material properties variability? (DRZ, grout)

• Include effects of drift and air-filled boreholes?

• Include temp-dependent thermal conductivity?
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3. Sensitivity Analysis

• Comparison: 
• "Local" sensitivity analysis of models near a best-fit solution

• columns of Jacobian: finite-difference derivative of solution w/ respect to parameters

1. Choose key parameters:

• SSBIT e.g., permeability and storage coefficient (possibly for different layers)
• BATS e.g., thermal conductivity & heat capacity (possibly salt, grout, DRZ), source temp.?

2. Perturb each parameter independently (<5%)

3. Compute change in prediction (e.g., temperature, power, brine flux) through time/space

Example sensitivity of
TOUGH2 temperature
predictions through
time from BATS
heating and cooling

(by Rick Jayne, SNL)
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4. Uncertainty Quantification (UQ)

• Automate fitting of models to observations

• General "parameter estimation" software provides
• Illustration of parameter sensitivity (i.e., columns of Jacobian matrix)

• Measure of uncertainty near optimum

• PEST: http://www.pesthomepage.orct
• Straightforward to use, free software (Doherty, 2015)

• Mostly gradient-based least-squares method

i
__________-- 4

41 I r . 

,o

2 ) 1

iteration 1

(Doherty, 2015)

• DAKOTA: https://dakota.sandia.gov 
• Large open-source suite with many capabilities (Adams et al., 2019a; 2019b)

• wide range of included methods, GUI, and parallel execution on clusters

• Many existing libraries, toolkits to use
• Use any tools you know, if they provide sensitivity/UQ

SFWST 1 2 energy.gov/ne



4. Uncertainty Quantification (UQ)

What types of optimization methods or uncertainty quantification to use?

1. Least-squares methods (i.e., reduce sum of squared residuals)
• Fast execution, needs estimate of derivatives (Jacobian)

• Efficiently find optimum, give linearized uncertainty estimate "for free"

• Works even for large, expensive-to-run models

2. Bayesian calibration methods
• Estimate "prior distribution" of model parameters, conditioned on data

• Globally explore non-linear uncertainty, give optimum solution "for free"

• Typically only feasible for simple, fast-to-execute models

• Comparison: 
• Quantify some estimate of uncertainty bounds on parameters

• 95% confidence interval, prior parameter distributions, or something else
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• Compare changes in uncertainty within each teams' models as complexity is added
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Proposed Task E Steps

Step 0: Single-process H1 and T benchmarks

Step 1: TH1 benchmark & H2M/H2 unheated brine inflow test case

Step 2: TH2M heated brine inflow test case

Step 3: Alternatives (ERT/AE joint inversion, seals, TH2MC, creep)

Table 3. Pro used detailed Task E schedule of ste s.

Apr. Nov. Apr. Nov. Apr. Nov. Apr. Nov.

2020 2021 2022 2023

Step 0

Step 1

Midterm Report —) (Nov 2021)

Step 2

Step 3 ?

Papers and Final Report —) (Nov 2023)

Infrared heater in BATS HP borehole

H1= single-phase; H2 = two-phase

SFWST 14 energy.gov/ne



Task E Step 0 (Jun. 2020 - Apr. 2021)

O. Single-process H1 and T benchmarks

a) H1 brine inflow to boreholes (small-scale brine inflow test)

• Simulate brine inflow to 3 (of 17) boreholes in Finley et al. (1992) dataset

• Data: weekly mass of brine produced from sealed boreholes

E

4.0

3.0

(Beauheim et al., 1997)

10 15

T,rne (s. x106,

• INTRAVAL "WIPP 1" model comparison exercise, 3 international teams (Beauheim et al., 1997)

• Brine flow down p gradient (borehole @ 0.1 MPa, far-field @ hydrostatic -6 MPa) 475
45.0

b) T due to conduction (BATS; Mills et al., 2019)

• Simulate T profile (heating and cooling) during heater test

• Data: 4 weeks heating, 2 weeks cooling: AT at 5 (of 67) remote locations (At 15 min.)

HT2: TC2 (24" left)

42 5

40.0

37.5-

35.0

32.5 -

30.0

Tc1 TC9

TC2 TC10

TC3 • TC11

— TC0 TC12

TC5 • TC13

- TC6 TC14

TC7 TC15

TC8 TC16

15 22 Feb 08 15 22 Mar
2020-Mar

• Heat flux down T gradient: 60-cm interval of borehole wall is constant temperature (-96 °C),
heater midpoint is 2.75-m deep into 10-cm borehole,

C) Estimate model parameter uncertainty and parameter sensitivity for both through time

• Quantify uncertainty in prediction and measure A prediction with A input parameters (sensitivity)
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Task E Step 1 (Nov. 2020 - Apr. 2022)
McTigue (1990)

