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Introduction

• CO2 emission reduction is worldwide urgent.

• IC engine thermal efficiency improvement is
one key factor for vehicle section.

• Lean and/or dilute SI operation of DISI can
improve fuel economy. G
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• Fuel type, like alternative fuel or E-fuel, plays a '1%,
fundamental role in IC engine combustion
mode.
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Introduction
• Well-mixed stoichiometric DISI combustion is widely used without

fully exploring potentials of DISI.

• Lean combustion offers higher efficiency, but it is challenging to
achieve stable ignition for well-mixed operation.

• Stratified lean combustion can suffer from combustion instability
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• Partial Fuel Stratification can 
stabilize lean combustion —
focus of this study. 
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Research Engine

• Drop-down single-cylinder engine.

• Identical geometry for All-metal and Optical.

• Designed for spray-guided stratified-charge operation
Piston bowl.

All-metal piston and cylinder in its
dropped-down position
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Research Engine

Bowditch-piston Mirror

Optical experimental system Camera field-of-view with piston at -30°CA

SAE International®
WCX Digital Summit

IJER, 2019, DOI: 10.1177/1468087419889702 6



Research Engine Table 2. Haltermann EPA Tier 11 Certification Gasoline.

Table l . Engine specifications. Research Octane Number 96.6
Motor Octane Number 88.7
Anti-knock index 92.7

detected

Displacement
Bore
Stroke
Connecting rod length
Geometric compression
ratio

0.552 L
86.0 mm
95.1 mm
166.7 mm
12:1

Density (kg/L) 0.743
Carbon (wt%) 86.7
Hydrogen (wt%) 13.3
Oxygen (wt%) None
A/F stoichiometric 14.54

Intake valve diameter 35.1 mm Table 3. Estimated properties of E85 fuel.

Intake valve angle relative 18°
cylinder axis Octane Number 108

Exhaust valve diameter 30.1 mm [Research
Motor Octane Number 91

Exhaust valve angle 16° Anti-knock index 100

relative cylinder axis
Swirl/tumble index (one
intake valve deactivated)
Fuel injector

Specific gravity 0.782

A/F stoichiometric 9.792.7/0.62
LHV, gas-phase fuel (MJ/kg) 29.2
LHV for stoichiometric charge (MJ/kg) 2.706

Bosch eight-hole
Hydrocarbon type (vol.%)

Injector hole orientation
solenoid-type 

Oxygenates 85
Symmetric with 60° Aromatics 4.9
included angle Branched alkanes 8.2

Injector hole size Stepped hole, minimum Linear alkanes 1.1
diameter = 0.125 mm Cyclic alkanes 0.4

Alkenes 0.01
Not classified 0.3

LHV: lower heating value.
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Methodology

Injection and Ignition Strategies

Well-mixed Stoichiometric

TIDC

9 • Late injection followed by ignition with
3° CA delay at 1000rpm, igniting spray tip

Partial Fuel Stratification (PFS)

• Only Late injection Pilot-Only

i

- -1

11.

Well-mixed Lean

Partial Fuel Stratified Lean

Pilot-Only Fully Stratified Lean 9
. .

-360 -320 -280 -240 -200 -160 -120 -80 -40 0 40
Crank Angle [°CA aTDC]

• Early injections during intake stroke
well-mixed charge, adjusting load.

Table 4. Operating conditions.

Fuel
Engine speed
Injection pressure
Coolant temperature
Intake temperature
Intake-air flux

Intake-tank pressure

E85, gasoline
1000 r/min
170 bar
75°C
30°C, 60°C, I 00°C
Lean modes
Stoichiometric modes
Lean modes
Stoichiometric modes

4.5 g/s
1.6-3.5 g/s
95-110 kPa
40-79 kPa
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Heat-release comparison of Pilot-Only and PFS

Only pilot-injection
combustion with ultra-low
overall equivalence ratio (0)

• Spark stably ignites pilot-
injected fuel with high
combustion efficiency due
to strong fuel stratification

Fuel addition in well-mixed
lean background

• Stronger heating release at
all stages

• 1—>2—>3 stage profile

• End-gas autoignition is
triggered
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High-speed spray and flame imaging, flame variability of PFS with
0=0.45

• Liquid fuel vaporizes quickly

• Flame spread is rapid throughout piston-bowl area

• Flames fronts propagate out of view by -20° CA

• End-gas autoignition cannot be visualized in this
configuration

25
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— Average
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CE = 94.4%

0 background = 0.36
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6° CA after ST, i.e. -25° CA

CA=324.51grd 1000rpm Cycle=0 Cyl Pres= 0.0bar Sandia DISI Engine

• Very repeatable inflammation

Explains repeatable end-gas
autoignition. Even for transient
optical-engine operation.
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.. .

3-stage combustion mode of PFS

For reference, throttled well-mixed stoichiometric
operation with similar IMEPn as PFS o=0.45.

PFS: (3=0.45 )0=0.37 Pilot-only : )0=0.09

Flame spread rate is comparable for all lean cases
in the -30 - -25.8CA, but slightly faster than the
well-mixed stoichiometric case

`Pilot' in PFS creates vigorous combustion, showing
its effectiveness in igniting a lean background.

