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Task E Kickoff Meeting Outline

= First step (Step 0) of Task E

1. Small-Scale Brine Inflow Test (unheated brine migration)
2. Brine Availability Test in Salt temperature response (heat conduction)
3. Sensitivity analysis Al

4. Uncertainty quantification
= High-level review of all steps

= |ntroduction of teams
* Who is participating / background & interests
* Which modeling tools
* Experience / knowledge about salt & WIPP
* Thoughts on good/bad aspects of Task E
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1. WIPP Small-Scale Brine Inflow Test (1987-1992)

(Beauheim et al., 1997)

= Monitored brine inflow to 17 unheated boreholes 1 x .
L4B01
— Simulated
= |Immediately after drilling (~new drifts) sef
Finley et al. (1992) z
" (] 20 L ;.
= Weekly brine inflow mass i
Length=53m é
. " S Diameter = 10.2cm
= Used in INTRAVAL comparison g
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m
= Effects of stratigraphy : e
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MB = marker bed

PH = polyhalite Finley et al. (1992)
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1. WIPP Small-Scale Brine Inflow Test (SSBIT)

= .pdf reports and .xIsx spreadsheets in D2023 fileshare
D2023 Team > Task E > Data > Finley-etal-1992

» Data details presented in Finley et al. (1992) -
* Data from Appendix E copied into spreadsheets
* Only simulate early monotonically decreasing brine production

= INTRAVAL project, Phase 2 (1990-1997)

* Reported in Beauheim et al. (1997)
* Dutch, French & US teams analyzed SSBIT data
* Q: Can Darcy’s Law be used to predict brine flow?

* McTigue (1993) “Permeability and Hydraulic Diffusivity ...”
« Analytical solutions (unheated) fit to SSBIT
» Details SSBIT “data cleanup” efforts ( §6.2.1)

* Webb (1992) “Brine Inflow Sensitivity Study ...”
* 1D simulations using TOUGH2
» Single-phase vs. two-phase flow & uniform vs. intact + DRZ

4
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1. WIPP Small-Scale Brine Inflow Test (SSBIT)

= Comparison: Simulate inflow rate to boreholes
* Only fit to monotonically decreasing brine production
* Include boreholes L4B01, DBT10 & DBT11 (+ others if you want)

= Predictive H' models:

e Simple or include geometrical (borehole extent + room DRZ) complexity
* Uniform parameters or include geological complexity
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2. Brine Availability Test in Salt (BATS) As-Built

Heated array - drift view Heated array - side view
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2. Jan-Mar 2020 BATS Temperature Response

Linear-linear scales (dates and T) Semilog scale (elapsed time and AT)
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2. Jan-Mar 2020 BATS Temperature Response

Log-log scales (elapsed time and AT) Scaled log-log (elapsed time and AT, normalized by distance to heater)
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2. Jan-Mar 2020 BATS Temperature Response

= Data:
* Measured temperature at ~62 locations through time (15-minute averages)
* Estimated x, y, z locations of thermocouples [TC] (assuming on borehole axis)
* Power delivered to heater (15-minute averages) s e

= Possible complications: nol2E

* Ambient 0.8 C AT over 6 m (hotter drift) -

* Near-drift temperatures fluctuate ~0.1 C (ventilation) oif—————""
* Heater controller had issues in first ~2 hrs (on-off 3x) **
* ERT nightly: applied current — crazy TC readings (deleted)

e Salt thermal conductivity is a function of temperature (Acton, 1977; BATS lab data)
* Most TC are grouted into boreholes (grout properties being characterized)

* Constant-temperature heater controller

» setpoint =120 C (HHP-TC5), but actual borehole wall temperature may be less (96 to 120 C)
» Possibly due to effect of lamp shining directly on controller thermocouple
» Possibly due to poor contact between controller TC and borehole wall

15 22 Feb 08 15 22 Mar 15 22 Feb 08 15 22 Mar
2020-Mar 2020-Mar
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2. Jan-Mar 2020 BATS Temperature Response

= Comparison:

* Change in temperature through time at least 5 locations (heating + recovery)
« HT1-TC8, HT2-TC8, HE1-TC3 are ~same depth as the heater (0.3, 0.6, 0.9 m radially from heater)
« HF2-TC4, TC1-TC16 are deeper into the salt (1.8, 2.8 m radially from heater)

* Power and temperature at HHP borehole wall through time (one is specified)
= Early-time recovery data don’t have on-off issues in early-time heating data

= BATS data are “preliminary” and cannot yet be released beyond the group
* SNL/LANL/LBNL to coordinate release of data T | ™

* Predictive T (conduction) models:
* Include material properties variability? (DRZ, grout)
* Include effects of drift and air-filled boreholes?
* Include temp-dependent thermal conductivity?

time [sec]
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3. Sensitivity Analysis

= Comparison:

* “Local” sensitivity analysis of models near a best-fit solution

* columns of Jacobian: finite-difference derivative of solution w/ respect to parameters
1. Choose key parameters:

* SSBIT e.qg., permeability and storage coefficient (possibly for different layers)