1. TH1 benchmark & H2M/H2 unheated brine inflow test case
OL

a) Benchmark TH1 brine production to analytical solution (McTigue, 1990) 15

O. 1.0

Compare numerical models against coupled linear solution (space & time) 0.5

Halite properties from Table 1, McTigue (1986)

Compare with/without model non-linearities (e.g., fluid viscosity f(T))

b) Parameterize two-phase flow in salt EDZ (few data exist)

Laboratory imbibition test. Mass imbibed & wetting front w/ time —> estimate
capillary pressure (pc) & relative permeability (kr) relationships

CT core data. Predict pc & kr from pore-network models

Literature. Granular salt: (Cinar et al., 2006; Olivella et al., 2011). Non-salt EDZ at WIPP (Davies,
1991; Howarth & Christian-Frear, 1997)

C) H2 brine inflow to boreholes (BATS) w/ H2 characterization

• H2 or H2M simulation of "initial conditions" for BATS heater test
1982

Drift Excavated

30 Years

2.0

P
R
E
S
S
U
R
E
 0.3

0.2

0.1

0.0

3.0

10 2.0 3.0

RADIUS

"ressure

6 Years

2012
Boreholes Drilled

2018
Experiment Begins

10

40

Guiltinan et al. (2020)
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Task E Step 2 (Apr. 2021 - Apr. 2023)

2. TH2M heated brine inflow test case

a) Predict brine production during increases and decreases in T
M
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—90% of all brine flow

in 30 days following

heater shutdown

510 110 701 HO SU
TIME/DRTS

b) Optional: predict breakthrough of gases/liquid tracers in BATS tracer tests

a) Gas flow (N2 + Kr, Ne, SF6) breakthrough via quadrupole mass-spec (5 min. data)

b) Liquid flow (isotopically distinct water + fluorescein & perrhenate) via Picarro & liquid samples
(-daily samples)

c) Spatial distribution of liquid tracers in post-test cores
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Task E Step 3 (Alternatives)

P I

1. ERT/AE data to constrain brine inflow estimates

• ERT sensitive to brine saturation, daily ERT tomograms

• AE source locations to confirm changes in il),k

2. Predict behavior of BATS seals / GRS lab tests

• GRS laboratory experimental data (WIPP brine & salt)

• BATS strain, T data in cement plugs (Sorel & salt concrete)

3. Additional C processes

• Include 4 water sources explicitly in models (composition and stable water isotopes),
impacts on Ol k from dissolution & precipitation of salt (condensation & boiling)

4. Effects of viscoplastic creep on brine production

Based on interest of teams: Choose one/two? Move to step 2?

P I
Brine loss zone

Tue 1/28 Wed 1/29

30

20

-20

-ao
-35.
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Appendix: WIPP Salt Geology

• Fileshare: D2023 Team > Task E > References-WIPP-Geology

• Regional & WIPP-specific geology
• Salado comprised of repeating sequences

• MB-139 is 1-m thick anhydrite/clay layer

• BATS is in Map Units 1-3

• cm- to m-scale complexity and heterogeneity

MU-4

MU-3

{
{

MU-1 & MU-2

MU-0

Heated BATS array, photo by Brian Dozier (WIPP TCO) (Beauheim et al., 1997)
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Task E Kickoff Meeting Introductions

■ Interested Teams

• USA (SNL, LANL & LBNL)

• UK (RWM & Quintessa)

• Netherlands (COVRA)

• Germany (BGR & GRS)

■ Introductions

• Who is participating / background & interests

• Which modeling tools

• Experience / knowledge about salt & WIPP

• Thoughts on good/bad aspects of Task E
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Acronyms and lnitialisms

AE

BATS

CT

DECOVALEX

DOE

DOE-EM

DOE-NE

DOPAS

DRZ

DSS, DTS

EDZ, EdZ

ERT

GRS

LANL

LBL

NETL

SFWST

SNL

TCO

TH2MC

US

WIPP

acoustic emissions

brine availability test in salt

computed tomography

DEvelopment of COupled models and their VALidation against Experiments

Department of Energy

DOE Office of Environmental Management (energy.gov/em)

DOE Office of Nuclear Energy (energy.gov/ne)

full-scale Demonstration Of Plugs And Seals

disturbed rock zone

distributed strain, temperature sensing

Excavation Damaged Zone, Excavation disturbed Zone

electrical resistivity tomography

Gesellschaft für Anlagen- und Reaktorsicherheit

Los Alamos National Laboratory

Lawrence Berkeley National Laboratory

National Energy Technology Laboratory

Spent Fuel and Waste Science & Technology (DOE-NE program)

Sandia National Laboratories

WIPP Test Coordination Office (LANL)

thermal, two-phase hydrological, mechanical, and chemical (also TH1, TH2M, TH2C)

United States

Waste Isolation Pilot Plant (DOE-EM site, wipp.energy.gov)
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