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• Basic Science understanding to advance rare earth extraction, mining, separation techniques

• Rare earth (RE) elements critical for renewable energies and other technologies of interest
to Department of Energy, due to unique magnetic properties

• Hard to separate RE (III+) in solution

A Computational Approach to Predicting Ligand Selectivity for
the Size-Based Separation of Trivalent Lanthanides

Alexander S. lvanov[al and Vyacheslav S. Bryantsev*la) lnorg. Chem. 2019, 58, 9738-9748
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Figure 1. Ligands examined in the present work. Experimental aqueous-phase
La3+/Lu3+ selectivities are given in kcal/mol.

... modeling organic ligand-assisted separation

• Much computational work done,
e.g. on Re(lll) solvation free energy

• but not with inorganic substrates

Revised lonic Radii of Lanthanoid(lll) lons in Aqueous Solution
Paola D'Angelo,'s Andrea Zitolo s Valentina Migliorati Gi.v...i ChalPrni* nmr,ii §
Pierre Vitorge,54I Sacha Abadie,s'4 and Riccardo Spezia4 Inorg. Chem. 2011, 50, 4572-4579
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REE separation in silica pores/on silica surfaces

Highly Efficient and Selective Recovery of Rare Earth Elements Using
Mesoporous Silica Functionalized by Preorganized Chelating Ligands
Yimu Hu, Elisabeth Drouin, Dominic Lariviere,''' Freddy kleitz,''
and Frederic-Georges Fontaine'•

1014.1,14.

4CS AppI. Mater. Interfaces 2017,  9, 38584-38593
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Silica pores functionalized with organic ligands

My Sandia colleague Dr. Anastasia llgen
observes selectivity in bare silica pores
at higher pH (patent filed, next slide)

Selective Separation and Preconcentration of Scandium with
Mesoporous Silica ACS Appl. Mater. Interfaces 2018, 10, 448-457

Simon Giret, Yimu Hu, Nima Masoumifard,i1 Jean-François Boulanger, Estelle Juere,
Freddy Kleitz,' II and Dominic Lariviere*'±
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Experimental Results: adsorption isotherms for porous silica
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• For both SBA-15 4-nm and SBA-15 7-nm with increasing Z uptake increased.
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Experimental Results: Pore-size (in)dependence

• Eu3' uptake is consistent with Cu2+ results: higher uptake on 4-nm, compared to 7-nm pores.

• Tm3+ and Lu3+ uptake appears independent of pore size.
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Computational Model and method
reconstructed (001)
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add waterjkcation

• focus on silica, use model with single binding site as benchmark

• use previous reconstructed 13-cristobalite (001), pKa = 7.0 — 8.1

• —4 SiOH groups per nm2, agree with measurements

• DFT/PBE, 14x14x26 A3 simulation cell, F-point sampling
(larger cell than in Leung et al, 2009) J. Am. Chem. Soc., 2009, 131, 18358

• T=400 K, umbrella sampling

• One REE3+ in each simulation cell, —350 ps total each

• 3 Si& group to keep charge neutrality

• Qualitatively compare with measurements

*impui 'A.) Have Oilly Vile unique oinding site; most mineral

surfaces have cation multiple binding sites, hard to get clean

results, e.g., Leung & Criscsenti, J. Phys. Condens. Matter 29, 365101 (2017)



AW(R)

Potential of Mean Force is the way to calculate
barriers/exothermicity in liquids
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Concerted Metal Cation Desorption and Proton Transfer on
Deprotonated Silica Surfaces
koun Leung,. Lou. J. Cencenn. Andrew kroglu. (.. IIK.n. loan A. 1 lo.
And Jeffery A. GreAthouse

Cu2+

J. Phys. Chem. Lett. 2018, 9, 5379-5385

desorption free energy: AGlads/kBT = —loglf dilexp[—AW(Z)/kB7]/(V0)}

Na+ : +0.13 +/- 0.03 eV (unbound)

Mg2+: -0.14 +/- 0.05 eV

Cu2+: -0.47 +/- 0.07 eV
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Free energy change as RE(II!) desorbs
Not fully converged
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Protonation Dynamics in one sampling window
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• Fast Grotthuss protonation/deprotonation on SiOH groups

• accompanied by hydrolysis of RE(Ill)(H20)n(OHL

• Experimentally, counter ions (e.g., CI-) play some charge-neutrality role

• e.g., RE(III)(H20)n + -> REM (H20)n(C1-)

• This is difficult to model on AIMD time scales because Cl- moves slowly.

• pH of AIMD simulation cell not known precisely, but is > 7 (pKa of our SiOH model)



Water dynamics in one sampling window
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• Total number of O atoms around Lu(lll) (from water or hydroxides) is constant at 7

• Total number of deprotonated water (i.e., hydroxide anion) can vary



Conclusions

• Dr. Anastasia Ilgen's work shows smaller REE cations selectively adsorbs in silica pores

• performed AIMD potential-of-mean-force of Re(III) cation desorption from ...

• ... simple but relevant, partly deprotonated silica surface model, pKa — 7-8.1 (but pH larger?)

• Predict selective adsorption of Lu(III) over larger Eu(III) cations

• Need larger simulation cell than previous AIMD simulations for Na+, Cu2+

• Onset of hydrolysis of H20 coordinated to RE(III) correlated energy cutoff

• Useful knowledge for future classical force fields MD (where no hydrolysis allowed)

• Protonation kinetics reasonably fast