* BATS e.g., thermal conductivity & heat capacity (possibly salt, grout, DRZ), source temp.?
2. Perturb each parameter independently (<5%)

3. Compute change in prediction (e.g., temperature, power, brine flux) through time/space

DRZ HE1 - TC3 (0.4m) DRZ HT2 - TC8 (0.68m) DRZ HT1 - TC8 (1.01m)
Example sensitivity of L @
TOUGH2 temperature ;
predictions through % o] T g I | '; g | L L
: s ¥ - g < | s - AR | N —— ~ erturbation _ Perturbation
tlme from BATS 5 0 (.. _Seeog St & P T e 5 Ol o . sesannTes Permeability ---------
. . 2 e R R e Porosity =~ ---------
heating and cooling e g Wemaa e apalt e
3 Q 0. t Q -0.1
= » E L/\J E’ Thermal K =--------
(by Rick Jayne, SNL) 03 : s I = Heater on
20 25 1?'1;“ ea(sda;g) 45 50 55 60 65 70 A b 10 16 20 % 1::1;{.7“;(2 a;:) 45 50 55 60 65 70 "0 5 10 15 20 25 T::‘r)n ea(sda;g) 45 50 55 60 65 70 0-27 " 9 d ayS

energy.gov/ne



4. Uncertainty Quantification (UQ)

= Automate fitting of models to observations

= General “parameter estimation” software provides J
* [llustration of parameter sensitivity (i.e., columns of Jacobian matrix)
* Measure of uncertainty near optimum (f—/‘*?e

= PEST: http://www.pesthomepage.org ( 3 S /
e Straightforward to use, free software (Doherty, 2015) \7t/ :
* Mostly gradient-based least-squares method (Dohery, 2015)

= DAKOTA: https://dakota.sandia.gov

* Large open-source suite with many capabilities (Adams et al., 2019a; 2019b)
* wide range of included methods, GUI, and parallel execution on clusters

= Many existing libraries, toolkits to use
* Use any tools you know, if they provide sensitivity/UQ
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4. Uncertainty Quantification (UQ)

What types of optimization methods or uncertainty quantification to use?

1. Least-squares methods (i.e., reduce sum of squared residuals)
* Fast execution, needs estimate of derivatives (Jacobian)
e Efficiently find optimum, give linearized uncertainty estimate “for free”
*  Works even for large, expensive-to-run models

2. Bayesian calibration methods
* Estimate “prior distribution” of model parameters, conditioned on data
* Globally explore non-linear uncertainty, give optimum solution “for free”
* Typically only feasible for simple, fast-to-execute models

= Comparison:

* Quantify some estimate of uncertainty bounds on parameters
* 95% confidence interval, prior parameter distributions, or something else

* Compare changes in uncertainty within each teams’ models as complexity is added
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Proposed Task E Steps

Step 0: Single-process H' and T benchmarks

Step 1: TH' benchmark & H2M/H? unheated brine inflow test case
Step 2: TH2M heated brine inflow test case

Step 3: Alternatives (ERT/AE joint inversion, seals, TH?MC, creep)

Table 3. Proposed detailed Task E schedule of steps.

Apr. Nov. Apr. Nov. Apr. Nov. Apr. Nov.
2020 2021 2022 2023
Step 0
Step 1
Midterm Report — (Nov 2021)
Step 2
Step 3 My
Papers and Final Report — (Nov 2023)

Infrared heater in BATS HP borehole

H'= single-phase; H2 = two-phase

SFWST energy.gov/ne



Task E Step 0 (Jun. 2020 - Apr. 2021)

0. Single-process H' and T benchmarks e

a) H' brine inflow to boreholes (small-scale brine inflow test) \

«  Simulate brine inflow to 3 (of 17) boreholes in Finley et al. (1992) dataset

« Data: weekly mass of brine produced from sealed boreholes T el

 INTRAVAL “WIPP 1” model comparison exercise, 3 international teams (Beauheim et al., 1997)

—— TC1

- Brine flow down p gradient (borehole @ 0.1 MPa, far-field @ hydrostatic ~6 MPa) ~ wra=s

4504

b) T due to conduction (BATS; Mills et al., 2019) e

« Simulate T profile (heating and cooling) during heater test

« Data: 4 weeks heating, 2 weeks cooling: AT at 5 (of 67) remote locations (At 15 min.)

 Heat flux down T gradient: 60-cm interval of borehole wall is constant temperature (~96 °C),
heater midpoint is 2.75-m deep into 10-cm borehole,

C) Estimate model parameter uncertainty and parameter sensitivity for both through time

*  Quantify uncertainty in prediction and measure A prediction with A input parameters (sensitivity)

15 energy.gov/ne



Task E Step 1 (Nov. 2020 - Apr. 2022)

McTigue (1990)

1. TH! benchmark & H2M/H? unheated brine inflow test case “ ‘ S

2
20 Ai=01 |

a) Benchmark TH? brine production to analytical solution (McTigue, 1990)

«  Compare numerical models against coupled linear solution (space & time)

«  Halite properties from Table 1, McTigue (1986)

«  Compare with/without model non-linearities (e.qg., fluid viscosity f(T))

b) Parameterize two-phase flow in salt EDZ (few data exist)