LHV of pilot-injected fuel is > 90 J = 1000*spark, acting
as a "Flying Super Igniter" for ultra-lean background
mixture, leading to "Fast Lean Combustion".

3-stage hypothesis when o=0.45 :
Ignited diffusion flame in strong-stratified charge;
Flame propagation in weak-stratified mixture;
Autoignition in ultra-lean end-gas.
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ST-controlled end-gas autoignition optimizing TE and CE for gasoline and E85

• When ST is late, there is a stable 2-stage
combustion, but its CE and TE are low.

• As ST is advanced, part of heat releases become
3-stage occurring randomly and weakly with higher
CE and TE but a slight increased COV.

• With further advancing ST, the 3rd peak emerges
regularly and more strongly in each single cycle,
leading to highest CE and TE, with lowest COV.

• If ST is further advanced, the 3rd stage heat release
is too strong making engine knock intolerable, with
TE starting drop, despite increasing CE and further
reduction of COV.

• Fueled with E85, combustion mode transfers
similar as gasoline.

• 1st and 2nd peaks shift with unchanged amplitudes,
showing 3rd end-gas autoignition plays key roles.

SAE International®
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Fundamental factors for end-gas autoignition —

Fuel properties (like RON, MON) are critical factors affecting the fuel-air mixture autoignition.

• using same o, ST, Tin and similar supplied chemical
energy, E85 and Gasoline can be directly compared
for PFS operation.

• There is no end-gas autoignition in the E85 case,
but a strong autoignition in gasoline case,
despite the end-gas is much leaner than the rich
conditions of the RON and MON tests.

a. E85 has lower reactivity.

b. Strong vaporization cooling of E85 reduces
compression temps.

End-gas autoignition is suppressed.
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Fundamental factors for end-gas autoignition — End-gas TEMPERATURE

The markers indicate the starts of end-gas autoignition.

With an earlier ST and combustion, the end-gas is
compressed faster, the reactant temperature rises
earlier and reaches higher values, so less time is
available for autoignition reactions, leading to a higher
gas temperature before autoignition occurs.

The required compression temperature for gasoline

autoignition is 996K at 01= 0.45 (0well-mixed=°•36)•
E85 requires at least 1034K (0well-mixed=°•38)•
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Fundamental factors for end-gas autoignition — intake TEMPERATURE

ST kept constant for two fuels. 1200
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E
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When Tin = 100° C, E85 case
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at = 0.45.
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Engine performance of PFS mode - TE

Three combustion modes, PFS/well-mixed lean/well-mixed stoichiometric, are compared.
Gasoline; Tin 30° C; 1000r/min; ST @ max IMEPn; KI <78 kPa, CNL <70 dBA for PFS

IMEPn =350-800 kPa, PFS mode has a higher
TE than well-mixed stoichiometric mode. The
largest TE improvement is >5%-units around
I MEPn=700kPa

PFS and well-mixed lean mode have similar TE
when IMEPn > 650 kPa.
TE of well-mixed lean mode drops faster than

PFS for IMEPn < 600 kPa because of
unstable combustion.
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Engine performance of PFS mode - COV

lf the stable Iimit is defined as COV = 5%, PFS wo
•=-1 0.60 for well-mixed lean mode.
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Engine performance of PFS mode - load level

The end-gas autoignition becomes very weak for = 0.38, and disappears at even lower loads,
contributing to a drop of CE/TE/Stability... for < 0.40.
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At the highest PFS load, = 0.76, some cycles have no end-gas autoignition, but it is not
needed and CE is very high.
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Engine performance of PFS mode - NOx, Smoke

NO), of PFS mode increases linearly with load reduction in
middle load region, due to linearly advancing ST and CA50.

NOx reduction of two lowest loads may result from low CE.

NOx at three PFS highest loads remains similar level, but
PM starts to increase in this range, possibly because the
overall is high.

PM emissions of PFS are mostly lower than well-mixed
stoichiometric operation.

NOx emission is the main exhaust-emissions challenge for
the current implementation of the lean PFS mode.

Future work could use a smaller amount of pilot-injected
fuel, possibly in combination with EGR or trapped
residuals.
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Conclusiow
• Pilot-injected fuel, ignited by a normal spark, works as a super igniter with very high ignition

energy and widely spreads flame initiation of the well-mixed ultra-lean charge, ensuring a
very repeatable deflagration without misfires.

• Overall combustion often shows a 3-stage mode: 1st spark-ignited stratified charge
combustion, 2nd blue flame propagation, 3rd compression autoignition stage in well-mixed
ultra-lean end-gas.

• End-gas autoignition is critical for achieving high combustion efficiency, high thermal
efficiency, and stable IMEP for ultra-lean operation.

• Appropriate and repeatable end-gas autoignition can be achieved by combustion-phasing
control adjusting ST. Compared with gasoline, it is more difficult to induce end-gas
autoignition for E85, consistent with the higher RON and MON of E85.

• The highest TE improvement is found near IMEPn=700kPa (o =0.6), corresponding to a
relative >15% increase of fuel economy at 1000 r/min and Tin=30° C fueled with gasoline.

• The main challenge with the current gasoline PFS implementation is elevated NOx emission
at lower loads.
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