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Motivations

e Basic Science understanding to advance rare earth extraction, mining, separation techniques

* Rare earth (RE) elements critical for renewable energies and other technologies of interest
to Department of Energy, due to unique magnetic properties

* Hard to separate RE (Ill+) in solution * Much computational work done,
e.g. on Re(lll) solvation free energy

* but not with inorganic substrates

A Computational Approach to Predicting Ligand Selectivity for

the Size-Based Separation of Trivalent Lanthanides Revised lonic Radii of Lanthanoid(lll) lons in Aqueous Solution

Alexander S. Ivanov!® and Vyacheslav S. Bryantsev*®  Inorg. Chem. 2019, 58, 9738-9748 Paola D’Angelo,*" Andrea Zitolo,' Valentina Migliorati,’ Gievanni i Chillemi ¥ Maoak Drvail §
Pierre Vitorge, S Sacha Abadie,’ S and Riccardo Speuaé Inorg. Chem. 2011, 50, 4572—4579

o]

(S
}Q(\V\ o Hﬁw

135 La(lll) ]

13
k,ou\«(l, < sl .
N gs 1.25~ .
=12 .
L' (BP18C6%) L? (BCAED*) L® (DPA%) L* (PDAM) -g .
AAG®®, (Lallu)  -9.20 11.21 1.45 0.00 oc 115
v
Figure 1. Ligands examined in the present work. Experimental aqueous-phase g el
La3+/Lu3* selectivities are given in kcal/mol. - 1.05! .
1 T
.. modeling organic ligand-assisted separation 0.95 -

1 | ! L
La Ce Pr NdPmSm Eu Gd Tb Dy Ho Er Tm Yb Lu



REE separation in silica pores/on silica surfaces

Highly Efficient and Selective Recovery of Rare Earth Elements Using
Mesoporous Silica Functionalized by Preorganized Chelating Ligands

Yimu Hu,"** Elisabeth Drmun ¥ Dominic Lariviere,* " Freddy Kleitz,* "+
and Frédéric-Georges Fontaine™
ACS Appl. Mater. Interfaces 2017, 9, 38584-38593
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Silica pores functionalized with organic ligands

My Sandia colleague Dr. Anastasia llgen
observes selectivity in bare silica pores
at higher pH (patent filed, next slide)

Selective Separation and Preconcentration of Scandium with

Mesoporous Silica  ACS Appl. Mater. Interfaces 2018, 10, 448-457

Freddy Kleitz,**1® and Dominic Lariviére*
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Experimental Results: adsorption isotherms for porous silica

* For both SBA-15 4-nm and SBA-15 7-nm with increasing Z uptake increased.
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Experimental Results: Pore-size (in)dependence

« Eud* uptake is consistent with Cu?* results: higher uptake on 4-nm, compared to 7-nm pores.
« Tm3* and Lu®* uptake appears independent of pore size.
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Computational Model and method

reconstructed (001)

e focus on silica, use model with single binding site as benchmark
* use previous reconstructed [3-cristobalite (001), pKka=7.0-8.1
e ~4 SiOH groups per nm?, agree with measurements

* DFT/PBE, 14x14x26 A3 simulation cell, I'-point sampling

(Iarger cell than in Leung et al, 2009) J. Am. Chem. Soc., 2009, 131. 18358

* T=400 K, umbrella sampling

* One REE3*in each simulation cell, ¥350 ps total each
e 3SiO group to keep charge neutrality

* Qualitatively compare with measurements




Potential of Mean Force is the way to calculate

barriers/exothermicity in

liquids
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Concerted Metal Cation Desorption and Proton Transfer on
Deprotonated Silica Surfaces

Kevin Leung *® Louise J. Criscenti,” Andrew W. Knight, Anastasia G. ligen,® Tuan A. Ho,
and Jeffery A. Greathouse

J. Phys. Chem. Lett. 2018, 9, 5379-5385
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Free energy change as RE(lll) desorbs

Not fully converged
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Protonation Dynamics in one sampling window

P

I 3

" J

Naar

="

" g ]

- an ’ —

o

Ly =

N

==3F

v 4

]
H ‘
:
:

| llllllllllllllllll lIlllII lllllllllllllllll |
a F g AW y Y [ T Y 3y =

dmd u?

Fast Grotthuss protonation/deprotonation on SiOH groups
accompanied by hydrolysis of RE(III)(H,0),,(OH"),,

Experimentally, counter ions (e.g., ClI') play some charge-neutrality role
e.g., RE(II)(H,0), + CI- -> RE(lll) (H,0),(CI)

This is difficult to model on AIMD time scales because ClI- moves slowly.

pH of AIMD simulation cell not known precisely, but is > 7 (pKa of our SiOH model)



Water dynamics in one sampling window
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e Total number of O atoms around Lu(lll) (from water or hydroxides) is constant at 7

* Total number of deprotonated water (i.e., hydroxide anion) can vary



Conclusions

Dr. Anastasia llgen’s work shows smaller REE cations selectively adsorbs in silica pores
performed AIMD potential-of-mean-force of Re(lll) cation desorption from ...

... simple but relevant, partly deprotonated silica surface model, pKa ~ 7-8.1 (but pH larger?)
Predict selective adsorption of Lu(lll) over larger Eu(lll) cations

Need larger simulation cell than previous AIMD simulations for Na*, Cu?*

Onset of hydrolysis of H20 coordinated to RE(lll) correlated energy cutoff

Useful knowledge for future classical force fields MD (where no hydrolysis allowed)

Protonation kinetics reasonably fast