«  Laboratory imbibition test. Mass imbibed & wetting front w/ time —> estimate
capillary pressure (p.) & relative permeability (k,.) relationships

CT core data. Predict p. & k, from pore-network models

« Literature. Granular salt: (Cinar et al., 2006; Olivella et al., 2011). Non-salt EDZ at WIPP (Davies,
1991; Howarth & Christian-Frear, 1997)

C) H2 brine inflow to boreholes (BATS) w/ H2 characterization . B - B E
HZ?or H2M simulation of “initial conditions” for BATS heater test

Boreholes Drilled Experiment Begins

Guiltinan et al. (2020)
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Task E Step 2 (Apr. 2021 - Apr. 2023)

BRINE MIGRATION TEST RT RSSE MINE

2. TH2M heated brine inflow test case

E Asse (Rothfuchs et al., 1988)
= :
. . . . . R 1.8
a) Predict brine production during increases and decreasesin T =
i
=EWE Y
-
Avery Island (Krause, 1983) 1-m bedded salt lab test (Hohlfelder, 1979) b
50 ~— T T T T T | SN, BLOCK 11 TC-13 S8 cun“m mn:u A = : : u
SCALE FOR DAYS OF MOISTURE COLLECTION S (| | i 1 | o127
SITE SB | — 1 1 1 ed 1 1 1 w S| o
9 50 100 150 200 250 300 5 :
L L \ \ L | ~90% of all brine flow
g SITE N8 5 50 100 150 200 250 - 11 ) )
= 1 in 30 days following
s SITE AB - 5 06 5 180
e : heater shutdown
'@ 30 .8 4 )
~r
(6]
: | -
8 20k oAY o3~ .6
iy SITE N8 o008 9500 0o oo -powN
g —\ TS T INITIATED) _
g ol s sa—\ o " inag 00 “'“‘-“A;o.ozs gm/DAY 1 Brine . e
o < production
AN SITE AB
(UNHEATED) .2
o L 1 1 1 1 L 1 —
0 50 100 150 200 250 300 350 400 . Ll L dad SITE 2
DAYS OF HEATING e e e we— e e e W : ool o T ctonit TN C 120
=L | ] 188 282 38 4BE  Sp8 6B 780 8ep  gER  iPOD

TIME/DRYS

b) Optional: predict breakthrough of gases/liquid tracers in BATS tracer tests
a) Gas flow (N, + Kr, Ne, SF;) breakthrough via quadrupole mass-spec (5 min. data)

b) Liquid flow (isotopically distinct water + fluorescein & perrhenate) via Picarro & liquid samples
(~daily samples)

c) Spatial distribution of liquid tracers in post-test cores

17 energy.gov/ne




Task E Step 3 (Alternatives)

1. ERT/AE data to constrain brine inflow estimates

* ERT sensitive to brine saturation, daily ERT tomograms

* AE source locations to confirm changes in ¢, k

2. Predict behavior of BATS seals / GRS lab tests
* GRS laboratory experimental data (WIPP brine & salt)

* BATS strain, T data in cement plugs (Sorel & salt concrete)

3. Additional C processes

* Include 4 water sources explicitly in models (composition and stable water isotopes),
impacts on ¢, k from dissolution & precipitation of salt (condensation & boiling)

4. Effects of viscoplastic creep on brine production

Based on interest of teams: Choose one/two? Move to step 2?
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Appendix: WIPP Salt Geology

= Fileshare: p2023 Team > Task E > References-WIPP-Geology Wealled M- 128 dosorplon (Roms, 160)
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Task E Kickoff Meeting Introductions

* |nterested Teams

USA (SNL, LANL & LBNL)
UK (RWM & Quintessa)
Netherlands (COVRA)
Germany (BGR & GRS)

= |ntroductions
* Who is participating / background & interests

* Which modeling tools

* Experience / knowledge about salt & WIPP
* Thoughts on good/bad aspects of Task E
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Acronyms and Initialisms

AE acoustic emissions

BATS brine availability test in salt

CT computed tomography

DECOVALEX DEvelopment of COupled models and their VALidation against Experiments
DOE Department of Energy

DOE-EM DOE Office of Environmental Management (energy.gov/em)
DOE-NE DOE Office of Nuclear Energy (energy.gov/ne)

DOPAS full-scale Demonstration Of Plugs And Seals

DRZ disturbed rock zone

DSS, DTS distributed strain, temperature sensing

EDZ, EdZ Excavation Damaged Zone, Excavation disturbed Zone

ERT electrical resistivity tomography

GRS Gesellschaft fur Anlagen- und Reaktorsicherheit

LANL Los Alamos National Laboratory

LBL Lawrence Berkeley National Laboratory

NETL National Energy Technology Laboratory

SFWST Spent Fuel and Waste Science & Technology (DOE-NE program)
SNL Sandia National Laboratories

TCO WIPP Test Coordination Office (LANL)

TH2MC thermal, two-phase hydrological, mechanical, and chemical (also TH', TH2M, TH2C)
us United States

WIPP Waste Isolation Pilot Plant (DOE-EM site, wipp.energy.gov)
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